ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Promoting a Significant Increase in the Photoluminescence Quantum Yield of Terbium(III) Complexes by Ligand Modification

  • Thaiane Gregório
    Thaiane Gregório
    Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
  • Joyce de M. Leão
    Joyce de M. Leão
    Department of Physics, Federal University of Technology, Av. Sete de Setembro, 3165, 80230-901 Curitiba, Paraná, Brazil
  • Guilherme A. Barbosa
    Guilherme A. Barbosa
    Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
  • Jaqueline de L. Ramos
    Jaqueline de L. Ramos
    Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
  • Siddhartha Om Kumar Giese
    Siddhartha Om Kumar Giese
    Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
  • Matteo Briganti
    Matteo Briganti
    Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
  • Paula C. Rodrigues
    Paula C. Rodrigues
    Department of Chemistry, Federal University of Technology, Rua Deputado Heitor Alencar Furtado, 5000, 81280-340 Curitiba, Paraná, Brazil
  • Eduardo L. de Sá
    Eduardo L. de Sá
    Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
  • Emilson R. Viana
    Emilson R. Viana
    Department of Physics, Federal University of Technology, Av. Sete de Setembro, 3165, 80230-901 Curitiba, Paraná, Brazil
  • David L. Hughes
    David L. Hughes
    School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
  • Luís D. Carlos
    Luís D. Carlos
    Department of Physics, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
  • Rute A. S. Ferreira
    Rute A. S. Ferreira
    Department of Physics, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
  • Andreia G. Macedo
    Andreia G. Macedo
    Department of Physics, Federal University of Technology, Av. Sete de Setembro, 3165, 80230-901 Curitiba, Paraná, Brazil
  • Giovana G. Nunes
    Giovana G. Nunes
    Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
  • , and 
  • Jaísa F. Soares*
    Jaísa F. Soares
    Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
    *E-mail for J.F.S.: [email protected]
Cite this: Inorg. Chem. 2019, 58, 18, 12099–12111
Publication Date (Web):August 26, 2019
https://doi.org/10.1021/acs.inorgchem.9b01397
Copyright © 2019 American Chemical Society

    Article Views

    1324

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Two discrete mononuclear complexes, [Tb(bbpen)(NO3)] (I) and [Tb(bbppn)(NO3)] (II), for which H2bbpen = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine and H2bbppn = N,N′-bis(2-hydroxylbenzyl)-N,N’-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by FTIR, Raman, and photoluminescence (PL, steady-state and time-resolved modes) spectroscopy. The attachment of a methyl group to the ethylenediamine portion of the ligand backbone differentiates II from I and acts as a determining feature to both the structural and optical properties of the former. The single-crystal X-ray structure of H2bbppn is described here for the first time, while that of complex II has been redetermined in the monoclinic C2 space group in light of new diffraction data. In II, selective crystallization leads to spontaneous resolution of enantiomeric molecules in different crystals. Absolute emission quantum yields (ϕ) and luminescence excited-state lifetimes (at room temperature and 11 K) were measured for both complexes. Despite their similar molecular structures, I and II exhibit remarkably different ϕ values of 21 ± 2% and 67 ± 7%, respectively, under UV excitation at room temperature. Results of quantum-mechanical (DFT and TD-DFT) calculations and experimental PL measurements also performed for H2bbpen and H2bbppn confirmed that both ligands are suitable to work as “antennas” for TbIII. Considering the 5D4 lifetime profiles and the significantly higher absolute quantum yield of II, it appears that thermally active nonradiative pathways present in I are minimized in II due to differences in the conformation of the ethylenediamine bridge.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.9b01397.

    • NMR, FTIR, Raman, diffuse reflectance, excitation, and emission spectra for proligands and complexes, additional ORTEP diagrams and structural data for complexes IIII, synthetic details, and calculated electronic transitions and calculated frontier molecular orbitals for H2bbpen and H2bbppn (PDF)

    Accession Codes

    CCDC 1905765, 1905767, and 1905865 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 15 publications.

    1. Adithya Kamalakshan, Anu Maria Chittilappilly Devassy, Nidhi Anilkumar Jamuna, Sarthak Mandal. Integrating Highly Luminescent Lanthanides with Strongly Coupled Dye J-Aggregates on Nanotubes for Efficient Cascade Energy Transfer. The Journal of Physical Chemistry C 2023, 127 (5) , 2558-2568. https://doi.org/10.1021/acs.jpcc.2c07128
    2. Xin-Da Huang, Xiu-Fang Ma, Tao Shang, Yi-Quan Zhang, Li-Min Zheng. Photocontrollable Magnetism and Photoluminescence in a Binuclear Dysprosium Anthracene Complex. Inorganic Chemistry 2023, 62 (5) , 1864-1874. https://doi.org/10.1021/acs.inorgchem.2c01210
    3. Lucas Emanoel do N. Aquino, Guilherme A. Barbosa, Jaqueline de L. Ramos, Siddhartha O. K. Giese, Francielli S. Santana, David L. Hughes, Giovana G. Nunes, Lianshe Fu, Ming Fang, Giordano Poneti, Albano N. Carneiro Neto, Renaldo T. Moura Jr., Rute A. S. Ferreira, Luís D. Carlos, Andreia G. Macedo, Jaísa F. Soares. Seven-Coordinate Tb3+ Complexes with 90% Quantum Yields: High-Performance Examples of Combined Singlet- and Triplet-to-Tb3+ Energy-Transfer Pathways. Inorganic Chemistry 2021, 60 (2) , 892-907. https://doi.org/10.1021/acs.inorgchem.0c03020
    4. Han-Wen Yang, Ping Xu, Bo Ding, Xiu-Guang Wang, Zheng-Yu Liu, Hong-Kun Zhao, Xiao-Jun Zhao, En-Cui Yang. Isostructural Lanthanide Coordination Polymers with High Photoluminescent Quantum Yields by Effective Ligand Combination: Crystal Structures, Photophysical Characterizations, Biologically Relevant Molecular Sensing, and Anti-Counterfeiting Ink Application. Crystal Growth & Design 2020, 20 (12) , 7615-7625. https://doi.org/10.1021/acs.cgd.0c00544
    5. Arsen Raza, Mauro Perfetti. Electronic structure and magnetic anisotropy design of functional metal complexes. Coordination Chemistry Reviews 2023, 490 , 215213. https://doi.org/10.1016/j.ccr.2023.215213
    6. Hassan Keypour, Hojatollah Fatemikia, Roya Karamian, Mohammad Taher Rezaei, Shokufeh Ghasemian Sorboni, Robert William Gable. Molecular docking and biological activities of Ni(II), Cu(II) and Co(II) complexes with a new potentially hexadentate polyamine ligand; X-ray crystal structure of the Cu(II) complex. Journal of Biomolecular Structure and Dynamics 2023, 1 , 1-14. https://doi.org/10.1080/07391102.2023.2240412
    7. Yun-Xia Qu, Pei-Yu Liao, Yan-Cong Chen, Ming-Liang Tong. Functional lanthanide complexes with N,N′-bis(2-hydroxybenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine (H2bbpen) derivatives: Coordination chemistry, single-molecule magnetism and optical properties. Coordination Chemistry Reviews 2023, 475 , 214880. https://doi.org/10.1016/j.ccr.2022.214880
    8. Hojatollah Fatemikia, Hassan Keypour, Hamid Zeynali, Roya Karamian, Nika Ranjbar, Robert William Gable. The X-ray crystal structures, molecular docking and biological activities of two novel Cu(II) and Zn(II) complexes with a ligand having a potentially N4O2 donor set and two nitro phenyl rings as pendant arms. Journal of Inorganic Biochemistry 2022, 235 , 111910. https://doi.org/10.1016/j.jinorgbio.2022.111910
    9. Francielli S. Santana, Mauro Perfetti, Matteo Briganti, Francesca Sacco, Giordano Poneti, Enrico Ravera, Jaísa F. Soares, Roberta Sessoli. A dysprosium single molecule magnet outperforming current pseudocontact shift agents. Chemical Science 2022, 13 (20) , 5860-5871. https://doi.org/10.1039/D2SC01619B
    10. M. S. C. Mazzoni, J. R. Toledo, E. Pereira‐Andrade, K. Krambrock, L. A. Cury, A. Malachias, G. A. M. Safar. The Special Case of the Spectral Emission of a Tb 3+ Mono Metal Complex. ChemPhysChem 2022, 23 (4) https://doi.org/10.1002/cphc.202100752
    11. Lianjun Song, Xueyu Wang, Dongqi Wang, Qian Xiao, Haowei Xu, Qiuju Li, Lanlan He, Songdong Ding. 2-Carboxamido-6-(1H-pyrazol-3-yl)-pyridines as ligands for efficient separation of americium(III) from europium(III). Separation and Purification Technology 2021, 276 , 119262. https://doi.org/10.1016/j.seppur.2021.119262
    12. Matteo Briganti, Federico Totti. Magnetic anisotropy on demand exploiting high-pressure as remote control: an ab initio proof of concept. Dalton Transactions 2021, 50 (30) , 10621-10628. https://doi.org/10.1039/D1DT01719E
    13. Guoxu Qin, Lei Li, Wenbo Bai, Zhihao Liu, Feifei Yuan, Yonghong Ni. Highly sensitive and visualized sensing of nitrofurazone on 2D Tb3+@Zn-AIP ultrathin nanosheets. Dyes and Pigments 2021, 190 , 109309. https://doi.org/10.1016/j.dyepig.2021.109309
    14. E. Pereira-Andrade, S. M. Brum, E. M. C. Policarpo, S. K. Gautam, O. Plantevin, L. R. S. Lara, H. O. Stumpf, G. M. Azevedo, M. S. C. Mazzoni, L. A. Cury, A. Malachias, W. D. do Pim, G. A. M. Sáfar. All-perylene-derivative for white light emitting diodes. Physical Chemistry Chemical Physics 2020, 22 (36) , 20744-20750. https://doi.org/10.1039/D0CP02718A
    15. Ying Shi, Xiao-Yang Ren, Man Gao, Yin-Ling Hou, Jia Ji, Zhi-Lei Wu, Wen-Min Wang. Luminescent and magnetic properties of two copper iodide cluster based lanthanide organic frameworks. Inorganica Chimica Acta 2020, 506 , 119536. https://doi.org/10.1016/j.ica.2020.119536

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect