ACS Publications. Most Trusted. Most Cited. Most Read
Interplay between Copper, Neprilysin, and N-Truncation of β-Amyloid
My Activity
    Communication

    Interplay between Copper, Neprilysin, and N-Truncation of β-Amyloid
    Click to copy article linkArticle link copied!

    • Mariusz Mital
      Mariusz Mital
      Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
      Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
    • Wojciech Bal
      Wojciech Bal
      Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
      More by Wojciech Bal
    • Tomasz Frączyk
      Tomasz Frączyk
      Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
      Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
    • Simon C. Drew*
      Simon C. Drew
      Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Victoria 3010, Australia
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2018, 57, 11, 6193–6197
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.8b00391
    Published May 18, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Sporadic Alzheimer’s disease (AD) is associated with an inefficient clearance of the β-amyloid (Aβ) peptide from the central nervous system. The protein levels and activity of the Zn2+-dependent endopeptidase neprilysin (NEP) inversely correlate with brain Aβ levels during aging and in AD. The present study considered the ability of Cu2+ ions to inhibit human recombinant NEP and the role for NEP in generating N-truncated Aβ fragments with high-affinity Cu2+ binding motifs that can prevent this inhibition. Divalent copper noncompetitively inhibited NEP (Ki = 1.0 μM),  while proteolysis of Aβ yielded the soluble, Aβ4–9 fragment that can bind Cu2+ with femtomolar affinity at pH 7.4. This provides Aβ4–9 with the potential to act as a Cu2+ carrier and to mediate its own production by preventing NEP inhibition. Enzyme inhibition at high Zn2+ concentrations (Ki = 20 μM) further suggests a mechanism for modulating NEP activity, Aβ4–9 production, and Cu2+ homeostasis.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.8b00391.

    • Experimental methods and additional kinetic, chromatographic, and spectroscopic characterization (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 31 publications.

    1. Victor E. López-Guerrero, Yanahi Posadas, Carolina Sánchez-López, Amanda Smart, Jael Miranda, Kevin Singewald, Yamir Bandala, Eusebio Juaristi, Christophe Den Auwer, Claudia Perez-Cruz, Lorenza González-Mariscal, Glenn Millhauser, Jose Segovia, Liliana Quintanar. A Copper-Binding Peptide with Therapeutic Potential against Alzheimer′s Disease: From the Blood–Brain Barrier to Metal Competition. ACS Chemical Neuroscience 2025, 16 (2) , 241-261. https://doi.org/10.1021/acschemneuro.4c00796
    2. Anurag Prakash Sunda, Anuj Kumar Sharma. Molecular Insights into Cu/Zn Metal Response to the Amyloid β-Peptide (1–42). ACS Physical Chemistry Au 2024, 4 (1) , 57-66. https://doi.org/10.1021/acsphyschemau.3c00041
    3. Florian Brandt, Martin Ullrich, Johanna Wodtke, Klaus Kopka, Michael Bachmann, Reik Löser, Jens Pietzsch, Hans-Jürgen Pietzsch, Robert Wodtke. Enzymological Characterization of 64Cu-Labeled Neprilysin Substrates and Their Application for Modulating the Renal Clearance of Targeted Radiopharmaceuticals. Journal of Medicinal Chemistry 2023, 66 (1) , 516-537. https://doi.org/10.1021/acs.jmedchem.2c01472
    4. José P. Leite, Marta G. Lete, Susan B. Fowler, Ana Gimeno, Juliana F. Rocha, Sérgio F. Sousa, Carl I. Webster, Jesús J. Jiménez-Bar̀bero, Luís Gales. Aβ31–35 Decreases Neprilysin-Mediated Alzheimer’s Amyloid-β Peptide Degradation. ACS Chemical Neuroscience 2021, 12 (19) , 3708-3718. https://doi.org/10.1021/acschemneuro.1c00432
    5. Danilo Milardi, Ehud Gazit, Sheena E. Radford, Yong Xu, Rodrigo U. Gallardo, Amedeo Caflisch, Gunilla T. Westermark, Per Westermark, Carmelo La Rosa, Ayyalusamy Ramamoorthy. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chemical Reviews 2021, 121 (3) , 1845-1893. https://doi.org/10.1021/acs.chemrev.0c00981
    6. Ewelina Stefaniak, M. Jake Pushie, Catherine Vaerewyck, David Corcelli, Chloe Griggs, Whitney Lewis, Emma Kelley, Noreen Maloney, Madison Sendzik, Wojciech Bal, Kathryn L. Haas. Exploration of the Potential Role for Aβ in Delivery of Extracellular Copper to Ctr1. Inorganic Chemistry 2020, 59 (23) , 16952-16966. https://doi.org/10.1021/acs.inorgchem.0c02100
    7. Nina E. Wezynfeld, Aleksandra Tobolska, Mariusz Mital, Urszula E. Wawrzyniak, Magdalena Z. Wiloch, Dawid Płonka, Karolina Bossak-Ahmad, Wojciech Wróblewski, Wojciech Bal. Aβ5–x Peptides: N-Terminal Truncation Yields Tunable Cu(II) Complexes. Inorganic Chemistry 2020, 59 (19) , 14000-14011. https://doi.org/10.1021/acs.inorgchem.0c01773
    8. Ewelina Stefaniak, Dawid Płonka, Paulina Szczerba, Nina E. Wezynfeld, Wojciech Bal. Copper Transporters? Glutathione Reactivity of Products of Cu–Aβ Digestion by Neprilysin. Inorganic Chemistry 2020, 59 (7) , 4186-4190. https://doi.org/10.1021/acs.inorgchem.0c00427
    9. Ewelina Stefaniak, Wojciech Bal. CuII Binding Properties of N-Truncated Aβ Peptides: In Search of Biological Function. Inorganic Chemistry 2019, 58 (20) , 13561-13577. https://doi.org/10.1021/acs.inorgchem.9b01399
    10. Karolina Bossak-Ahmad, Mariusz Mital, Dawid Płonka, Simon C. Drew, Wojciech Bal. Oligopeptides Generated by Neprilysin Degradation of β-Amyloid Have the Highest Cu(II) Affinity in the Whole Aβ Family. Inorganic Chemistry 2019, 58 (1) , 932-943. https://doi.org/10.1021/acs.inorgchem.8b03051
    11. Victor A. Streltsov, Ruwini S. K. Ekanayake, Simon C. Drew, Christopher T. Chantler, Stephen P. Best. Structural Insight into Redox Dynamics of Copper Bound N-Truncated Amyloid-β Peptides from in Situ X-ray Absorption Spectroscopy. Inorganic Chemistry 2018, 57 (18) , 11422-11435. https://doi.org/10.1021/acs.inorgchem.8b01255
    12. Aleksandra Tobolska, Agnieszka E. Jabłońska, Aleksandra Suwińska, Urszula E. Wawrzyniak, Wojciech Wróblewski, Nina E. Wezynfeld. The effect of histidine, histamine, and imidazole on electrochemical properties of Cu( ii ) complexes of Aβ peptides containing His-2 and His-3 motifs. Dalton Transactions 2024, 53 (36) , 15359-15371. https://doi.org/10.1039/D4DT01354A
    13. Klaudia Głowacz, Marcin Drozd, Weronika Tokarska, Nina E. Wezynfeld, Patrycja Ciosek-Skibińska. Quantum dots-based “chemical tongue” for the discrimination of short-length Aβ peptides. Microchimica Acta 2024, 191 (2) https://doi.org/10.1007/s00604-023-06115-0
    14. Arian Kola, Ginevra Vigni, Daniela Valensin. Exploration of Lycorine and Copper(II)’s Association with the N-Terminal Domain of Amyloid β. Inorganics 2023, 11 (11) , 443. https://doi.org/10.3390/inorganics11110443
    15. Jong-Min Suh, Mingeun Kim, Jeasang Yoo, Jiyeon Han, Cinthya Paulina, Mi Hee Lim. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coordination Chemistry Reviews 2023, 478 , 214978. https://doi.org/10.1016/j.ccr.2022.214978
    16. Yanahi Posadas, Víctor E. López-Guerrero, Trinidad Arcos-López, Richard I. Sayler, Carolina Sánchez-López, José Segovia, Claudia Perez-Cruz, Liliana Quintanar. The role of d-block metal ions in neurodegenerative diseases. 2023, 575-628. https://doi.org/10.1016/B978-0-12-823144-9.00115-1
    17. Hosna Ehzari, Masoud Amiri, Meysam Safari, Mohsen Samimi. Zn-based metal-organic frameworks and p-aminobenzoic acid for electrochemical sensing of copper ions in milk and milk powder samples. International Journal of Environmental Analytical Chemistry 2022, 102 (16) , 4364-4377. https://doi.org/10.1080/03067319.2020.1784410
    18. Hang Choi, Eungchan Kim, Jae Yoon Choi, Eunsik Park, Hyuck Jin Lee. Potent therapeutic targets for treatment of Alzheimer's disease: Amyloid degrading enzymes. Bulletin of the Korean Chemical Society 2021, 42 (11) , 1419-1429. https://doi.org/10.1002/bkcs.12390
    19. Kehinde D. Fasae, Amos O. Abolaji, Tolulope R. Faloye, Atinuke Y. Odunsi, Bolaji O. Oyetayo, Joseph I. Enya, Joshua A. Rotimi, Rufus O. Akinyemi, Alexander J. Whitworth, Michael Aschner. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. Journal of Trace Elements in Medicine and Biology 2021, 67 , 126779. https://doi.org/10.1016/j.jtemb.2021.126779
    20. Thomas A. Bayer. N-Truncated Aβ Starting at Position Four—Biochemical Features, Preclinical Models, and Potential as Drug Target in Alzheimer’s Disease. Frontiers in Aging Neuroscience 2021, 13 https://doi.org/10.3389/fnagi.2021.710579
    21. Namdoo Kim, Hyuck Jin Lee. Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer’s Disease. International Journal of Molecular Sciences 2021, 22 (14) , 7697. https://doi.org/10.3390/ijms22147697
    22. Ewelina Stefaniak, Elena Atrian‐Blasco, Wojciech Goch, Laurent Sabater, Christelle Hureau, Wojciech Bal. The Aggregation Pattern of Aβ 1–40 is Altered by the Presence of N ‐Truncated Aβ 4–40 and/or Cu II in a Similar Way through Ionic Interactions. Chemistry – A European Journal 2021, 27 (8) , 2798-2809. https://doi.org/10.1002/chem.202004484
    23. Jacek Baj, Alicja Forma, Elżbieta Sitarz, Kaja Karakuła, Wojciech Flieger, Monika Sitarz, Cezary Grochowski, Ryszard Maciejewski, Hanna Karakula-Juchnowicz. Beyond the Mind—Serum Trace Element Levels in Schizophrenic Patients: A Systematic Review. International Journal of Molecular Sciences 2020, 21 (24) , 9566. https://doi.org/10.3390/ijms21249566
    24. Xiangyu Teng, Ewelina Stefaniak, Paul Girvan, Radosław Kotuniak, Dawid Płonka, Wojciech Bal, Liming Ying. Hierarchical binding of copperII to N-truncated Aβ4–16 peptide. Metallomics 2020, 12 (4) , 470-473. https://doi.org/10.1039/c9mt00299e
    25. Mariusz Mital, Jakub P. Sęk, Zyta M. Ziora. Metal–Peptide Complexes to Study Neurodegenerative Diseases. 2020, 323-336. https://doi.org/10.1007/978-1-0716-0227-0_22
    26. Oliver Wirths, Silvia Zampar. Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer’s disease. Expert Opinion on Therapeutic Targets 2019, 23 (12) , 991-1004. https://doi.org/10.1080/14728222.2019.1702972
    27. , Oliver Wirths, Silvia Zampar, , Sascha Weggen, . N-Terminally Truncated Aß Peptide Variants in Alzheimer’s Disease. 2019, 107-122. https://doi.org/10.15586/alzheimersdisease.2019.ch7
    28. Paulina Gonzalez, Karolina Bossak-Ahmad, Bertrand Vileno, Nina E. Wezynfeld, Youssef El Khoury, Petra Hellwig, Christelle Hureau, Wojciech Bal, Peter Faller. Triggering Cu-coordination change in Cu( ii )-Ala-His-His by external ligands. Chemical Communications 2019, 55 (56) , 8110-8113. https://doi.org/10.1039/C9CC03174J
    29. Cezary Grochowski, Eliza Blicharska, Jacek Baj, Aleksandra Mierzwińska, Karolina Brzozowska, Alicja Forma, Ryszard Maciejewski. Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review. Molecules 2019, 24 (7) , 1361. https://doi.org/10.3390/molecules24071361
    30. Karen Hornung, Silvia Zampar, Nadine Engel, Hans Klafki, Thomas Liepold, Thomas A. Bayer, Jens Wiltfang, Olaf Jahn, Oliver Wirths. N-Terminal Truncated Aβ4-42 Is a Substrate for Neprilysin Degradation in vitro and in vivo. Journal of Alzheimer's Disease 2019, 67 (3) , 849-858. https://doi.org/10.3233/JAD-181134
    31. Yu Jiang, Xifeng Chen, Lintao Lan, Yue Pan, Guoxing Zhu, Peng Miao. Gly–Gly–His tripeptide- and silver nanoparticle-assisted electrochemical evaluation of copper( ii ) ions in aqueous environment. New Journal of Chemistry 2018, 42 (18) , 14733-14737. https://doi.org/10.1039/C8NJ03625J

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2018, 57, 11, 6193–6197
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.8b00391
    Published May 18, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    996

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.