ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Characterization and Subsequent Reactivity of an Fe-Peroxo Porphyrin Generated by Electrochemical Reductive Activation of O2

View Author Information
Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Université Sorbonne Paris Cité, UMR CNRS 7591, 75205 PARIS Cedex 13, France
Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Sud, Université Paris Saclay, UMR CNRS 8182, 91405 Orsay Cedex, France
*E-mail: [email protected]. (C.F.)
*E-mail: [email protected]. (E.A.-M.)
Cite this: Inorg. Chem. 2016, 55, 23, 12204–12210
Publication Date (Web):November 22, 2016
https://doi.org/10.1021/acs.inorgchem.6b01804
Copyright © 2016 American Chemical Society

    Article Views

    1209

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Reductive activation of O2 is achieved by using the [FeIII(F20TPP)Cl] (F20TPP = 5,10,15,20-tetrakis(pentafluorophenyl) porphyrinate) porphyrin through electrochemical reduction of the [FeIII(F20TPP)(O2•–)] superoxo complex. Formation of the [FeIII(F20TPP)(OO)] peroxo species is monitored by using low-temperature electronic absorption spectroscopy, electron paramagnetic resonance, and cyclic voltammetry. Its subsequent protonation to yield the [FeIII(F20TPP)(OOH)] hydroperoxo intermediate is probed using low-temperature electronic absorption spectroscopy and electron paramagnetic resonance.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.6b01804.

    • CV analysis of a simulation of [FeIII(F20TPP)Cl] (1) in DMF under O2 atmosphere; CV of [FeIII(F20TPP)Cl] (1) in DMF under O2 atmosphere using Pt as working electrode. CV of chemically prepared [FeIII(F20TPP) (OO)]. Additional characterizations of [FeII(F20TPP)(O2)] (2) and species resulting from protonation of [FeIII(F20TPP) (OO)] (4) in the presence of 1-methylimidazole; characterization of species resulting from protonation of [FeIII(F20TPP) (OO)] (4) in the absence of 1-methyl-imidazol (addition of nonafluoro-tert-butyl alcohol ((CF3)3C–OH)) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 30 publications.

    1. Sarmistha Bhunia, Arnab Ghatak, Atanu Rana, Abhishek Dey. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e–/4H+ Oxygen Reduction Rates at Lower Overpotentials. Journal of the American Chemical Society 2023, 145 (6) , 3812-3825. https://doi.org/10.1021/jacs.2c13552
    2. Manjistha Mukherjee, Abhishek Dey. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS Au 2021, 1 (9) , 1296-1311. https://doi.org/10.1021/jacsau.1c00100
    3. Asmita Singha, Arnab Mondal, Abhijit Nayek, Somdatta Ghosh Dey, Abhishek Dey. Oxygen Reduction by Iron Porphyrins with Covalently Attached Pendent Phenol and Quinol. Journal of the American Chemical Society 2020, 142 (52) , 21810-21828. https://doi.org/10.1021/jacs.0c10385
    4. Daniel J. Martin, Samantha I. Johnson, Brandon Q. Mercado, Simone Raugei, James M. Mayer. Intramolecular Electrostatic Effects on O2, CO2, and Acetate Binding to a Cationic Iron Porphyrin. Inorganic Chemistry 2020, 59 (23) , 17402-17414. https://doi.org/10.1021/acs.inorgchem.0c02703
    5. Nikolaos Kostopoulos, Célia Achaibou, Jean-Marc Noël, Frédéric Kanoufi, Marc Robert, Claire Fave, Elodie Anxolabéhère-Mallart. Electrocatalytic O2 Activation by Fe Tetrakis(pentafluorophenyl)porphyrin in Acidic Organic Media. Evidence of High-Valent Fe Oxo Species. Inorganic Chemistry 2020, 59 (16) , 11577-11583. https://doi.org/10.1021/acs.inorgchem.0c01379
    6. Manjistha Mukherjee, Abhishek Dey. Catalytic C–H Bond Oxidation Using Dioxygen by Analogues of Heme Superoxide. Inorganic Chemistry 2020, 59 (11) , 7415-7425. https://doi.org/10.1021/acs.inorgchem.9b03767
    7. Hyun Kim, Patrick J. Rogler, Savita K. Sharma, Andrew W. Schaefer, Edward I. Solomon, Kenneth D. Karlin. Heme-FeIII Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: FeIII-O2•– Complex H-Atom Abstraction Reactivity. Journal of the American Chemical Society 2020, 142 (6) , 3104-3116. https://doi.org/10.1021/jacs.9b12571
    8. Shelby L. Hooe, Charles W. Machan. Dioxygen Reduction to Hydrogen Peroxide by a Molecular Mn Complex: Mechanistic Divergence between Homogeneous and Heterogeneous Reductants. Journal of the American Chemical Society 2019, 141 (10) , 4379-4387. https://doi.org/10.1021/jacs.8b13373
    9. Suzanne M. Adam, Gayan B. Wijeratne, Patrick J. Rogler, Daniel E. Diaz, David A. Quist, Jeffrey J. Liu, Kenneth D. Karlin. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chemical Reviews 2018, 118 (22) , 10840-11022. https://doi.org/10.1021/acs.chemrev.8b00074
    10. Xiongyi Huang, John T. Groves. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chemical Reviews 2018, 118 (5) , 2491-2553. https://doi.org/10.1021/acs.chemrev.7b00373
    11. Christian Noß, Richard Göttlich, Siegfried Schindler. Photochemically Mediated Toluene Oxidation through a Copper Complex. Chemistry – A European Journal 2023, 29 (46) https://doi.org/10.1002/chem.202301142
    12. Eva Pugliese, Nhat Tam Vo, Alain Boussac, Frédéric Banse, Yasmina Mekmouche, Jalila Simaan, Thierry Tron, Philipp Gotico, Marie Sircoglou, Zakaria Halime, Winfried Leibl, Ally Aukauloo. Photocatalytic generation of a non-heme Fe( iii )-hydroperoxo species with O 2 in water for the oxygen atom transfer reaction. Chemical Science 2022, 13 (42) , 12332-12339. https://doi.org/10.1039/D2SC03129A
    13. Anuj Kumar, Guoxin Zhang, Wen Liu, Xiaoming Sun. Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion reactions. Journal of Electroanalytical Chemistry 2022, 922 , 116799. https://doi.org/10.1016/j.jelechem.2022.116799
    14. Allyssa A. Massie, Nikolaos Kostopoulos, Elizabeth N. Grotemeyer, Jean‐Marc Noël, Timothy A. Jackson, Elodie Anxolabéhère‐Mallart. Electrochemical Formation and Reactivity of a Mn‐Peroxo Complex Bearing an Amido N5 Ligand. ChemElectroChem 2022, 9 (11) https://doi.org/10.1002/celc.202200112
    15. Iago A. Modenez. Biomimetics Applied in Electrochemistry. 2022, 1-35. https://doi.org/10.1007/978-3-030-95270-9_1
    16. Asmita Singha, Kaustuv Mittra, Abhishek Dey. Synthetic heme dioxygen adducts: electronic structure and reactivity. Trends in Chemistry 2022, 4 (1) , 15-31. https://doi.org/10.1016/j.trechm.2021.10.008
    17. Pritam Mondal, Izumi Ishigami, Emilie F. Gérard, Chaeeun Lim, Syun-Ru Yeh, Sam P. de Visser, Gayan B. Wijeratne. Proton-coupled electron transfer reactivities of electronically divergent heme superoxide intermediates: a kinetic, thermodynamic, and theoretical study. Chemical Science 2021, 12 (25) , 8872-8883. https://doi.org/10.1039/D1SC01952J
    18. Ning Liu, Xiahe Chen, Liyuan Jin, Yun-Fang Yang, Yuan-Bin She. A mechanistic study of the manganese porphyrin-catalyzed C–H isocyanation reaction. Organic Chemistry Frontiers 2021, 8 (8) , 1858-1866. https://doi.org/10.1039/D0QO01442G
    19. Hyun Kim, Patrick J. Rogler, Savita K. Sharma, Andrew W. Schaefer, Edward I. Solomon, Kenneth D. Karlin. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H‐Atom Transfer (HAT). Angewandte Chemie 2021, 133 (11) , 5972-5977. https://doi.org/10.1002/ange.202013791
    20. Hyun Kim, Patrick J. Rogler, Savita K. Sharma, Andrew W. Schaefer, Edward I. Solomon, Kenneth D. Karlin. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H‐Atom Transfer (HAT). Angewandte Chemie International Edition 2021, 60 (11) , 5907-5912. https://doi.org/10.1002/anie.202013791
    21. Nikolaos Kostopoulos, Frédéric Banse, Claire Fave, Elodie Anxolabéhère-Mallart. Modulating alkene reactivity from oxygenation to halogenation via electrochemical O 2 activation by Mn porphyrin. Chemical Communications 2021, 57 (10) , 1198-1201. https://doi.org/10.1039/D0CC07531K
    22. Jean‐Marc Noel, Nikolaos Kostopoulos, Célia Achaibou, Claire Fave, Elodie Anxolabéhère‐Mallart, Frédéric Kanoufi. Probing the Activity of Iron Peroxo Porphyrin Intermediates in the Reaction Layer during the Electrochemical Reductive Activation of O 2. Angewandte Chemie 2020, 132 (38) , 16518-16522. https://doi.org/10.1002/ange.202004977
    23. Jean‐Marc Noel, Nikolaos Kostopoulos, Célia Achaibou, Claire Fave, Elodie Anxolabéhère‐Mallart, Frédéric Kanoufi. Probing the Activity of Iron Peroxo Porphyrin Intermediates in the Reaction Layer during the Electrochemical Reductive Activation of O 2. Angewandte Chemie International Edition 2020, 59 (38) , 16376-16380. https://doi.org/10.1002/anie.202004977
    24. Elodie Anxolabéhère-Mallart, Frédéric Banse. Bioinspired molecular catalysts for homogenous electrochemical activation of dioxygen. Current Opinion in Electrochemistry 2019, 15 , 118-124. https://doi.org/10.1016/j.coelec.2019.05.002
    25. Asmita Singha, Abhishek Dey. Hydrogen atom abstraction by synthetic heme ferric superoxide and hydroperoxide species. Chemical Communications 2019, 55 (39) , 5591-5594. https://doi.org/10.1039/C9CC01423C
    26. Elodie Anxolabéhère-Mallart, Julien Bonin, Claire Fave, Marc Robert. Small-molecule activation with iron porphyrins using electrons, photons and protons: some recent advances and future strategies. Dalton Transactions 2019, 48 (18) , 5869-5878. https://doi.org/10.1039/C9DT00136K
    27. Jan Paulo T. Zaragoza, David P. Goldberg. Dioxygen Binding and Activation Mediated by Transition Metal Porphyrinoid Complexes. 2018, 1-36. https://doi.org/10.1039/9781788012911-00001
    28. Hai-Xiao Liu, Lianzhi Li, Bo He, Shu-Qin Gao, Ge-Bo Wen, Ying-Wu Lin. Neuroglobin is capable of self-oxidation of methionine64 introduced at the heme axial position. Dalton Transactions 2018, 47 (32) , 10847-10852. https://doi.org/10.1039/C8DT02397B
    29. Subal Dey, Biswajit Mondal, Sudipta Chatterjee, Atanu Rana, Sk Amanullah, Abhishek Dey. Molecular electrocatalysts for the oxygen reduction reaction. Nature Reviews Chemistry 2017, 1 (12) https://doi.org/10.1038/s41570-017-0098
    30. Antoine Bohn, Katell Sénéchal‐David, Jonathan Vanoutryve, Régis Guillot, Eric Rivière, Frédéric Banse. Synthesis and Characterization of Iron(II) Complexes with a BPMEN‐Type Ligand Bearing π‐Accepting Nitro Groups. European Journal of Inorganic Chemistry 2017, 2017 (24) , 3057-3063. https://doi.org/10.1002/ejic.201700226

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect