ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Figure 1Loading Img

Group 10 Metal Benzene-1,2-dithiolate Derivatives in the Synthesis of Coordination Polymers Containing Potassium Countercations

View Author Information
Departamento de Química Inorgánica, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
§ Instituto de Ciencia Molecular, Departamento de Quı́mica Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán, 2. 46980 Paterna, Valencia, Spain
Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain
Departamento de Nanoestructuras, Superficies, Recubrimientos y Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain
# Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
*E-mail for E.D.: [email protected]
*E-mail for F.Z.: [email protected]
Cite this: Inorg. Chem. 2017, 56, 19, 11810–11818
Publication Date (Web):September 18, 2017
Copyright © 2017 American Chemical Society

    Article Views





    Read OnlinePDF (5 MB)
    Supporting Info (1)»


    Abstract Image

    The use of theoretical calculations has allowed us to predict the coordination behavior of dithiolene [M(SC6H4S)2]2– (M = Ni, Pd, Pt) entities, giving rise to the first organometallic polymers {[K2(μ-H2O)2][Ni(SC6H4S)2]}n and {[K2(μ-H2O)2(thf)]2[K2(μ-H2O)2(thf)2][Pd3(SC6H4S)6]}n by one-pot reactions of the corresponding d10 metal salts, 1,2-benzenedithiolene, and KOH. The polymers are based on σ,π interactions between potassium atoms and [M(SC6H4S)2]2– (M = Ni, Pd) entities. In contrast, only σ interactions are observed when the analogous platinum derivative is used instead, yielding the coordination polymer {[K2(μ-thf)2][Pt(SC6H4S)2]}n.

    Supporting Information

    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.7b01775.

    • Additional information on theoretical studies and physical properties (PDF)

    Accession Codes

    CCDC 15519421551944 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 12 publications.

    1. Stefan Henfling, Anastasia Kultaeva, Andreas Pöppl, Jennifer Klose, Berthold Kersting, Kostiantyn V. Domasevitch, Harald Krautscheid. Proton and Electron Transfer in the Formation of a Copper Dithiolene-Based Coordination Polymer. Inorganic Chemistry 2021, 60 (12) , 9008-9018.
    2. Oscar Castillo, Esther Delgado, Elisa Hernández, Maria Pérez, Félix Zamora. Structural Factors Governing the Formation of Extended Structures in Group 10 and 12 Metal-Dithiolenes. Crystal Growth & Design 2020, 20 (7) , 4573-4584.
    3. Carol Hua, Jordan A. DeGayner, T. David Harris. Thiosemiquinoid Radical-Bridged CrIII2 Complexes with Strong Magnetic Exchange Coupling. Inorganic Chemistry 2019, 58 (10) , 7044-7053.
    4. Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora. Comparative Studies of Oxidation Processes on Group 10 Metals Dithiolene Derivatives in the Formation of Coordination Polymers. Crystal Growth & Design 2018, 18 (4) , 2486-2494.
    5. Lukas Brieger, Tobias Schrimpf, Rebecca Scheel, Christian Unkelbach, Carsten Strohmann. Towards Substrate–Reagent Interaction of Lochmann–Schlosser Bases in THF: Bridging THF Hides Potential Reaction Site of a Chiral Superbase. Chemistry – A European Journal 2022, 28 (69)
    6. Xiangling Deng, Sai-Li Zheng, Yuan-Hui Zhong, Jieying Hu, Lai-Hon Chung, Jun He. Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. Coordination Chemistry Reviews 2022, 450 , 214235.
    7. Arghya Dutta, Arnab Chatterjee, Tathagata Sarkar, Shubhamoy Chowdhury, Vinayak B. Kamble, Rajarshi Ghosh. Synthesis, structural characterization and variable temperature electrical conductivity of a pentanuclear Pd(II)dithiolato complex. Inorganic Chemistry Communications 2021, 133 , 108889.
    8. Ayushi Singh, Amita Singh, Gabriele Kociok-Köhn, Kieran C. Molloy, Ashish Kumar Singh, Abhinav Kumar, Mohd. Muddassir. Ni( ii ) dithiolate anion composites with two-dimensional materials for electrochemical oxygen evolution reactions (OERs). New Journal of Chemistry 2021, 45 (35) , 16264-16270.
    9. Ross F. Koby, Timothy P. Hanusa. Lithium, Sodium, Potassium, Rubidium, and Cesium. 2021, 2-48.
    10. Damien Bechu, Alexandru Mihai Petre, Mir Wais Hosseini, Stéphane A. Baudron. Heterometallic coordination polymers based on homo- and heteroleptic Au( iii ) dithiolene complexes. CrystEngComm 2020, 22 (35) , 5760-5767.
    11. Mohsen Ahmadi, Jevy Correia, Nicolas Chrysochos, Carola Schulzke. A Mixed-Valence Tetra-Nuclear Nickel Dithiolene Complex: Synthesis, Crystal Structure, and the Lability of Its Nickel Sulfur Bonds. Inorganics 2020, 8 (4) , 27.
    12. Pilar Amo-Ochoa, Oscar Castillo, Esther Delgado, Ana Gallut, Elisa Hernández, Josefina Perles, Félix Zamora. Copper dithiolene [Cu(SC 6 H 2 Cl 2 S) 2 ] − units connected to alkaline/copper complexes: from ionic assemblies to discrete molecular entities and coordination polymers. CrystEngComm 2019, 21 (6) , 957-963.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect