ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Thermodynamic Properties from Calorimetry and Density Functional Theory and the Thermogravimetric Analysis of the Fullerene Derivative C60(OH)40

  • Nikita E. Podolsky
    Nikita E. Podolsky
    Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
  • Maxim I. Lelet
    Maxim I. Lelet
    Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia
  • Sergei V. Ageev
    Sergei V. Ageev
    Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
  • Aleksey G. Novikov
    Aleksey G. Novikov
    Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
  • Andrey V. Petrov
    Andrey V. Petrov
    Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
  • Anton S. Mazur
    Anton S. Mazur
    Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
  • Konstantin N. Semenov*
    Konstantin N. Semenov
    Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
    *Tel.: (812) 4284109. Fax: (812) 2349859. E-mail: [email protected] (K.N. Semenov).
  • Nikolay A. Charykov
    Nikolay A. Charykov
    Saint Petersburg State Technological Institute (Technical University), Moskovskii pr. 26, Saint Petersburg 190013, Russia
  • Lubov V. Vasina
    Lubov V. Vasina
    Pavlov First Saint Petersburg State Medical University, L’va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
    Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia
  • , and 
  • Igor V. Murin
    Igor V. Murin
    Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
Cite this: J. Chem. Eng. Data 2019, 64, 4, 1480–1487
Publication Date (Web):March 13, 2019
https://doi.org/10.1021/acs.jced.8b01075
Copyright © 2019 American Chemical Society

    Article Views

    302

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    This paper presents experimental and simulated isobaric heat capacities of the C60(OH)40 fullerenol in the temperature range from T = 0 to 320 K along with the values of standard thermodynamic functions: Sm°, [Φm°(T) – Φm°(0)], and [Hm°(T) – Hm°(0)]. Furthermore, the molar entropy of formation and the molar third law entropy of C60(OH)40 in the crystalline state at T = 298.15 K were calculated. The results of the simultaneous thermal analysis reveal that C60(OH)40 is stable up to 340 K, and further increase of temperature leads to the destruction of the fullerene derivative and the oxidation of the fullerene core.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.8b01075.

    • Raw data on heat capacity, values of polynomial coefficients, and deviations of heat capacity for benzoic acid, synthetic sapphire, and fullerenol C60(OH)40 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 11 publications.

    1. Maxim I. Lelet, Vera N. Larina, Andrey V. Petrov, Elizaveta O. Silyakova, Evgeny V. Suleimanov. Benzo[a]pyrene: Standard Thermodynamic Properties from Adiabatic and Combustion Calorimetry and Density Functional Theory. Journal of Chemical & Engineering Data 2021, 66 (10) , 3678-3685. https://doi.org/10.1021/acs.jced.0c00449
    2. O. N. Kukalia, A. A. Meshcheryakov, G. O. Iurev, P. A. Andoskin, K. N. Semenov, O. E. Molchanov, D. N. Maistrenko, I. V. Murin, V. V. Sharoyko. Prospects for the application of water-soluble derivatives of light fullerenes in medicine.. Translational Medicine 2024, 10 (6) , 507-521. https://doi.org/10.18705/2311-4495-2023-10-6-507-521
    3. Siavash Aghili, Masoud Panjepour, Mehran Ghiaci. Degradation mechanism and oxidation kinetics of C60 fullerene. Diamond and Related Materials 2022, 124 , 108943. https://doi.org/10.1016/j.diamond.2022.108943
    4. Vladimir V. Sharoyko, Sergei V. Ageev, Anatolii A. Meshcheriakov, Nikita E. Podolsky, Javier P. Vallejo, Luis Lugo, Ilnaz T. Rakipov, Andrey V. Petrov, Anna V. Ivanova, Nikolay A. Charykov, Konstantin N. Semenov. Physicochemical investigation of water-soluble C60(C2NH4O2)4H4 (C60-Gly) adduct. Journal of Molecular Liquids 2021, 344 , 117658. https://doi.org/10.1016/j.molliq.2021.117658
    5. Vladimir V. Sharoyko, Sergei V. Ageev, Nikita E. Podolsky, Andrey V. Petrov, Elena V. Litasova, Timur D. Vlasov, Lubov V. Vasina, Igor V. Murin, Levon B. Piotrovskiy, Konstantin N. Semenov. Biologically active water-soluble fullerene adducts: Das Glasperlenspiel (by H. Hesse)?. Journal of Molecular Liquids 2021, 323 , 114990. https://doi.org/10.1016/j.molliq.2020.114990
    6. L. V. Gerasimova, N. A. Charykov, K. N. Semenov, V. V. Keskinov, A. A. Kulenova, Zh. K. Shaimardanov, B. K. Shaimardanova, Kanbar Ayat, D. G. Letenko. Volume Properties of Aqueous Solutions of Light Fullerene С60 and Its Association in Binary C60(OH)24–H2O System at 25°С. Russian Journal of Physical Chemistry A 2020, 94 (11) , 2386-2390. https://doi.org/10.1134/S0036024420110084
    7. Alexey V. Markin, Yanina S. Samosudova, Timofey G. Ogurtsov, Natalia N. Smirnova, Sergei V. Ageev, Nikita E. Podolsky, Andrey V. Petrov, Igor V. Murin, Konstantin N. Semenov. Heat capacity and standard thermodynamic functions of the fullerenol C60(OH)24. The Journal of Chemical Thermodynamics 2020, 149 , 106192. https://doi.org/10.1016/j.jct.2020.106192
    8. Vladimir V. Sharoyko, Sergei V. Ageev, Anatolii A. Meshcheriakov, Alexander V. Akentiev, Boris A. Noskov, Ilnaz T. Rakipov, Nikolay A. Charykov, Natalya A. Kulenova, Botagoz K. Shaimardanova, Nikita E. Podolsky, Konstantin N. Semenov. Physicochemical study of water-soluble C60(OH)24 fullerenol. Journal of Molecular Liquids 2020, 311 , 113360. https://doi.org/10.1016/j.molliq.2020.113360
    9. Nikita E. Podolsky, Maxim I. Lelet, Sergei V. Ageev, Andrey V. Petrov, Anton S. Mazur, Nailia R. Iamalova, Dmitry N. Zakusilo, Nikolay A. Charykov, Lubov V. Vasina, Konstantin N. Semenov, Igor V. Murin. Thermodynamic properties of the C70(OH)12 fullerenol in the temperature range T = 9.2 K to 304.5 K. The Journal of Chemical Thermodynamics 2020, 144 , 106029. https://doi.org/10.1016/j.jct.2019.106029
    10. Anton S. Mazur, Mikhail A. Vovk, Peter M. Tolstoy. Solid-state 13 C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: a mini-review. Fullerenes, Nanotubes and Carbon Nanostructures 2020, 28 (3) , 202-213. https://doi.org/10.1080/1536383X.2019.1686622
    11. N. O. Mchedlov-Petrossyan. Fullerenes in Aqueous Media: A Review. Theoretical and Experimental Chemistry 2020, 55 (6) , 361-391. https://doi.org/10.1007/s11237-020-09630-w

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect