ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Trans Ligand Determines the Stability of Paramagnetic Manganese(II) Hydrides of the Type trans-[MnH(L)(dmpe)2]+ Where L is PMe3, C2H4, or CO

Cite this: Inorg. Chem. 2023, 62, 21, 8123–8135
Publication Date (Web):February 22, 2023
https://doi.org/10.1021/acs.inorgchem.2c04432
Copyright © 2023 American Chemical Society

    Article Views

    957

    Altmetric

    -

    Citations

    -
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Paramagnetic metal hydride (PMH) complexes play important roles in catalytic applications and bioinorganic chemistry. 3d PMH chemistry has largely focused on Ti, Mn, Fe, and Co. Various MnII PMHs have been proposed as intermediates in catalysis, but isolated MnII PMHs are limited to dimeric high-spin MnII structures with bridging hydrides. In this paper, a series of the first low-spin monomeric MnII PMH complexes are generated by chemical oxidation of their MnI analogues. This series is of the type trans-[MnH(L)(dmpe)2]+/0 where the trans ligand L is PMe3, C2H4, or CO [dmpe is 1,2-bis(dimethylphosphino)ethane], and the thermal stability of the MnII hydride complexes was found to be strongly dependent on the identity of the trans ligand. When L is PMe3, the complex is the first example of an isolated monomeric MnII hydride complex. In contrast, when L is C2H4 or CO, the complexes are only stable at low temperatures; upon warming to room temperature, the former decomposed to afford [Mn(dmpe)3]+, accompanied by ethane and ethylene, whereas the latter eliminated H2, generating [Mn(MeCN)(CO)(dmpe)2]+ or a mixture of products including [Mn(κ1-PF6)(CO)(dmpe)2], depending on the reaction conditions. All PMHs were characterized by low-temperature electron paramagnetic resonance (EPR) spectroscopy, and stable [MnH(PMe3)(dmpe)2]+ was further characterized by UV–vis and IR spectroscopy, Superconducting Quantum Interference Device magnetometry, and single-crystal X-ray diffraction. Noteworthy spectral properties are the significant EPR superhyperfine coupling to the hydride (∼85 MHz) and an increase (+33 cm–1) in the Mn–H IR stretch upon oxidation. Density functional theory calculations were also employed to gain insights into the acidity and bond strengths of the complexes. MnII–H bond dissociation free energies are estimated to decrease in the series of complexes from 60 (L = PMe3) to 47 kcal/mol (L = CO).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c04432.

    • General discussion of experiments; cyclic voltammetry data; UV–vis, infrared, and NMR spectra; powder X-ray diffraction data; EPR spectra; DFT data; and single-crystal X-ray diffraction data (PDF)

    • Coordinates of DFT structures and energies and full reference for Gaussian 16 (XYZ)

    Accession Codes

    CCDC 21941282194129 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article has not yet been cited by other publications.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect