ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis of Manganese ZIF-8 from [Mn(BH4)2·3THF]·NaBH4
My Activity
    Communication

    Synthesis of Manganese ZIF-8 from [Mn(BH4)2·3THF]·NaBH4
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Molecular Engineering, Graduate School of Engineering, and Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
    Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
    § Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2017, 56, 15, 8744–8747
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.7b01322
    Published July 17, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Cubic and highly porous [Mn(2-methylimidazolate)2] (Mn-ZIF-8) was synthesized from [Mn(BH4)2·3THF]·NaBH4 under an Ar atmosphere. The structure contains rare Mn2+-4N tetrahedral geometry and has larger cell parameters, resulting in 20% larger amounts of gas uptake compared with [Zn(2-methylimidazolate)2]. A kinetically favored reaction using a reactive metal borohydride precursor is key for the construction of new metal–organic framework systems.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.7b01322.

    • Experimental details and additional characterizations (PXRD, TGA, CO2 and O2 sorption, Rietveld refinement, and theoretical calculation) (PDF)

    Accession Codes

    CCDC 1551898 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 42 publications.

    1. Kyungmin Im, Jue-Hyuk Jang, Toan Minh Pham, Jeong Hee Lee, Young Moo Lee, Jinsoo Kim, Sung Jong Yoo. Single-Atomic Mn–N–C Catalyst with Hierarchical Pores for Anion Exchange Membrane Fuel Cells: A Mn Confinement Strategy. ACS Applied Energy Materials 2024, 7 (21) , 9706-9714. https://doi.org/10.1021/acsaem.4c01071
    2. Pascal Kolodzeiski, Erik Svensson Grape, Roman Pallach, Lennard Richter, A. Ken Inge, Sebastian Henke. Lithium and Sodium Benzimidazolate Coordination Networks: Syntheses, Structures, and Thermal Properties. Crystal Growth & Design 2024, 24 (17) , 7278-7286. https://doi.org/10.1021/acs.cgd.4c00927
    3. Kyung-Ryul Oh, Hyunjoon Lee, Gwang-Nam Yun, Changho Yoo, Ji Woong Yoon, Ali Awad, Hyun-Wook Jeong, Young Kyu Hwang. Fabrication of Hierarchical, Porous, Bimetallic, Zeolitic Imidazolate Frameworks with the Incorporation of Square Planar Pd and Its Catalytic Application. ACS Applied Materials & Interfaces 2023, 15 (7) , 9296-9306. https://doi.org/10.1021/acsami.2c20240
    4. Lehlohonolo E. Mphuthi, Elizabeth Erasmus, Ernst H. G. Langner. Metal Exchange of ZIF-8 and ZIF-67 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance. ACS Omega 2021, 6 (47) , 31632-31645. https://doi.org/10.1021/acsomega.1c04142
    5. Mohamed. A. Ali, Xiaofeng Liu, Yang Li, Jinjun Ren, Jianrong Qiu. Nonlinear-Optical Response in Zeolitic Imidazolate Framework Glass. Inorganic Chemistry 2020, 59 (12) , 8380-8386. https://doi.org/10.1021/acs.inorgchem.0c00806
    6. Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas. Solvent-Free Synthesis of ZIFs: A Route toward the Elusive Fe(II) Analogue of ZIF-8. Journal of the American Chemical Society 2019, 141 (17) , 7173-7180. https://doi.org/10.1021/jacs.9b02686
    7. Gaozheng Zhao, Huihui Wu, Ruilu Feng, Dongdong Wang, Pengping Xu, Haibao Wang, Zhen Guo, Qianwang Chen. Bimetallic Zeolitic Imidazolate Framework as an Intrinsic Two-Photon Fluorescence and pH-Responsive MR Imaging Agent. ACS Omega 2018, 3 (8) , 9790-9797. https://doi.org/10.1021/acsomega.8b00923
    8. Dandan Ma, Zhonghan Cheng, Ye Yuan, Somboon Chaemchuen. Facile functionalization iron in zeolitic imidazole framework-67 under solvent-free conditions for enhancing CO2 fixation reaction. Microporous and Mesoporous Materials 2024, 375 , 113161. https://doi.org/10.1016/j.micromeso.2024.113161
    9. Takeshi Kato, Ikuho Akiyama, Fumika Mori, Ayumu Shinohara, Yudai Ogura, Akitaka Ito, Masataka Ohtani. Boron-imidazolate coordination networks with 3d transition metals for enhanced CO 2 adsorption capability. Materials Advances 2024, 5 (10) , 4151-4158. https://doi.org/10.1039/D3MA00996C
    10. Aljaž Škrjanc, Dominik Jankovič, Anton Meden, Matjaž Mazaj, Erik Svensson Grape, Martin Gazvoda, Nataša Zabukovec Logar. Carbonyl‐Supported Coordination in Imidazolates: A Platform for Designing Porous Nickel‐Based ZIFs as Heterogeneous Catalysts. Small 2024, 20 (6) https://doi.org/10.1002/smll.202305258
    11. Fengyan Xu, Jian Ren, Jiaxin Ma, Yan Wang, Ke Zhang, Zhongqiu Cao, Qiuju Sun, Shiwei Wu, Guode Li, Shuchong Bai. A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts. International Journal of Hydrogen Energy 2024, 50 , 827-844. https://doi.org/10.1016/j.ijhydene.2023.08.142
    12. Zhikun Li, Zhihua Xu, Guosheng Wang, Yingjie Ding, Zhaoxiong Yan, Lin Yue. Interfacial construction promoted binder-free NiCo-LDH/Mn-ZIF on carbon cloth for high-performance supercapacitor. Electrochimica Acta 2024, 475 , 143701. https://doi.org/10.1016/j.electacta.2023.143701
    13. Maoni Lu, Daochuan Jiang, Xiaoxing Zhou, Sichen Li, Xinghao Li, Ping Chen, Zhenjie Sun, Junnan Hao, Manzhou Zhu, Peng Li. In situ defect engineering in a multifunctional layer with strong zincophilicity and high Zn-ion conductivity on Zn anodes. Journal of Materials Chemistry A 2023, 11 (47) , 26115-26126. https://doi.org/10.1039/D3TA05873E
    14. Ying Huang, Geng Qin, TingTing Cui, Chuanqi Zhao, Jinsong Ren, Xiaogang Qu. A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40345-3
    15. Kyung-Ryul Oh, Hyunjoon Lee, Hyun-Wook Jeong, Gwang-Nam Yun, Ali Awad, Ajaysing Nimbalkar, Mijung Lee, Young Kyu Hwang. Synthesis of 2D zeolitic imidazolate frameworks based on Co(II) and Pd(II): Effect of Pd(II) addition on the CO2 cycloaddition with epichlorohydrin. Journal of CO2 Utilization 2023, 78 , 102633. https://doi.org/10.1016/j.jcou.2023.102633
    16. Cheolwon Jung, Sang Beom Choi, Jaewoo Park, Minji Jung, Jonghoon Kim, Hyunchul Oh, Jaheon Kim. Porous zeolitic imidazolate frameworks assembled with highly-flattened tetrahedral copper( ii ) centres and 2-nitroimidazolates. Chemical Communications 2023, 59 (27) , 4040-4043. https://doi.org/10.1039/D2CC06797H
    17. Meifeng Wu, Qiaohui Ruan, Haixia Jiang, Longshuai Zhang, Dengke Wang, Jianping Zou. A co-carbonization strategy for confining ultralow-loaded Fe/Mn dual sites in hierarchically porous N-doped carbon for synergistic CO 2 electroreduction. Journal of Materials Chemistry A 2022, 10 (48) , 25463-25470. https://doi.org/10.1039/D2TA06567C
    18. Yupeng Han, Fei Wang, Jian Zhang. Design and syntheses of hybrid zeolitic imidazolate frameworks. Coordination Chemistry Reviews 2022, 471 , 214759. https://doi.org/10.1016/j.ccr.2022.214759
    19. Juma Sahar, Muhammad Farooq, Anita Ramli, Abdul Naeem, Noor Saeed Khattak. Biodiesel production from Mazari palm (Nannorrhops ritchiana) seeds oil using Tungstophosphoric acid decorated SnO2@Mn-ZIF bifunctional heterogeneous catalyst. Applied Catalysis A: General 2022, 643 , 118740. https://doi.org/10.1016/j.apcata.2022.118740
    20. Hikaru Sakamoto, Akitaka Ito, Masataka Ohtani. Unusual ligand substitution of a metal–organic framework with distorted metal–ligand coordination. CrystEngComm 2022, 24 (9) , 1690-1694. https://doi.org/10.1039/D2CE00060A
    21. Javier López-Cabrelles, Eugenia Miguel-Casañ, María Esteve-Rochina, Eduardo Andres-Garcia, Iñigo J. Vitórica-Yrezábal, Joaquín Calbo, Guillermo Mínguez Espallargas. Multivariate sodalite zeolitic imidazolate frameworks: a direct solvent-free synthesis. Chemical Science 2022, 13 (3) , 842-847. https://doi.org/10.1039/D1SC04779E
    22. Kyungmin Im, Jue-Hyuk Jang, Jinsoo Kim, Sung Jong Yoo. Single-Atomic Mn-N-C Catalyst with Hierarchical Pores for Anion Exchange Membrane Fuel Cells: A Mn Confinement Strategy. SSRN Electronic Journal 2022, 406 https://doi.org/10.2139/ssrn.4168562
    23. Yao Wan, Jiao Fang, Yu Wang, Jiao Sun, Yue Sun, Xiaolin Sun, Manlin Qi, Wen Li, Chunyan Li, Yanmin Zhou, Lin Xu, Biao Dong, Lin Wang. Antibacterial Zeolite Imidazole Frameworks with Manganese Doping for Immunomodulation to Accelerate Infected Wound Healing. Advanced Healthcare Materials 2021, 10 (22) https://doi.org/10.1002/adhm.202101515
    24. Meizhuo Zhang, Zhiquan Yu, Zhichao Sun, Anjie Wang, Jian Zhang, Ying-Ya Liu, Yao Wang. Continuous synthesis of ZIF-67 by a microchannel mixer: A recyclable approach. Microporous and Mesoporous Materials 2021, 327 , 111423. https://doi.org/10.1016/j.micromeso.2021.111423
    25. Guangshen Jiang, Volodymyr Bon, Fei Xu, Bikash Garai, En Zhang, Irena Senkovska, Stephanie Poetke, Felix Hippauf, Steffen Hausdorf, Silvia Paasch, Eike Brunner, Hongqiang Wang, Stefan Kaskel. A new zeolitic lithium aluminum imidazolate framework. Dalton Transactions 2021, 50 (23) , 7933-7937. https://doi.org/10.1039/D1DT01017D
    26. Beili Yi, Haojie Zhao, Yue Zhang, Xiaomeng Si, Guanqun Zhang, Yuanyuan An, Longxing Su, Chia-Kuang Tsung, Lien-Yang Chou, Jin Xie. A direct solvent-free conversion approach to prepare mixed-metal metal–organic frameworks from doped metal oxides. Chemical Communications 2021, 57 (29) , 3587-3590. https://doi.org/10.1039/D1CC00671A
    27. Wen Chen, Haoyue Zhang, Ang Qiao, Haizheng Tao. Impact of solvent substitution on kinetically controlled transmetalation behaviours in a MOF. New Journal of Chemistry 2020, 44 (34) , 14679-14685. https://doi.org/10.1039/D0NJ02935A
    28. Yi Cao, Zhenqi Jiang, Yanying Li, Yinjie Wang, Yong Yang, Ozioma Udochukwu Akakuru, Juan Li, Aiguo Wu. Tandem post-synthetic modification of a zeolitic imidazolate framework for CXCR4-overexpressed esophageal squamous cell cancer imaging and therapy. Nanoscale 2020, 12 (24) , 12779-12789. https://doi.org/10.1039/D0NR00895H
    29. Durga Parajuli, Reynald Ponte, Nan Zhang, Tohru Nakamura, Tohru Kawamoto. Synthesis and characterization of mixed Co-Zn-ZIF for arsenic(V) adsorption. Inorganica Chimica Acta 2020, 502 , 119311. https://doi.org/10.1016/j.ica.2019.119311
    30. Yuan-Bo Pan, Siqi Wang, Xiuchao He, Weiwei Tang, Jianhua Wang, Anwen Shao, Jianmin Zhang. A combination of glioma in vivo imaging and in vivo drug delivery by metal–organic framework based composite nanoparticles. Journal of Materials Chemistry B 2019, 7 (48) , 7683-7689. https://doi.org/10.1039/C9TB01651A
    31. Yuxiu Sun, Hongliang Huang, Xiangyu Guo, Zhihua Qiao, Chongli Zhong. Controlling Metal Ion Counter Diffusion in Confined Spaces for In Situ Growth of Mixed Metal MOF Membranes for Gas Separation. ChemNanoMat 2019, 5 (9) , 1244-1250. https://doi.org/10.1002/cnma.201900348
    32. Edmund Samuel, Bhavana Joshi, Min-Woo Kim, Yong-Il Kim, Mark T. Swihart, Sam S. Yoon. Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors. Chemical Engineering Journal 2019, 371 , 657-665. https://doi.org/10.1016/j.cej.2019.04.065
    33. Mohit Saraf, Richa Rajak, Shaikh M. Mobin. MOF Derived High Surface Area Enabled Porous Co 3 O 4 Nanoparticles for Supercapacitors. ChemistrySelect 2019, 4 (27) , 8142-8149. https://doi.org/10.1002/slct.201901652
    34. Kentaro Kadota, Nghia Tuan Duong, Yusuke Nishiyama, Easan Sivaniah, Susumu Kitagawa, Satoshi Horike. Borohydride-containing coordination polymers: synthesis, air stability and dehydrogenation. Chemical Science 2019, 10 (24) , 6193-6198. https://doi.org/10.1039/C9SC00731H
    35. Wei Xu, Hao Chen, Kecheng Jie, Zhenzhen Yang, Tingting Li, Sheng Dai. Entropy‐Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO 2 Fixation. Angewandte Chemie 2019, 131 (15) , 5072-5076. https://doi.org/10.1002/ange.201900787
    36. Wei Xu, Hao Chen, Kecheng Jie, Zhenzhen Yang, Tingting Li, Sheng Dai. Entropy‐Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO 2 Fixation. Angewandte Chemie International Edition 2019, 58 (15) , 5018-5022. https://doi.org/10.1002/anie.201900787
    37. Louis Frentzel-Beyme, Marvin Kloß, Roman Pallach, Soma Salamon, Henning Moldenhauer, Joachim Landers, Heiko Wende, Jörg Debus, Sebastian Henke. Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework. Journal of Materials Chemistry A 2019, 7 (3) , 985-990. https://doi.org/10.1039/C8TA08016J
    38. Kyungkyou Noh, Jisu Lee, Jaheon Kim. Compositions and Structures of Zeolitic Imidazolate Frameworks. Israel Journal of Chemistry 2018, 58 (9-10) , 1075-1088. https://doi.org/10.1002/ijch.201800107
    39. Jingze Sun, Liya Semenchenko, Woo Taik Lim, Maria Fernanda Ballesteros Rivas, Victor Varela-Guerrero, Hae-Kwon Jeong. Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8. Microporous and Mesoporous Materials 2018, 264 , 35-42. https://doi.org/10.1016/j.micromeso.2017.12.032
    40. Panagiotis Krokidas, Salvador Moncho, Edward N. Brothers, Marcelo Castier, Ioannis G. Economou. Tailoring the gas separation efficiency of metal organic framework ZIF-8 through metal substitution: a computational study. Physical Chemistry Chemical Physics 2018, 20 (7) , 4879-4892. https://doi.org/10.1039/C7CP08456K
    41. Adam F. Sapnik, Harry S. Geddes, Emily M. Reynolds, Hamish H.-M. Yeung, Andrew L. Goodwin. Compositional inhomogeneity and tuneable thermal expansion in mixed-metal ZIF-8 analogues. Chemical Communications 2018, 54 (69) , 9651-9654. https://doi.org/10.1039/C8CC04172E
    42. Shipeng Gong, Changlai Wang, Peng Jiang, Lin Hu, Hu Lei, Qianwang Chen. Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. Journal of Materials Chemistry A 2018, 6 (27) , 13254-13262. https://doi.org/10.1039/C8TA04564J

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2017, 56, 15, 8744–8747
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.7b01322
    Published July 17, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    3674

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.