Competitive Ligand Exchange and Dissociation in Ru Indenyl Complexes
- Roman G. BelliRoman G. BelliDepartment of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, CanadaMore by Roman G. Belli
- ,
- Yang WuYang WuDepartment of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, CanadaMore by Yang Wu
- ,
- Hyewon JiHyewon JiDepartment of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, CanadaMore by Hyewon Ji
- ,
- Anuj JoshiAnuj JoshiDepartment of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, CanadaMore by Anuj Joshi
- ,
- Lars P. E. YunkerLars P. E. YunkerDepartment of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, CanadaMore by Lars P. E. Yunker
- ,
- J. Scott McIndoe*J. Scott McIndoe*E-mail: [email protected] (J.S.M.).Department of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, CanadaMore by J. Scott McIndoe
- , and
- Lisa Rosenberg*Lisa Rosenberg*E-mail: [email protected] (L.R.).Department of Chemistry, University of Victoria, P. O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, CanadaMore by Lisa Rosenberg
Abstract

Kinetic profiles obtained from monitoring the solution-phase substitution chemistry of [Ru(η5-indenyl)(NCPh)(PPh3)2]+ (1) by both electrospray ionization mass spectrometry and 31P{1H} NMR are essentially identical, despite an enormous difference in sample concentrations for these complementary techniques. These studies demonstrate dissociative substitution of the NCPh ligand in 1. Competition experiments using different secondary phosphine reagents provide a ranking of phosphine donor abilities at this relatively crowded half-sandwich complex: PEt2H > PPh2H ≫ PCy2H. The impact of steric congestion at Ru is evident also in reactions of 1 with tertiary phosphines; initial substitution products [Ru(η5-indenyl)(PR3)(PPh3)2]+ rapidly lose PPh3, enabling competitive re-coordination of NCPh. Further solution experiments, relevant to the use of 1 in catalytic hydrophosphination, show that PPh2H out-competes PPh2CH2CH2CO2But (the product of hydrophosphination of tert-butyl acrylate by PPh2H) for coordination to Ru, even in the presence of a 10-fold excess of the tertiary phosphine. Additional information on relative phosphine binding strengths was obtained from gas-phase MS/MS experiments, including collision-induced dissociation experiments on the mixed phosphine complexes [Ru(η5-indenyl)PP′P″]+, which ultimately appear in solution during the secondary phosphine competition experiments. Unexpectedly, unsaturated complexes [Ru(η5-indenyl)(PR2H)(PPh3)]+, generated in the gas-phase, undergo preferential loss of PR2H. We propose that competing orthometallation of PPh3 is responsible for the surprising stability of the [Ru(η5-indenyl)(PPh3)]+ fragment under these conditions.
Cited By
This article is cited by 18 publications.
- Madeleine C. Deem, Isabelle Cai, Joshua S. Derasp, Paloma L. Prieto, Yusuke Sato, Junliang Liu, Andrew J. Kukor, Jason E. Hein. Best Practices for the Collection of Robust Time Course Reaction Profiles for Kinetic Studies. ACS Catalysis 2023, 13 (2) , 1418-1430. https://doi.org/10.1021/acscatal.2c05045
- Jakub Cervinka, Alberto Gobbo, Lorenzo Biancalana, Lenka Markova, Vojtech Novohradsky, Massimo Guelfi, Stefano Zacchini, Jana Kasparkova, Viktor Brabec, Fabio Marchetti. Ruthenium(II)–Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. Journal of Medicinal Chemistry 2022, 65 (15) , 10567-10587. https://doi.org/10.1021/acs.jmedchem.2c00722
- Roman G. Belli, Jin Yang, Erick Nuñez Bahena, Robert McDonald, Lisa Rosenberg. Mechanism and Catalyst Design in Ru-Catalyzed Alkene Hydrophosphination. ACS Catalysis 2022, 12 (9) , 5247-5262. https://doi.org/10.1021/acscatal.1c05636
- Yi-Rou Jin, Yi Liu, Feng-Lei Jiang. Positive Sorption Behaviors in the Ligand Exchanges for Water-Soluble Quantum Dots and a Strategy for Specific Targeting. ACS Applied Materials & Interfaces 2021, 13 (43) , 51746-51758. https://doi.org/10.1021/acsami.1c15022
- Jin Yang, Sophie Langis-Barsetti, Hayley C. Parkin, Robert McDonald, Lisa Rosenberg. Terminal Phosphido Complexes of the Ru(η5-Cp*) Fragment. Organometallics 2019, 38 (17) , 3257-3266. https://doi.org/10.1021/acs.organomet.9b00266
- Isaac Omari, Parmissa Randhawa, Jaiya Randhawa, Jenny Yu, J. Scott McIndoe. Structure, Anion, and Solvent Effects on Cation Response in ESI-MS. Journal of the American Society for Mass Spectrometry 2019, 30 (9) , 1750-1757. https://doi.org/10.1007/s13361-019-02252-0
- Lars P. E. Yunker, Sofia Donnecke, Michelle Ting, Darien Yeung, J. Scott McIndoe. PythoMS: A Python Framework To Simplify and Assist in the Processing and Interpretation of Mass Spectrometric Data. Journal of Chemical Information and Modeling 2019, 59 (4) , 1295-1300. https://doi.org/10.1021/acs.jcim.9b00055
- Peter J. H. Williams, Charles Killeen, Ian C. Chagunda, Brett Henderson, Sofia Donnecke, Wil Munro, Jaspreet Sidhu, Denaisha Kraft, David A. Harrington, J. Scott McIndoe. Continuous addition kinetic elucidation: catalyst and reactant order, rate constant, and poisoning from a single experiment. Chemical Science 2023, 14 (36) , 9970-9977. https://doi.org/10.1039/D3SC02698A
- Quentin Duez, Paul Tinnemans, Johannes A. A. W. Elemans, Jana Roithová. Kinetics of ligand exchange in solution: a quantitative mass spectrometry approach. Chemical Science 2023, 14 (36) , 9759-9769. https://doi.org/10.1039/D3SC03342B
- Alberto Gobbo, Xinyuan Ma, Gianluca Ciancaleoni, Stefano Zacchini, Lorenzo Biancalana, Massimo Guelfi, Guido Pampaloni, Steven P. Nolan, Fabio Marchetti. Ruthenium(II) Tris‐Pyrazolylmethane Complexes in Transfer Hydrogenation Reactions. European Journal of Inorganic Chemistry 2023, 26 (18) https://doi.org/10.1002/ejic.202300078
- Nida Shahid, Rahul Kumar Singh, Navdeep Srivastava, Amrendra K. Singh. Base-free synthesis of benchtop stable Ru( iii )–NHC complexes from RuCl 3 ·3H 2 O and their use as precursors for Ru( ii )–NHC complexes. Dalton Transactions 2023, 52 (13) , 4176-4185. https://doi.org/10.1039/D3DT00243H
- Niklas F. Eisele, Matthias Peters, Konrad Koszinowski. Live Monitoring of Anionic Living Polymerizations by Electrospray‐Ionization Mass Spectrometry. Chemistry – A European Journal 2023, 29 (13) https://doi.org/10.1002/chem.202203762
- Gilian T. Thomas, Sofia Donnecke, Ian C. Chagunda, J. Scott McIndoe. Pressurized Sample Infusion. Chemistry–Methods 2022, 2 (1) https://doi.org/10.1002/cmtd.202100068
- Scott Collins, Anuj Joshi, Mikko Linnolahti. Formation and Structure of Hydrolytic Methylaluminoxane Activators. Chemistry – A European Journal 2021, 27 (62) , 15460-15471. https://doi.org/10.1002/chem.202102463
- Isaac Omari, Lars P. E. Yunker, Johanne Penafiel, Darlene Gitaari, Atzin San Roman, J. Scott McIndoe. Dynamic Ion Speciation during the Hydrolysis of Aryltrifluoroborates**. Chemistry – A European Journal 2021, 27 (11) , 3812-3816. https://doi.org/10.1002/chem.202004726
- Bruna Papa Spadafora, Francisco Wanderson Moreira Ribeiro, Jullyane Emi Matsushima, Elaine Miho Ariga, Isaac Omari, Priscila Machado Arruda Soares, Diogo de Oliveira-Silva, Elisângela Vinhato, J. Scott McIndoe, Thiago Carita Correra, Alessandro Rodrigues. Regio- and diastereoselective Pd-catalyzed aminochlorocyclization of allylic carbamates: scope, derivatization, and mechanism. Organic & Biomolecular Chemistry 2021, 36 https://doi.org/10.1039/D1OB00670C
- Alan An Jung Wei, Anuj Joshi, Yuxuan Chen, J. Scott McIndoe. Strategies for avoiding saturation effects in ESI-MS. International Journal of Mass Spectrometry 2020, 450 , 116306. https://doi.org/10.1016/j.ijms.2020.116306
- J. Scott McIndoe, Krista L. Vikse. Assigning the ESI mass spectra of organometallic and coordination compounds. Journal of Mass Spectrometry 2019, 54 (5) , 466-479. https://doi.org/10.1002/jms.4359