ACS Publications. Most Trusted. Most Cited. Most Read
Universal Single-Ion Physics in Spin–Orbit-Coupled d5 and d4 Ions
My Activity

Figure 1Loading Img
    Article

    Universal Single-Ion Physics in Spin–Orbit-Coupled d5 and d4 Ions
    Click to copy article linkArticle link copied!

    • Hongcheng Lu
      Hongcheng Lu
      Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States
      More by Hongcheng Lu
    • Juan R. Chamorro
      Juan R. Chamorro
      Institute for Quantum Matter and Department of Physics and Astronomy  and  Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
    • Cheng Wan
      Cheng Wan
      Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
      More by Cheng Wan
    • Tyrel M. McQueen*
      Tyrel M. McQueen
      Institute for Quantum Matter and Department of Physics and Astronomy,  Department of Chemistry  and  Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
      *E-mail: [email protected] (T.M.M.).
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2018, 57, 22, 14443–14449
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.8b02718
    Published November 5, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We have identified six new 4d4 and 4d5 compounds with isolated RuCl6 octahedra, with formulas (HMA)4RuCl6·Cl (1; MA = methylamine), (HGly)4RuCl6·Cl (2; gly = glycine), (HGly)3RuCl6·2H2O (3), (NH4)2RuCl6 (4), (HPy)2RuCl6 (5; py = pyridine), and H2(4,4′-bpy)RuCl6 (6; 4,4′-bpy = 4,4′-bipyridine). We find that the temperature-dependent magnetization is well described by single-ion physics in the presence of spin–orbit coupling and negligible superexchange interactions. Further, we find that many compounds in the literature are also well described by single-ion physics, and our results demonstrate the importance of considering single-ion physics when evaluating candidate geometric frustrated magnets in the presence of spin–orbit coupling.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.8b02718.

    • Additional crystallographic and magnetic property data (PDF)

    Accession Codes

    CCDC 15469141546919 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 25 publications.

    1. Hang Liu, Yanhong Wang, Yadong Zhou, Shuang Li, Yaling Dou, Tao Wang, Hongcheng Lu. MIO3F (M = Co and Ni): Magnetic Iodate Fluorides with Zigzag Chains. Inorganic Chemistry 2022, 61 (44) , 17838-17847. https://doi.org/10.1021/acs.inorgchem.2c03167
    2. Matilde Saura-Múzquiz, Maxim Avdeev, Helen E. A. Brand, Brendan J. Kennedy. Structural and Magnetic Properties of Some Vacancy-Ordered Osmium Halide Perovskites. Inorganic Chemistry 2022, 61 (40) , 15961-15972. https://doi.org/10.1021/acs.inorgchem.2c02171
    3. Juan R. Chamorro, Tyrel M. McQueen, Thao T. Tran. Chemistry of Quantum Spin Liquids. Chemical Reviews 2021, 121 (5) , 2898-2934. https://doi.org/10.1021/acs.chemrev.0c00641
    4. Lingling Mao, Peijun Guo, Shuxin Wang, Anthony K. Cheetham, Ram Seshadri. Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides. Journal of the American Chemical Society 2020, 142 (31) , 13582-13589. https://doi.org/10.1021/jacs.0c06039
    5. Xin Gui, Stuart Calder, Huibo Cao, Tianyi Yu, Weiwei Xie. Geometric and Magnetic Structures of K2ReI6 as an Antiferromagnetic Insulator with Ferromagnetic Spin-Canting Originated from Spin−Orbit Coupling. The Journal of Physical Chemistry C 2019, 123 (3) , 1645-1652. https://doi.org/10.1021/acs.jpcc.8b11371
    6. Shuvajit Halder, Carlo Meneghini, Sugata Ray. Hybridization effects on the magnetic ground state of ruthenium in double perovskite La 2 ZnRu 1−x Ti x O 6. Journal of Physics: Condensed Matter 2025, 37 (11) , 115804. https://doi.org/10.1088/1361-648X/ada679
    7. Ying Li, Ram Seshadri, Stephen D. Wilson, Anthony K. Cheetham, Roser Valentí. Microscopic origin of temperature-dependent magnetism in spin-orbit-coupled transition metal compounds. Physical Review Research 2025, 7 (1) https://doi.org/10.1103/PhysRevResearch.7.L012083
    8. Guiyan Liu, Zhenrong Li, Qi Ding, Peiya Liu, Ke Wang, Yongfei Zeng. Hydrogen-bonding ruthenium complex [C22H24N3]2[RuCl6]·4CH2Cl2: Structure and catalytic properties. Journal of Molecular Structure 2024, 1301 , 137274. https://doi.org/10.1016/j.molstruc.2023.137274
    9. Shoubhik Mandal, Abhishek Banerjee, R Ganesan, P S Anil Kumar. Ligand field luminescence in the honeycomb Mott insulator α-RuCl 3. New Journal of Physics 2023, 25 (5) , 053032. https://doi.org/10.1088/1367-2630/acd5ab
    10. Devesh Chandra Binwal, Prashurya Pritam Mudoi, Debendra Prasad Panda, Pratap Vishnoi. Molybdenum chloride double perovskites: dimensionality control of optical and magnetic properties. Chemical Science 2023, 14 (15) , 3982-3989. https://doi.org/10.1039/D3SC00132F
    11. Hayato Yatsuzuka, Yuya Haraguchi, Akira Matsuo, Koichi Kindo, Hiroko Aruga Katori. Spin-glass transition in the spin–orbit-entangled Jeff = 0 Mott insulating double-perovskite ruthenate. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-06467-2
    12. Z. Y. Li, X. Y. Li, J. M. He, Michael A. McGuire, Adam A. Aczel, J. A. Alonso, M. T. Fernandez-Diaz, J.-S. Zhou. Exotic physical properties in metallic perovskite LaRuO 3 : Strong evidence for Hund metal. Physical Review B 2022, 106 (8) https://doi.org/10.1103/PhysRevB.106.L081104
    13. Matilde Saura-Múzquiz, Bryce G. Mullens, Helen E.A. Brand, Brendan J. Kennedy. Structure and electronic properties of a μ-oxo ruthenium bromide. Journal of Solid State Chemistry 2022, 311 , 123151. https://doi.org/10.1016/j.jssc.2022.123151
    14. Ying Li, Stephen M. Winter, David A. S. Kaib, Kira Riedl, Roser Valentí. Modified Curie-Weiss law for j eff magnets. Physical Review B 2021, 103 (22) https://doi.org/10.1103/PhysRevB.103.L220408
    15. Pratap Vishnoi, Julia L. Zuo, Joya A. Cooley, Linus Kautzsch, Alejandra Gómez‐Torres, Jesse Murillo, Skye Fortier, Stephen D. Wilson, Ram Seshadri, Anthony K. Cheetham. Chemical Control of Spin‐Orbit Coupling and Charge Transfer in Vacancy‐Ordered Ruthenium(IV) Halide Perovskites. Angewandte Chemie 2021, 133 (10) , 5244-5248. https://doi.org/10.1002/ange.202013383
    16. Pratap Vishnoi, Julia L. Zuo, Joya A. Cooley, Linus Kautzsch, Alejandra Gómez‐Torres, Jesse Murillo, Skye Fortier, Stephen D. Wilson, Ram Seshadri, Anthony K. Cheetham. Chemical Control of Spin‐Orbit Coupling and Charge Transfer in Vacancy‐Ordered Ruthenium(IV) Halide Perovskites. Angewandte Chemie International Edition 2021, 60 (10) , 5184-5188. https://doi.org/10.1002/anie.202013383
    17. J. M. D.  Coey. Magnetic Oxides and Other Compounds. 2021, 1-76. https://doi.org/10.1007/978-3-030-63101-7_17-1
    18. J. M. D.  Coey. Magnetic Oxides and Other Compounds. 2021, 847-922. https://doi.org/10.1007/978-3-030-63210-6_17
    19. Ranuri S Dissanayaka Mudiyanselage, Madalynn Marshall, Tai Kong, Weiwei Xie. Li 4 Ru 2 OCl 10 ·10H 2 O: crystal structure, magnetic properties and bonding interactions in ruthenium-oxo complexes. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 2020, 76 (5) , 884-891. https://doi.org/10.1107/S2052520620010914
    20. Pratap Vishnoi, Julia L. Zuo, T. Amanda Strom, Guang Wu, Stephen D. Wilson, Ram Seshadri, Anthony K. Cheetham. Structural Diversity and Magnetic Properties of Hybrid Ruthenium Halide Perovskites and Related Compounds. Angewandte Chemie 2020, 132 (23) , 9059-9066. https://doi.org/10.1002/ange.202003095
    21. Pratap Vishnoi, Julia L. Zuo, T. Amanda Strom, Guang Wu, Stephen D. Wilson, Ram Seshadri, Anthony K. Cheetham. Structural Diversity and Magnetic Properties of Hybrid Ruthenium Halide Perovskites and Related Compounds. Angewandte Chemie International Edition 2020, 59 (23) , 8974-8981. https://doi.org/10.1002/anie.202003095
    22. Qian-Qian Su, Kun Fan, Xin-Da Huang, Jing Xiang, Shun-Cheung Cheng, Chi-Chiu Ko, Li-Min Zheng, Mohamedally Kurmoo, Tai-Chu Lau. Field-induced slow magnetic relaxation in low-spin S = 1/2 mononuclear osmium( v ) complexes. Dalton Transactions 2020, 49 (13) , 4084-4092. https://doi.org/10.1039/D0DT00295J
    23. Yuzki M. Oey, Robert Cava. The effective magnetic moments of Co2+ and Co3+ in SrTiO3 investigated by temperature-dependent magnetic susceptibility. Materials Research Bulletin 2020, 122 , 110667. https://doi.org/10.1016/j.materresbull.2019.110667
    24. Chunli Jiang, Qianqian Luo, Hanmei Fu, Hechun Lin, Chunhua Luo, Jianlu Wang, Xiangjian Meng, Hui Peng, Chun-Gang Duan, Junhao Chu. Ferroelectricity and antiferromagnetism in organic–inorganic hybrid (1,4-bis(imidazol-1-ylmethyl)benzene)CuCl 4 ·H 2 O. CrystEngComm 2020, 22 (3) , 587-592. https://doi.org/10.1039/C9CE01607D
    25. R. Kumar, Tusharkanti Dey, P. M. Ette, K. Ramesha, Atasi Chakraborty, I. Dasgupta, J. C. Orain, C. Baines, Sándor Tóth, A. Shahee, S. Kundu, M. Prinz-Zwick, A. A. Gippius, N. Büttgen, P. Gegenwart, A. V. Mahajan. Unconventional magnetism in the 4 d 4 -based S = 1 honeycomb system Ag 3 LiRu 2 O 6 . Physical Review B 2019, 99 (5) https://doi.org/10.1103/PhysRevB.99.054417

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2018, 57, 22, 14443–14449
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.8b02718
    Published November 5, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1454

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.