ACS Publications. Most Trusted. Most Cited. Most Read
Predicting the Thermodynamic Stability of Zirconium Radiotracers
My Activity
    Article

    Predicting the Thermodynamic Stability of Zirconium Radiotracers
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2020, 59, 3, 2070–2082
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.9b03515
    Published January 15, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The thermodynamic stability of a metal–ligand complex, as measured by the formation constant (log β), is one of the most important parameters that determines metal ion selectivity and potential applications in, for example, radiopharmaceutical science. The stable coordination chemistry of radioactive 89Zr4+ in an aqueous environment is of paramount importance when developing positron-emitting radiotracers based on proteins (usually antibodies) for use with positron emission tomography. Desferrioxamine B (DFO) remains the chelate of choice for clinical applications of 89Zr-labeled proteins, but the coordination of DFO to Zr4+ ions is suboptimal. Many alternative ligands have been reported, but the challenges in measuring very high log β values with metal ions such as Zr4+ that tend to hydrolyze mean that accurate thermodynamic data are scarce. In this work, density functional theory (DFT) calculations were used to predict the reaction energetics for metal ion complexation. Computed values of pseudoformation constants (log β′) are correlated with experimental data and showed an excellent linear relationship (R2 = 0.97). The model was then used to estimate the absolute and relative formation constants of 23 different Zr4+ complexes using a total of 17 different ligands, including many of the alternative bifunctional chelates that have been reported recently for use in 89Zr4+ radiochemistry. In addition, detailed computational studies were performed on the geometric isomerism and hydration state of Zr-desferrioxamine. Collectively, the results offer new insights into Zr4+ coordination chemistry that will help guide the synthesis of future ligands. The computational model developed here is straightforward and reproducible and can be readily applied in the design of other metal coordination compounds.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03515.

    • Additional computational results and Cartesian coordinates as presented (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 58 publications.

    1. Stacey E. Rudd, Asif Noor, Katherine A. Morgan, Paul S. Donnelly. Diagnostic Positron Emission Tomography Imaging with Zirconium-89 Desferrioxamine B Squaramide: From Bench to Bedside. Accounts of Chemical Research 2024, 57 (9) , 1421-1433. https://doi.org/10.1021/acs.accounts.4c00092
    2. Joshua J. Woods, Alexia G. Cosby, Jennifer N. Wacker, Luis M. Aguirre Quintana, Appie Peterson, Stefan G. Minasian, Rebecca J. Abergel. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorganic Chemistry 2023, 62 (50) , 20721-20732. https://doi.org/10.1021/acs.inorgchem.3c02164
    3. Akam K. Salih, Moralba Dominguez Garcia, Shvan J. Raheem, William K. Ahiahonu, Eric W. Price. DFO-Km: A Modular Chelator as a New Chemical Tool for the Construction of Zirconium-89-Based Radiopharmaceuticals. Inorganic Chemistry 2023, 62 (50) , 20806-20819. https://doi.org/10.1021/acs.inorgchem.3c02714
    4. Giulia Sormani, Aruna Korde, Alex Rodriguez, Melissa Denecke, Ali Hassanali. Zirconium Coordination Chemistry and Its Role in Optimizing Hydroxymate Chelation: Insights from Molecular Dynamics. ACS Omega 2023, 8 (39) , 36032-36042. https://doi.org/10.1021/acsomega.3c04083
    5. Jonas Wilbs, René Raavé, Milou Boswinkel, Tine Glendorf, David Rodríguez, Eduardo Felipe Alves Fernandes, Sandra Heskamp, Inga Bjørnsdottir, Magnus B. F. Gustafsson. New Long-Acting [89Zr]Zr-DFO GLP-1 PET Tracers with Increased Molar Activity and Reduced Kidney Accumulation. Journal of Medicinal Chemistry 2023, 66 (12) , 7772-7784. https://doi.org/10.1021/acs.jmedchem.2c02073
    6. Elaheh Khozeimeh Sarbisheh, Kelly L. Summers, Akam K. Salih, Julien J. H. Cotelesage, Amanda Zimmerling, Ingrid J. Pickering, Graham N. George, Eric W. Price. Radiochemical, Computational, and Spectroscopic Evaluation of High-Denticity Desferrioxamine Derivatives DFO2 and DFO2p toward an Ideal Zirconium-89 Chelate Platform. Inorganic Chemistry 2023, 62 (6) , 2637-2651. https://doi.org/10.1021/acs.inorgchem.2c03573
    7. Akam K. Salih, Shvan J. Raheem, Moralba Dominguez Garcia, William K. Ahiahonu, Eric W. Price. Design, Synthesis, and Evaluation of DFO-Em: A Modular Chelator with Octadentate Chelation for Optimal Zirconium-89 Radiochemistry. Inorganic Chemistry 2022, 61 (51) , 20964-20976. https://doi.org/10.1021/acs.inorgchem.2c03442
    8. Yuliya Toporivska, Andrzej Mular, Karolina Piasta, Małgorzata Ostrowska, Davide Illuminati, Andrea Baldi, Valentina Albanese, Salvatore Pacifico, Igor O. Fritsky, Maurizio Remelli, Remo Guerrini, Elzbieta Gumienna-Kontecka. Thermodynamic Stability and Speciation of Ga(III) and Zr(IV) Complexes with High-Denticity Hydroxamate Chelators. Inorganic Chemistry 2021, 60 (17) , 13332-13347. https://doi.org/10.1021/acs.inorgchem.1c01622
    9. Asif Noor, Jessica K. Van Zuylekom, Stacey E. Rudd, Peter D. Roselt, Mohammad B. Haskali, Eddie Yan, Michael Wheatcroft, Rodney J. Hicks, Carleen Cullinane, Paul S. Donnelly. Imaging Somatostatin Positive Tumors with Tyr3-Octreotate/Octreotide Conjugated to Desferrioxamine B Squaramide Radiolabeled with either Zirconium-89 or Gallium-68. Bioconjugate Chemistry 2021, 32 (7) , 1192-1203. https://doi.org/10.1021/acs.bioconjchem.1c00109
    10. Marion Chomet, Guus A. M. S. van Dongen, Danielle J. Vugts. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjugate Chemistry 2021, 32 (7) , 1315-1330. https://doi.org/10.1021/acs.bioconjchem.1c00136
    11. Amaury Guillou, Daniel F. Earley, Simon Klingler, Eda Nisli, Laura J. Nüesch, Rachael Fay, Jason P. Holland. The Influence of a Polyethylene Glycol Linker on the Metabolism and Pharmacokinetics of a 89Zr-Radiolabeled Antibody. Bioconjugate Chemistry 2021, 32 (7) , 1263-1275. https://doi.org/10.1021/acs.bioconjchem.1c00172
    12. Tilmann Grus, Hanane Lahnif, Benedikt Klasen, Euy-Sung Moon, Lukas Greifenstein, Frank Roesch. Squaric Acid-Based Radiopharmaceuticals for Tumor Imaging and Therapy. Bioconjugate Chemistry 2021, 32 (7) , 1223-1231. https://doi.org/10.1021/acs.bioconjchem.1c00305
    13. Thomas I. Kostelnik, Hayden Scheiber, Rosita Cappai, Neha Choudhary, Felix Lindheimer, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. Phosphonate Chelators for Medicinal Metal Ions. Inorganic Chemistry 2021, 60 (7) , 5343-5361. https://doi.org/10.1021/acs.inorgchem.1c00290
    14. Kelly L. Summers, Elaheh Khozeimeh Sarbisheh, Amanda Zimmerling, Julien J. H. Cotelesage, Ingrid J. Pickering, Graham N. George, Eric W. Price. Structural Characterization of the Solution Chemistry of Zirconium(IV) Desferrioxamine: A Coordination Sphere Completed by Hydroxides. Inorganic Chemistry 2020, 59 (23) , 17443-17452. https://doi.org/10.1021/acs.inorgchem.0c02725
    15. Asif Noor, Jessica K. Van Zuylekom, Stacey E. Rudd, Kelly Waldeck, Peter D. Roselt, Mohammad B. Haskali, Michael P. Wheatcroft, Eddie Yan, Rodney J. Hicks, Carleen Cullinane, Paul S. Donnelly. Bivalent Inhibitors of Prostate-Specific Membrane Antigen Conjugated to Desferrioxamine B Squaramide Labeled with Zirconium-89 or Gallium-68 for Diagnostic Imaging of Prostate Cancer. Journal of Medicinal Chemistry 2020, 63 (17) , 9258-9270. https://doi.org/10.1021/acs.jmedchem.0c00291
    16. Elaheh Khozeimeh Sarbisheh, Akam K. Salih, Shvan J. Raheem, Jason S. Lewis, Eric W. Price. A High-Denticity Chelator Based on Desferrioxamine for Enhanced Coordination of Zirconium-89. Inorganic Chemistry 2020, 59 (16) , 11715-11727. https://doi.org/10.1021/acs.inorgchem.0c01629
    17. Louis Allott, Eric O. Aboagye. Chemistry Considerations for the Clinical Translation of Oncology PET Radiopharmaceuticals. Molecular Pharmaceutics 2020, 17 (7) , 2245-2259. https://doi.org/10.1021/acs.molpharmaceut.0c00328
    18. Zhengyuan Hong. Chelating positron-emitting radiometals for molecular imaging. Coordination Chemistry Reviews 2025, 528 , 216420. https://doi.org/10.1016/j.ccr.2024.216420
    19. Kate P. Nolan, Callum A. Rosser, James L. Wood, Josep Font, Athavan Sresutharsan, Joseph Wang, Todd E. Markham, Renae M. Ryan, Rachel Codd. An elastic siderophore synthetase and rubbery substrates assemble multimeric linear and macrocyclic hydroxamic acid metal chelators. Chemical Science 2025, 16 (5) , 2180-2190. https://doi.org/10.1039/D4SC04888A
    20. Lasse Outzen, Darius Ludolfs, Maximilian Irl, Susanne Kossatz, Wolfgang Maison. Isopeptidic Desferrioxamine Analogues: The Role of Hydroxamate Spacing for Chelation of Zr 4+. ChemMedChem 2024, 44 https://doi.org/10.1002/cmdc.202400890
    21. Akam K. Salih, Elaheh Khozeimeh Sarbisheh, Shvan J. Raheem, Moralba Dominguez-Garcia, Hillary H. Mehlhorn, Eric W. Price. Synthesis and evaluation of bifunctional DFO2K: a modular chelator with ideal properties for zirconium-89 chelation. Dalton Transactions 2024, 53 (47) , 18946-18962. https://doi.org/10.1039/D4DT01830C
    22. Kyle Salmon, Marcel Schlaf. A relative stability scale of nitrogen donor ligand ruthenium complexes based on their stability constants calculated from first principles by DFT methods. Canadian Journal of Chemistry 2024, 102 (12) , 854-864. https://doi.org/10.1139/cjc-2024-0035
    23. Thomas Erik Wuensche, Serge Lyashchenko, Guus A. M. S. van Dongen, Danielle Vugts. Good practices for 89Zr radiopharmaceutical production and quality control. EJNMMI Radiopharmacy and Chemistry 2024, 9 (1) https://doi.org/10.1186/s41181-024-00258-y
    24. Valentina Albanese, Chiara Roccatello, Salvatore Pacifico, Remo Guerrini, Delia Preti, Silvia Gentili, Matteo Tegoni, Maurizio Remelli, Denise Bellotti, Jonathan Amico, Giancarlo Gorgoni, Emiliano Cazzola. Bifunctional octadentate pseudopeptides as Zirconium-89 chelators for immuno-PET applications. EJNMMI Radiopharmacy and Chemistry 2024, 9 (1) https://doi.org/10.1186/s41181-024-00263-1
    25. Vitaly Solov’ev, Aslan Tsivadze. Linear free energy relationship modelling for predicting metal-ligand stability constants by thermodynamic radii. Supramolecular Chemistry 2024, 7 , 1-12. https://doi.org/10.1080/10610278.2024.2430492
    26. Lasse Outzen, Hoang Duc Nguyen, Darius Ludolfs, Wolfgang Maison. Mixed Liquid and Solid Phase Synthesis of Isopeptidic Desferrioxamine Analogues for Complexation of Zirconium. European Journal of Organic Chemistry 2024, 27 (29) https://doi.org/10.1002/ejoc.202400266
    27. Danni Ramdhani, Hiroshi Watabe, Ari Hardianto, Regaputra S. Janitra. Complexation of 3p-C-NETA with radiometal ions: A density functional theory study for targeted radioimmunotherapy. Heliyon 2024, 10 (15) , e34875. https://doi.org/10.1016/j.heliyon.2024.e34875
    28. James L. Wood, Saikat Ghosh, Zachary H. Houston, Nicholas L. Fletcher, James Humphries, Karine Mardon, Dewan T. Akhter, William Tieu, Alesia Ivashkevich, Michael P. Wheatcroft, Kristofer J. Thurecht, Rachel Codd. A first-in-class dual-chelator theranostic agent designed for use with imaging-therapy radiometal pairs of different elements. Chemical Science 2024, 15 (30) , 11748-11760. https://doi.org/10.1039/D4SC02851A
    29. Tamal Roy, Eduard Pogorilyy, Chubina P. Kumarananthan, Unni A. Kvitastein, Marco Foscato, Karl W. Törnroos, Tom C. H. Adamsen, Erwan Le Roux. Synthesis and stability of the [ 45 Ti]Ti–DOTA complex: en route towards aza-macrocyclic 45 Ti-based radiopharmaceuticals. Chemical Communications 2024, 60 (56) , 7148-7151. https://doi.org/10.1039/D4CC01800A
    30. Floriane Mangin, Osian Fonquernie, Pawel Jewula, Stéphane Brandès, Marie‐José Penouilh, Quentin Bonnin, Bruno Vincent, Enrique Espinosa, Emmanuel Aubert, Michel Meyer, Jean‐Claude Chambron. Combining Desferriferrioxamine B and 1‐Hydroxy‐2‐Piperidone ((PIPO)H) to Chelate Zirconium. Solution Structure of a Model Complex of the [ 89 Zr]Zr−DFOcyclo*−mAb Radioimmunoconjugate. ChemPlusChem 2024, 89 (7) https://doi.org/10.1002/cplu.202400062
    31. Falguni Basuli, Olga Vasalatiy, Jianfeng Shi, Kelly C. Lane, Freddy E. Escorcia, Rolf E. Swenson. Preparation of a Zirconium-89 Labeled Clickable DOTA Complex and Its Antibody Conjugate. Pharmaceuticals 2024, 17 (4) , 480. https://doi.org/10.3390/ph17040480
    32. Parmissa Randhawa, Imma Carbo-Bague, Patrick R. W. J. Davey, Shaohuang Chen, Helen Merkens, Carlos F. Uribe, Chengcheng Zhang, Marianna Tosato, François Bénard, Valery Radchenko, Caterina F. Ramogida. Exploration of commercial cyclen-based chelators for mercury-197 m/g incorporation into theranostic radiopharmaceuticals. Frontiers in Chemistry 2024, 12 https://doi.org/10.3389/fchem.2024.1292566
    33. Vitaly Solov'ev, Aslan Tsivadze. New combined approach for prediction of stability constants of metal–ligand complexes using thermodynamic radii of metal ions and ensembles of regression models. Inorganic Chemistry Communications 2023, 158 , 111498. https://doi.org/10.1016/j.inoche.2023.111498
    34. Artem V. Matyskin, Athanasios Stamatopoulos, Ellen M. O’Brien, Brad J. DiGiovine, Veronika Mocko, Michael E. Fassbender, C. Etienne Vermeulen, Paul E. Koehler. Production of zirconium-88 via proton irradiation of metallic yttrium and preparation of target for neutron transmission measurements at DICER. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-27993-7
    35. Faustine d’Orchymont, Jason P. Holland. Asymmetric rotaxanes as dual-modality supramolecular imaging agents for targeting cancer biomarkers. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-00906-5
    36. Giammarco Maria Romano, Virginia Zizi, Giulia Salvatore, Riccardo Bani, Monica Mangoni, Silvia Nistri, Giulia Anichini, Yschtar Tecla Simonini Steiner, Daniele Bani, Antonio Bianchi, Andrea Bencini, Matteo Savastano. Evaluation of coumarin-tagged deferoxamine as a Zr(IV)-based PET/fluorescence dual imaging probe. Journal of Inorganic Biochemistry 2023, 245 , 112259. https://doi.org/10.1016/j.jinorgbio.2023.112259
    37. Lasse Outzen, Moritz Münzmay, John V. Frangioni, Wolfgang Maison. Synthesis of Modular Desferrioxamine Analogues and Evaluation of Zwitterionic Derivatives for Zirconium Complexation. ChemMedChem 2023, 18 (13) https://doi.org/10.1002/cmdc.202300112
    38. Laura Melendez-Alafort, Guillermina Ferro-Flores, Laura De Nardo, Blanca Ocampo-García, Cristina Bolzati. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coordination Chemistry Reviews 2023, 479 , 215005. https://doi.org/10.1016/j.ccr.2022.215005
    39. Vitaly Solov’Ev, Aslan Tsivadze. Prediction of Stability Constants of metal-ligand Complexes Using Thermodynamic Radii of Metal Ions. Comments on Inorganic Chemistry 2023, 43 (1) , 16-33. https://doi.org/10.1080/02603594.2022.2087637
    40. Rachel Codd. Siderophores and iron transport. 2023, 3-29. https://doi.org/10.1016/B978-0-12-823144-9.00044-3
    41. Maryam Salahinejad, David A. Winkler, Fereshteh Shiri. Discovery and Design of Radiopharmaceuticals by In silico Methods. Current Radiopharmaceuticals 2022, 15 (4) , 271-319. https://doi.org/10.2174/1874471015666220831091403
    42. Faustine d'Orchymont, Jason P. Holland. A rotaxane-based platform for tailoring the pharmacokinetics of cancer-targeted radiotracers. Chemical Science 2022, 13 (43) , 12713-12725. https://doi.org/10.1039/D2SC03928A
    43. V. B. Bubenshchikov, A. A. Larenkov. Chelating Agents for Zirconium-89 in the Synthesis of Radiopharmaceuticals: Current State and Prospects of Development. Russian Journal of Coordination Chemistry 2022, 48 (11) , 675-695. https://doi.org/10.1134/S1070328422110021
    44. Faustine d'Orchymont, Jason P. Holland. Supramolecular Rotaxane‐Based Multi‐Modal Probes for Cancer Biomarker Imaging**. Angewandte Chemie 2022, 134 (29) https://doi.org/10.1002/ange.202204072
    45. Faustine d'Orchymont, Jason P. Holland. Supramolecular Rotaxane‐Based Multi‐Modal Probes for Cancer Biomarker Imaging**. Angewandte Chemie International Edition 2022, 61 (29) https://doi.org/10.1002/anie.202204072
    46. Amaury Guillou, Ali Ouadi, Jason P. Holland. Heptadentate chelates for 89 Zr-radiolabelling of monoclonal antibodies. Inorganic Chemistry Frontiers 2022, 9 (12) , 3071-3081. https://doi.org/10.1039/D2QI00442A
    47. Matteo Savastano, Francesca Boscaro, Antonio Bianchi. Metal Coordination Properties of a Chromophoric Desferrioxamine (DFO) Derivative: Insight on the Coordination Stoichiometry and Thermodynamic Stability of Zr4+ Complexes. Molecules 2022, 27 (1) , 184. https://doi.org/10.3390/molecules27010184
    48. Stephen J. Archibald, Louis Allott. The aluminium-[18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharmacy and Chemistry 2021, 6 (1) https://doi.org/10.1186/s41181-021-00141-0
    49. Helen Damerow, Ralph Hübner, Benedikt Judmann, Ralf Schirrmacher, Björn Wängler, Gert Fricker, Carmen Wängler. Side-by-Side Comparison of Five Chelators for 89Zr-Labeling of Biomolecules: Investigation of Chemical/Radiochemical Properties and Complex Stability. Cancers 2021, 13 (24) , 6349. https://doi.org/10.3390/cancers13246349
    50. K. J. H. George, S. Borjian, M. C. Cross, J. W. Hicks, P. Schaffer, M. S. Kovacs. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Advances 2021, 11 (49) , 31098-31123. https://doi.org/10.1039/D1RA04480J
    51. Irene V. J. Feiner, Marie Brandt, Joseph Cowell, Tori Demuth, Daniëlle Vugts, Gilles Gasser, Thomas L. Mindt. The Race for Hydroxamate-Based Zirconium-89 Chelators. Cancers 2021, 13 (17) , 4466. https://doi.org/10.3390/cancers13174466
    52. Deborah Sneddon, Bart Cornelissen. Emerging chelators for nuclear imaging. Current Opinion in Chemical Biology 2021, 63 , 152-162. https://doi.org/10.1016/j.cbpa.2021.03.001
    53. Denise Bellotti, Maurizio Remelli. Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules 2021, 26 (11) , 3255. https://doi.org/10.3390/molecules26113255
    54. Marion Chomet, Maxime Schreurs, Maria J. Bolijn, Mariska Verlaan, Wissam Beaino, Kari Brown, Alex J. Poot, Albert D. Windhorst, Herman Gill, Jan Marik, Simon Williams, Joseph Cowell, Gilles Gasser, Thomas L. Mindt, Guus A. M. S van Dongen, Danielle J. Vugts. Head-to-head comparison of DFO* and DFO chelators: selection of the best candidate for clinical 89Zr-immuno-PET. European Journal of Nuclear Medicine and Molecular Imaging 2021, 48 (3) , 694-707. https://doi.org/10.1007/s00259-020-05002-7
    55. Christopher J.M. Brown, Rachel Codd. Directing macrocyclic architecture using iron(III)-, gallium(III)-, or zirconium(IV)-assisted ring closure of linear dimeric endo-hydroxamic acid ligands. Journal of Inorganic Biochemistry 2021, 216 , 111337. https://doi.org/10.1016/j.jinorgbio.2020.111337
    56. François Guérard, Yong-Sok Lee, Raphaël Tripier, Lawrence P. Szajek, Jeffrey R. Deschamps, Martin W. Brechbiel. Reply to the ‘Comment on “Investigation of Zr( iv ) and 89 Zr( iv ) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging”’ by A. Bianchi and M. Savastano, Chem. Commun. , 2020, 56 , D0CC01189D. Chemical Communications 2020, 56 (83) , 12667-12668. https://doi.org/10.1039/D0CC03594G
    57. Marie Brandt, Joseph Cowell, Margaret L. Aulsebrook, Gilles Gasser, Thomas L. Mindt. Radiolabelling of the octadentate chelators DFO* and oxoDFO* with zirconium-89 and gallium-68. JBIC Journal of Biological Inorganic Chemistry 2020, 25 (5) , 789-796. https://doi.org/10.1007/s00775-020-01800-4
    58. Amaury Guillou, Daniel F. Earley, Jason P. Holland. Light‐Activated Protein Conjugation and 89 Zr‐Radiolabelling with Water‐Soluble Desferrioxamine Derivatives. Chemistry – A European Journal 2020, 26 (32) , 7185-7189. https://doi.org/10.1002/chem.202001755

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2020, 59, 3, 2070–2082
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.9b03515
    Published January 15, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1718

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.