ACS Publications. Most Trusted. Most Cited. Most Read
Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database
My Activity

Figure 1Loading Img
    Review

    Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of California, Irvine, California 92697, United States
    Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
    § Scientific Computing Department, STFC, Daresbury WA4 4AD, U.K.
    Computational and Systems Biology Program, Sloan Kettering Institute, New York, New York 10065, United States
    Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
    *E-mail: [email protected]. Phone: 949-824-6383.
    Other Access OptionsSupporting Information (2)

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2017, 62, 5, 1559–1569
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jced.7b00104
    Published April 24, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Solvation free energies can now be calculated precisely from molecular simulations, providing a valuable test of the energy functions underlying these simulations. Here we briefly review “alchemical” approaches for calculating the solvation free energies of small, neutral organic molecules from molecular simulations and illustrate these approaches by applying them to calculate aqueous solvation free energies (hydration free energies). These approaches use a nonphysical pathway to compute free energy differences from a simulation or set of simulations and appear to be a particularly robust and general-purpose approach for this task. We also present an update (version 0.5) to our FreeSolv database of experimental and calculated hydration free energies of neutral compounds and provide input files in formats for several simulation packages. This revision to FreeSolv provides calculated values generated with a single protocol and software version rather than the heterogeneous protocols used in the prior version of the database. We also further update the database to provide calculated enthalpies and entropies of hydration and some experimental enthalpies and entropies as well as electrostatic and nonpolar components of solvation free energies.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.7b00104.

    • Additional discussion; correlation plots between calculated free energies, enthalpies, and entropies; and simulation details (PDF)

    • GROMACS input files containing all of the details of the simulations (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 190 publications.

    1. Rodrigo M. Cordeiro. GROMOS-RONS: A Force Field for Simulations of Reactive Oxygen and Nitrogen Species. The Journal of Physical Chemistry B 2025, 129 (23) , 5707-5719. https://doi.org/10.1021/acs.jpcb.5c01926
    2. Anh Phan. Perspectives on Molecular Mechanisms of Hydrate Formation and Growth at Interfaces: A Mini-Review. Energy & Fuels 2025, 39 (22) , 10150-10164. https://doi.org/10.1021/acs.energyfuels.5c00942
    3. Xibing He, Viet H. Man, Wei Yang, Tai-Sung Lee, Junmei Wang. ABCG2: A Milestone Charge Model for Accurate Solvation Free Energy Calculation. Journal of Chemical Theory and Computation 2025, 21 (6) , 3032-3043. https://doi.org/10.1021/acs.jctc.5c00038
    4. Jose Sena, Linus O. Johannissen, Jonny J. Blaker, Sam Hay. A Machine Learning Model for the Prediction of Water Contact Angles on Solid Polymers. The Journal of Physical Chemistry B 2025, 129 (10) , 2739-2745. https://doi.org/10.1021/acs.jpcb.4c06608
    5. Edgar Olehnovics, Yifei Michelle Liu, Nada Mehio, Ahmad Y. Sheikh, Michael R. Shirts, Matteo Salvalaglio. Accurate Lattice Free Energies of Packing Polymorphs from Probabilistic Generative Models. Journal of Chemical Theory and Computation 2025, 21 (5) , 2244-2255. https://doi.org/10.1021/acs.jctc.4c01612
    6. Kevin A. Spiekermann, Xiaorui Dong, Angiras Menon, William H. Green, Mark Pfeifle, Frederik Sandfort, Oliver Welz, Maike Bergeler. Accurately Predicting Barrier Heights for Radical Reactions in Solution Using Deep Graph Networks. The Journal of Physical Chemistry A 2024, 128 (39) , 8384-8403. https://doi.org/10.1021/acs.jpca.4c04121
    7. Ryan L. Hayes, Luis F. Cervantes, Justin Cruz Abad Santos, Amirmasoud Samadi, Jonah Z. Vilseck, Charles L. Brooks, III. How to Sample Dozens of Substitutions per Site with λ Dynamics. Journal of Chemical Theory and Computation 2024, 20 (14) , 6098-6110. https://doi.org/10.1021/acs.jctc.4c00514
    8. Johannes Karwounopoulos, Zhiyi Wu, Sara Tkaczyk, Shuzhe Wang, Adam Baskerville, Kavindri Ranasinghe, Thierry Langer, Geoffrey P. F. Wood, Marcus Wieder, Stefan Boresch. Insights and Challenges in Correcting Force Field Based Solvation Free Energies Using a Neural Network Potential. The Journal of Physical Chemistry B 2024, 128 (28) , 6693-6703. https://doi.org/10.1021/acs.jpcb.4c01417
    9. Yuanqing Wang, Iván Pulido, Kenichiro Takaba, Benjamin Kaminow, Jenke Scheen, Lily Wang, John D. Chodera. EspalomaCharge: Machine Learning-Enabled Ultrafast Partial Charge Assignment. The Journal of Physical Chemistry A 2024, 128 (20) , 4160-4167. https://doi.org/10.1021/acs.jpca.4c01287
    10. Andrew V. Marquardt, Mohsen Farshad, Jonathan K. Whitmer. Calculating Binding Free Energies in Model Host–Guest Systems with Unrestrained Advanced Sampling. Journal of Chemical Theory and Computation 2024, 20 (9) , 3927-3934. https://doi.org/10.1021/acs.jctc.3c01186
    11. Benjamin Bursik, Johannes Eller, Joachim Gross. Predicting Solvation Free Energies from the Minnesota Solvation Database Using Classical Density Functional Theory Based on the PC-SAFT Equation of State. The Journal of Physical Chemistry B 2024, 128 (15) , 3677-3688. https://doi.org/10.1021/acs.jpcb.3c07447
    12. Jeffry Setiadi, Simon Boothroyd, David R. Slochower, David L. Dotson, Matthew W. Thompson, Jeffrey R. Wagner, Lee-Ping Wang, Michael K. Gilson. Tuning Potential Functions to Host–Guest Binding Data. Journal of Chemical Theory and Computation 2024, 20 (1) , 239-252. https://doi.org/10.1021/acs.jctc.3c01050
    13. Andreia Fortuna, Paulo J. Costa. Assessment of Halogen Off-Center Point-Charge Models Using Explicit Solvent Simulations. Journal of Chemical Information and Modeling 2023, 63 (23) , 7464-7475. https://doi.org/10.1021/acs.jcim.3c01561
    14. Joshua Fass, Forrest York, Matthew Wittmann, Joseph Kaus, Yutong Zhao. Local Resampling Trick for Focused Molecular Dynamics. Journal of Chemical Theory and Computation 2023, 19 (18) , 6139-6150. https://doi.org/10.1021/acs.jctc.3c00539
    15. Johannes Karwounopoulos, Åsmund Kaupang, Marcus Wieder, Stefan Boresch. Calculations of Absolute Solvation Free Energies with Transformato─Application to the FreeSolv Database Using the CGenFF Force Field. Journal of Chemical Theory and Computation 2023, 19 (17) , 5988-5998. https://doi.org/10.1021/acs.jctc.3c00691
    16. Kun Yue, Orlando Acevedo. Uncovering the Critical Factors that Enable Extractive Desulfurization of Fuels in Ionic Liquids and Deep Eutectic Solvents from Simulations. The Journal of Physical Chemistry B 2023, 127 (28) , 6354-6373. https://doi.org/10.1021/acs.jpcb.3c02652
    17. G. F. Martins, C. Nascimento, N. Galamba. Mechanistic Insights into Polyphenols’ Aggregation Inhibition of α-Synuclein and Related Peptides. ACS Chemical Neuroscience 2023, 14 (10) , 1905-1920. https://doi.org/10.1021/acschemneuro.3c00162
    18. Gerald J. Tanoury, Satish Kumar Iyemperumal, Elaine C. Lee. Toward a Combined Molecular Dynamics and Quantum Mechanical Approach to Understanding Solvent Effects on Chemical Processes in the Pharmaceutical Industry: The Case of a Lewis Acid-Mediated SNAr Reaction. Organic Process Research & Development 2023, 27 (4) , 742-754. https://doi.org/10.1021/acs.oprd.3c00010
    19. Tai-Sung Lee, Hsu-Chun Tsai, Abir Ganguly, Darrin M. York. ACES: Optimized Alchemically Enhanced Sampling. Journal of Chemical Theory and Computation 2023, 19 (2) , 472-487. https://doi.org/10.1021/acs.jctc.2c00697
    20. Kristian Kříž, Lisa Schmidt, Alfred T. Andersson, Marie-Madeleine Walz, David van der Spoel. An Imbalance in the Force: The Need for Standardized Benchmarks for Molecular Simulation. Journal of Chemical Information and Modeling 2023, 63 (2) , 412-431. https://doi.org/10.1021/acs.jcim.2c01127
    21. Prasun Pal, Sandipan Chakraborty, Biman Jana. Number of Hydrogen Bonds per Unit Solvent Accessible Surface Area: A Descriptor of Functional States of Proteins. The Journal of Physical Chemistry B 2022, 126 (51) , 10822-10833. https://doi.org/10.1021/acs.jpcb.2c05367
    22. Abir Ganguly, Hsu-Chun Tsai, Mario Fernández-Pendás, Tai-Sung Lee, Timothy J. Giese, Darrin M. York. AMBER Drug Discovery Boost Tools: Automated Workflow for Production Free-Energy Simulation Setup and Analysis (ProFESSA). Journal of Chemical Information and Modeling 2022, 62 (23) , 6069-6083. https://doi.org/10.1021/acs.jcim.2c00879
    23. Kaycee Low, Michelle L. Coote, Ekaterina I. Izgorodina. Explainable Solvation Free Energy Prediction Combining Graph Neural Networks with Chemical Intuition. Journal of Chemical Information and Modeling 2022, 62 (22) , 5457-5470. https://doi.org/10.1021/acs.jcim.2c01013
    24. Salomé R. Rieder, Benjamin Ries, Kay Schaller, Candide Champion, Emilia P. Barros, Philippe H. Hünenberger, Sereina Riniker. Replica-Exchange Enveloping Distribution Sampling Using Generalized AMBER Force-Field Topologies: Application to Relative Hydration Free-Energy Calculations for Large Sets of Molecules. Journal of Chemical Information and Modeling 2022, 62 (12) , 3043-3056. https://doi.org/10.1021/acs.jcim.2c00383
    25. N. Galamba. Aggregation of a Parkinson’s Disease-Related Peptide: When Does Urea Weaken Hydrophobic Interactions?. ACS Chemical Neuroscience 2022, 13 (12) , 1769-1781. https://doi.org/10.1021/acschemneuro.2c00169
    26. Dongdong Zhang, Song Xia, Yingkai Zhang. Accurate Prediction of Aqueous Free Solvation Energies Using 3D Atomic Feature-Based Graph Neural Network with Transfer Learning. Journal of Chemical Information and Modeling 2022, 62 (8) , 1840-1848. https://doi.org/10.1021/acs.jcim.2c00260
    27. Ádám Ganyecz, Mihály Kállay. Implementation and Optimization of the Embedded Cluster Reference Interaction Site Model with Atomic Charges. The Journal of Physical Chemistry A 2022, 126 (15) , 2417-2429. https://doi.org/10.1021/acs.jpca.1c07904
    28. Jonah Z. Vilseck, Luis F. Cervantes, Ryan L. Hayes, Charles L. Brooks III. Optimizing Multisite λ-Dynamics Throughput with Charge Renormalization. Journal of Chemical Information and Modeling 2022, 62 (6) , 1479-1488. https://doi.org/10.1021/acs.jcim.2c00047
    29. Moritz Bensberg, Paul L. Türtscher, Jan P. Unsleber, Markus Reiher, Johannes Neugebauer. Solvation Free Energies in Subsystem Density Functional Theory. Journal of Chemical Theory and Computation 2022, 18 (2) , 723-740. https://doi.org/10.1021/acs.jctc.1c00864
    30. Khatereh Azizi, Alessandro Laio, Ali Hassanali. Model Folded Hydrophobic Polymers Reside in Highly Branched Voids. The Journal of Physical Chemistry Letters 2022, 13 (1) , 183-189. https://doi.org/10.1021/acs.jpclett.1c03333
    31. Philip Eor, Jared L. Anderson. Using a Chromatographic Pseudophase Model To Elucidate the Mechanism of Olefin Separation by Silver(I) Ions in Ionic Liquids. Analytical Chemistry 2021, 93 (39) , 13284-13292. https://doi.org/10.1021/acs.analchem.1c02885
    32. Andreia Fortuna, Paulo J. Costa. Optimized Halogen Atomic Radii for PBSA Calculations Using Off-Center Point Charges. Journal of Chemical Information and Modeling 2021, 61 (7) , 3361-3375. https://doi.org/10.1021/acs.jcim.1c00177
    33. Jonah Z. Vilseck, Xinqiang Ding, Ryan L. Hayes, Charles L. Brooks III. Generalizing the Discrete Gibbs Sampler-Based λ-Dynamics Approach for Multisite Sampling of Many Ligands. Journal of Chemical Theory and Computation 2021, 17 (7) , 3895-3907. https://doi.org/10.1021/acs.jctc.1c00176
    34. Sebastian Ehlert, Marcel Stahn, Sebastian Spicher, Stefan Grimme. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. Journal of Chemical Theory and Computation 2021, 17 (7) , 4250-4261. https://doi.org/10.1021/acs.jctc.1c00471
    35. Lieyang Chen, Anthony Cruz, Daniel R. Roe, Andrew C. Simmonett, Lauren Wickstrom, Nanjie Deng, Tom Kurtzman. Thermodynamic Decomposition of Solvation Free Energies with Particle Mesh Ewald and Long-Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation Theory. Journal of Chemical Theory and Computation 2021, 17 (5) , 2714-2724. https://doi.org/10.1021/acs.jctc.0c01185
    36. Rae A. Corrigan, Guowei Qi, Andrew C. Thiel, Jack R. Lynn, Brandon D. Walker, Thomas L. Casavant, Louis Lagardere, Jean-Philip Piquemal, Jay W. Ponder, Pengyu Ren, Michael J. Schnieders. Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field. Journal of Chemical Theory and Computation 2021, 17 (4) , 2323-2341. https://doi.org/10.1021/acs.jctc.0c01286
    37. Yashaswi Pathak, Sarvesh Mehta, U. Deva Priyakumar. Learning Atomic Interactions through Solvation Free Energy Prediction Using Graph Neural Networks. Journal of Chemical Information and Modeling 2021, 61 (2) , 689-698. https://doi.org/10.1021/acs.jcim.0c01413
    38. Ksenia Korshunova, Paolo Carloni. Ligand Affinities within the Open-Boundary Molecular Mechanics/Coarse-Grained Framework (I): Alchemical Transformations within the Hamiltonian Adaptive Resolution Scheme. The Journal of Physical Chemistry B 2021, 125 (3) , 789-797. https://doi.org/10.1021/acs.jpcb.0c09805
    39. Sadra Kashefolgheta, Marina P. Oliveira, Salomé R. Rieder, Bruno A. C. Horta, William E. Acree, Jr., Philippe H. Hünenberger. Evaluating Classical Force Fields against Experimental Cross-Solvation Free Energies. Journal of Chemical Theory and Computation 2020, 16 (12) , 7556-7580. https://doi.org/10.1021/acs.jctc.0c00688
    40. Charlles R. A. Abreu, Mark E. Tuckerman. Molecular Dynamics with Very Large Time Steps for the Calculation of Solvation Free Energies. Journal of Chemical Theory and Computation 2020, 16 (12) , 7314-7327. https://doi.org/10.1021/acs.jctc.0c00698
    41. Josh V. Vermaas, Michael F. Crowley, Gregg T. Beckham. Molecular Lignin Solubility and Structure in Organic Solvents. ACS Sustainable Chemistry & Engineering 2020, 8 (48) , 17839-17850. https://doi.org/10.1021/acssuschemeng.0c07156
    42. Kazimieras Tamoliu̅nas, Nuno Galamba. Protein Denaturation, Zero Entropy Temperature, and the Structure of Water around Hydrophobic and Amphiphilic Solutes. The Journal of Physical Chemistry B 2020, 124 (48) , 10994-11006. https://doi.org/10.1021/acs.jpcb.0c08055
    43. Hsu-Chun Tsai, Yujun Tao, Tai-Sung Lee, Kenneth M. Merz, Jr., Darrin M. York. Validation of Free Energy Methods in AMBER. Journal of Chemical Information and Modeling 2020, 60 (11) , 5296-5300. https://doi.org/10.1021/acs.jcim.0c00285
    44. Jenke Scheen, Wilson Wu, Antonia S. J. S. Mey, Paolo Tosco, Mark Mackey, Julien Michel. Hybrid Alchemical Free Energy/Machine-Learning Methodology for the Computation of Hydration Free Energies. Journal of Chemical Information and Modeling 2020, 60 (11) , 5331-5339. https://doi.org/10.1021/acs.jcim.0c00600
    45. Yaozong Li, Kwangho Nam. Repulsive Soft-Core Potentials for Efficient Alchemical Free Energy Calculations. Journal of Chemical Theory and Computation 2020, 16 (8) , 4776-4789. https://doi.org/10.1021/acs.jctc.0c00163
    46. Narjes Ansari, Tarak Karmakar, Michele Parrinello. Molecular Mechanism of Gas Solubility in Liquid: Constant Chemical Potential Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2020, 16 (8) , 5279-5286. https://doi.org/10.1021/acs.jctc.0c00450
    47. Daniel Borgis, Sohvi Luukkonen, Luc Belloni, Guillaume Jeanmairet. Simple Parameter-Free Bridge Functionals for Molecular Density Functional Theory. Application to Hydrophobic Solvation. The Journal of Physical Chemistry B 2020, 124 (31) , 6885-6893. https://doi.org/10.1021/acs.jpcb.0c04496
    48. Sohvi Luukkonen, Luc Belloni, Daniel Borgis, Maximilien Levesque. Predicting Hydration Free Energies of the FreeSolv Database of Drug-like Molecules with Molecular Density Functional Theory. Journal of Chemical Information and Modeling 2020, 60 (7) , 3558-3565. https://doi.org/10.1021/acs.jcim.0c00526
    49. Braden D. Kelly, William R. Smith. A Simple Method for Including Polarization Effects in Solvation Free Energy Calculations When Using Fixed-Charge Force Fields: Alchemically Polarized Charges. ACS Omega 2020, 5 (28) , 17170-17181. https://doi.org/10.1021/acsomega.0c01148
    50. D. Gobbo, P. Ballone, S. Decherchi, A. Cavalli. Solubility Advantage of Amorphous Ketoprofen. Thermodynamic and Kinetic Aspects by Molecular Dynamics and Free Energy Approaches. Journal of Chemical Theory and Computation 2020, 16 (7) , 4126-4140. https://doi.org/10.1021/acs.jctc.0c00166
    51. Rubaiyet Abedin, Yan Shen, John C. Flake, Francisco R. Hung. Deep Eutectic Solvents Mixed with Fluorinated Refrigerants for Absorption Refrigeration: A Molecular Simulation Study. The Journal of Physical Chemistry B 2020, 124 (22) , 4536-4550. https://doi.org/10.1021/acs.jpcb.0c01860
    52. Braden D. Kelly, William R. Smith. Alchemical Hydration Free-Energy Calculations Using Molecular Dynamics with Explicit Polarization and Induced Polarity Decoupling: An On–the–Fly Polarization Approach. Journal of Chemical Theory and Computation 2020, 16 (2) , 1146-1161. https://doi.org/10.1021/acs.jctc.9b01139
    53. T. Ryan Rogers, Feng Wang. Comparing Alchemical Free Energy Estimates to Experimental Values Based on the Ben-Naim Formula: How Much Agreement Can We Expect?. The Journal of Physical Chemistry B 2020, 124 (5) , 840-847. https://doi.org/10.1021/acs.jpcb.9b08965
    54. Sydnee N. Roese, Griffin V. Margulis, Alexa J. Schmidt, Cole B. Uzat, Justin D. Heintz, Andrew S. Paluch. A Simple Method to Predict and Interpret the Formation of Azeotropes in Binary Systems Using Conventional Solvation Free Energy Calculations. Industrial & Engineering Chemistry Research 2019, 58 (50) , 22626-22632. https://doi.org/10.1021/acs.iecr.9b03694
    55. Nuno Galamba, Alexandre Paiva, Susana Barreiros, Pedro Simões. Solubility of Polar and Nonpolar Aromatic Molecules in Subcritical Water: The Role of the Dielectric Constant. Journal of Chemical Theory and Computation 2019, 15 (11) , 6277-6293. https://doi.org/10.1021/acs.jctc.9b00505
    56. Willem Jespers, Geir V. Isaksen, Tor A.H. Andberg, Silvana Vasile, Amber van Veen, Johan Åqvist, Bjørn Olav Brandsdal, Hugo Gutiérrez-de-Terán. QresFEP: An Automated Protocol for Free Energy Calculations of Protein Mutations in Q. Journal of Chemical Theory and Computation 2019, 15 (10) , 5461-5473. https://doi.org/10.1021/acs.jctc.9b00538
    57. Narjes Ansari, Alessandro Laio, Ali Hassanali. Spontaneously Forming Dendritic Voids in Liquid Water Can Host Small Polymers. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5585-5591. https://doi.org/10.1021/acs.jpclett.9b02052
    58. Richard A. Messerly, Mohammad Soroush Barhaghi, Jeffrey J. Potoff, Michael R. Shirts. Histogram-Free Reweighting with Grand Canonical Monte Carlo: Post-simulation Optimization of Non-bonded Potentials for Phase Equilibria. Journal of Chemical & Engineering Data 2019, 64 (9) , 3701-3717. https://doi.org/10.1021/acs.jced.8b01232
    59. Martin J. Fossat, Rohit V. Pappu. q-Canonical Monte Carlo Sampling for Modeling the Linkage between Charge Regulation and Conformational Equilibria of Peptides. The Journal of Physical Chemistry B 2019, 123 (32) , 6952-6967. https://doi.org/10.1021/acs.jpcb.9b05206
    60. Rafael Nunes, Diogo Vila-Viçosa, Paulo J. Costa. Tackling Halogenated Species with PBSA: Effect of Emulating the σ-Hole. Journal of Chemical Theory and Computation 2019, 15 (7) , 4241-4251. https://doi.org/10.1021/acs.jctc.9b00106
    61. Yaxin An, Samrendra Singh, Karteek K. Bejagam, Sanket A. Deshmukh. Development of an Accurate Coarse-Grained Model of Poly(acrylic acid) in Explicit Solvents. Macromolecules 2019, 52 (13) , 4875-4887. https://doi.org/10.1021/acs.macromol.9b00615
    62. Guilherme Duarte Ramos Matos, Gaetano Calabrò, David L. Mobley. Infinite Dilution Activity Coefficients as Constraints for Force Field Parametrization and Method Development. Journal of Chemical Theory and Computation 2019, 15 (5) , 3066-3074. https://doi.org/10.1021/acs.jctc.8b01029
    63. Dipankar Roy, Andriy Kovalenko. Performance of 3D-RISM-KH in Predicting Hydration Free Energy: Effect of Solute Parameters. The Journal of Physical Chemistry A 2019, 123 (18) , 4087-4093. https://doi.org/10.1021/acs.jpca.9b01623
    64. Samuel T. Hutchinson, Rika Kobayashi. Solvent-Specific Featurization for Predicting Free Energies of Solvation through Machine Learning. Journal of Chemical Information and Modeling 2019, 59 (4) , 1338-1346. https://doi.org/10.1021/acs.jcim.8b00901
    65. Andrew W. Milne, Miguel Jorge. Polarization Corrections and the Hydration Free Energy of Water. Journal of Chemical Theory and Computation 2019, 15 (2) , 1065-1078. https://doi.org/10.1021/acs.jctc.8b01115
    66. Hannes H. Loeffler, Stefano Bosisio, Guilherme Duarte Ramos Matos, Donghyuk Suh, Benoit Roux, David L. Mobley, Julien Michel. Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages. Journal of Chemical Theory and Computation 2018, 14 (11) , 5567-5582. https://doi.org/10.1021/acs.jctc.8b00544
    67. David L. Mobley, Caitlin C. Bannan, Andrea Rizzi, Christopher I. Bayly, John D. Chodera, Victoria T. Lim, Nathan M. Lim, Kyle A. Beauchamp, David R. Slochower, Michael R. Shirts, Michael K. Gilson, Peter K. Eastman. Escaping Atom Types in Force Fields Using Direct Chemical Perception. Journal of Chemical Theory and Computation 2018, 14 (11) , 6076-6092. https://doi.org/10.1021/acs.jctc.8b00640
    68. Martin Stroet, Bertrand Caron, Koen M. Visscher, Daan P. Geerke, Alpeshkumar K. Malde, Alan E. Mark. Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane. Journal of Chemical Theory and Computation 2018, 14 (11) , 5834-5845. https://doi.org/10.1021/acs.jctc.8b00768
    69. Maximiliano Riquelme, Alejandro Lara, David L. Mobley, Toon Verstraelen, Adelio R. Matamala, Esteban Vöhringer-Martinez. Hydration Free Energies in the FreeSolv Database Calculated with Polarized Iterative Hirshfeld Charges. Journal of Chemical Information and Modeling 2018, 58 (9) , 1779-1797. https://doi.org/10.1021/acs.jcim.8b00180
    70. Eliot Boulanger, Lei Huang, Chetan Rupakheti, Alexander D. MacKerell, Jr., Benoît Roux. Optimized Lennard-Jones Parameters for Druglike Small Molecules. Journal of Chemical Theory and Computation 2018, 14 (6) , 3121-3131. https://doi.org/10.1021/acs.jctc.8b00172
    71. Patrick Bleiziffer, Kay Schaller, Sereina Riniker. Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations. Journal of Chemical Information and Modeling 2018, 58 (3) , 579-590. https://doi.org/10.1021/acs.jcim.7b00663
    72. Pratik Dhakal, Sydnee N. Roese, Erin M. Stalcup, and Andrew S. Paluch . Application of MOSCED To Predict Limiting Activity Coefficients, Hydration Free Energies, Henry’s Constants, Octanol/Water Partition Coefficients, and Isobaric Azeotropic Vapor–Liquid Equilibrium. Journal of Chemical & Engineering Data 2018, 63 (2) , 352-364. https://doi.org/10.1021/acs.jced.7b00748
    73. Yutaka Maruyama, Hidekazu Kojima, Nobuyuki Matubayasi. ERmod‐OpenACC: GPU Acceleration of Solvation Free Energy Calculation With Energy‐Representation Theory. Journal of Computational Chemistry 2025, 46 (16) https://doi.org/10.1002/jcc.70152
    74. William E. Acree, Costas Panayiotou. Prediction of Hydrogen-Bonding Interaction Free Energies with Two New Molecular Descriptors. Liquids 2025, 5 (2) , 12. https://doi.org/10.3390/liquids5020012
    75. Olivia M. Driessen, Jennifer G. Murphy. Assessing pH- and temperature-dependence in the aqueous phase partitioning of organic acids and bases in the atmosphere. Environmental Science: Atmospheres 2025, 5 (5) , 591-602. https://doi.org/10.1039/D5EA00034C
    76. Daiwen Li, Shoutian Qiu, Gan Liu, Ming Liu, Mingjie Wei, Shipeng Sun, Weihong Xing, Xiaohua Lu, Yong Wang. Coarse-grained molecular dynamics simulations on self-assembly of polystyrene-block-poly(2-Vinylpyridine). Chinese Journal of Chemical Engineering 2025, 41 https://doi.org/10.1016/j.cjche.2025.02.032
    77. Ana R. R. P. Almeida, Bruno D. A. Pinheiro, Gastón P. León, Bogdan Postolnyi, João P. Araújo, Manuel J. S. Monte. Exploring the Volatility, Phase Transitions, and Solubility Properties of Five Halogenated Benzaldehydes. Molecules 2025, 30 (7) , 1551. https://doi.org/10.3390/molecules30071551
    78. I. Zuburtikudis, W.E. Acree, C. Panayiotou. Prediction of hydrogen-bonding interaction energies with new COSMO-based molecular descriptors. Journal of Molecular Liquids 2025, 422 , 126907. https://doi.org/10.1016/j.molliq.2025.126907
    79. Jiexin Shi, Xiaohong Zhang, Venkata Rohit Punyapu, Rachel B. Getman. Prediction of hydration energies of adsorbates at Pt(111) and liquid water interfaces using machine learning. The Journal of Chemical Physics 2025, 162 (8) https://doi.org/10.1063/5.0248572
    80. Avinash Garg, Ananya Debnath. Thermodynamic origin of fenugreek phytochemical binding to the ASC pyrin domain for inflammation inhibition. Physical Chemistry Chemical Physics 2025, 27 (8) , 4211-4221. https://doi.org/10.1039/D4CP04644G
    81. Vishal Sivaraman, Raviteja Kurapati, Upendra Natarajan. Solvation-free energy of uncharged and charged water-soluble synthetic polymer using adaptive Poisson-Boltzmann solver: poly(acrylic acid). Molecular Simulation 2025, 51 (1) , 12-21. https://doi.org/10.1080/08927022.2024.2439623
    82. Sebastien Röcken, Anton F. Burnet, Julija Zavadlav. Predicting solvation free energies with an implicit solvent machine learning potential. The Journal of Chemical Physics 2024, 161 (23) https://doi.org/10.1063/5.0235189
    83. Benjoe Rey B. Visayas, Shyam K. Pahari, Tulsi M. Poudel, James A. Golen, Patrick J. Cappillino, Maricris L. Mayes. Designing Alkylammonium Cations for Enhanced Solubility of Anionic Active Materials in Redox Flow Batteries: The Role of Bulk and Chain Length. ChemPhysChem 2024, 25 (24) https://doi.org/10.1002/cphc.202400517
    84. Costas Panayiotou. Quantum Chemical (QC) Calculations and Linear Solvation Energy Relationships (LSER): Hydrogen-Bonding Calculations with New QC-LSER Molecular Descriptors. Liquids 2024, 4 (4) , 663-688. https://doi.org/10.3390/liquids4040037
    85. Mouhmad Elayyan, Binglin Sui, Mark R. Hoffmann. Perspective on the Role of Quantum Mechanical Calculations on Cellular Molecular Interactions. 2024, 78-155. https://doi.org/10.2174/97898151790331240700005
    86. Thorren Kirschbaum, Annika Bande. Transfer learning for molecular property predictions from small datasets. AIP Advances 2024, 14 (10) https://doi.org/10.1063/5.0214754
    87. Yuchi Chen, Qiangqiang Huang, Te-Huan Liu, Ronggui Yang, Xin Qian. Modeling solvation dynamics of transition metal redox ion through on-the-fly multi-objective Bayesian-optimized force field. The Journal of Chemical Physics 2024, 161 (12) https://doi.org/10.1063/5.0225520
    88. Stefan M. Ivanov, . Calculated hydration free energies become less accurate with increases in molecular weight. PLOS ONE 2024, 19 (9) , e0309996. https://doi.org/10.1371/journal.pone.0309996
    89. Gargi Biswas, Debasish Mukherjee, Sankar Basu. Combining Complementarity and Binding Energetics in the Assessment of Protein Interactions: EnCPdock—A Practical Manual. Journal of Computational Biology 2024, 31 (8) , 769-781. https://doi.org/10.1089/cmb.2024.0554
    90. Ponduri Teja Kumar, Roja Rani Budha, G. Raghavendra Kumar, B. Nagamani, G.S.N. Koteswara Rao. Exploring Nano‐Based Therapeutics by Quantum Computational Modeling. 2024, 93-139. https://doi.org/10.1002/9781394159338.ch4
    91. Chinmay Parida, Snehasis Chowdhuri. Solvation structure and hydrogen bond dynamics of uracil–water and thymine–water: A comparison of different force fields of uracil and thymine. Chemical Physics Letters 2024, 846 , 141357. https://doi.org/10.1016/j.cplett.2024.141357
    92. Sheikh Imran Uddin Ahmed, Shrihari Sankarasubramanian. Low pH Titanium Electrochemistry in the Presence of Sulfuric Acid and its Implications for Redox Flow Battery Applications. Journal of The Electrochemical Society 2024, 171 (6) , 060538. https://doi.org/10.1149/1945-7111/ad5975
    93. Enshu Liang, Vivek Verma, Mingxia Guo, Lihong Jia, Emily J. Guinn, Jerry Y.Y. Heng. Sequence-dependent dipeptide solubility in ethanol-water and DMSO-water solutions. Journal of Molecular Liquids 2024, 402 , 124742. https://doi.org/10.1016/j.molliq.2024.124742
    94. Andreia Fortuna, Pedro M. S. Suzano, Miguel Machuqueiro, Paulo J. Costa. Influence of Iodine Merz–Singh–Kollman Radius on the Calculated Charges and Hydration Free Energies of Iodinated Molecules. Journal of Computational Biophysics and Chemistry 2024, 23 (04) , 481-491. https://doi.org/10.1142/S2737416523500722
    95. Jules Moutet, David D. Mills, Diego L. Lozier, Thomas L. Gianetti. [4]Helicenium Ion as Bipolar Redox Material for Symmetrical Fully Organic Pole‐less Redox Flow Battery. Batteries & Supercaps 2024, 7 (4) https://doi.org/10.1002/batt.202300519
    96. Philip Eor, Nicholas Tryon-Tasson, Jared L. Anderson. Elucidating the role of temperature and water on the π-complexation strength of copper(I) ion-containing ionic liquids using inverse gas chromatography. Analytica Chimica Acta 2024, 1287 , 342021. https://doi.org/10.1016/j.aca.2023.342021
    97. Urvesh Patil, Nuala M Caffrey. The role of solvent interfacial structural ordering in maintaining stable graphene dispersions. 2D Materials 2024, 11 (1) , 015017. https://doi.org/10.1088/2053-1583/ad10ba
    98. Brenda Manzanilla, Minerva Martinez-Alfaro, Juvencio Robles. DFT and Molecular Docking Studies of Melatonin and Some Analogues Interaction with Xanthine Oxidase as a Possible Antiradical Mechanism. Journal of the Mexican Chemical Society 2024, 68 (1) , 99-112. https://doi.org/10.29356/jmcs.v68i1.2072
    99. Sadra Kashef Ol Gheta, Anne Bonin, Thomas Gerlach, Andreas H. Göller. Predicting absolute aqueous solubility by applying a machine learning model for an artificially liquid-state as proxy for the solid-state. Journal of Computer-Aided Molecular Design 2023, 37 (12) , 765-789. https://doi.org/10.1007/s10822-023-00538-w
    100. Priya Kedia, Yogesh Badhe, Rakesh Gupta, Shankar Kausley, Beena Rai. Modeling the effect of pH on the permeability of dried chitosan film. Journal of Food Engineering 2023, 358 , 111682. https://doi.org/10.1016/j.jfoodeng.2023.111682
    Load all citations

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2017, 62, 5, 1559–1569
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jced.7b00104
    Published April 24, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.