ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVLaboratory Experimen...Laboratory ExperimentNEXT

Introduction to Covalent Organic Frameworks: An Advanced Organic Chemistry Experiment

  • María José Mancheño*
    María José Mancheño
    Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
    *E-mail: [email protected]
  • Sergio Royuela
    Sergio Royuela
    Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
    Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, Madrid 28933, Spain
  • A. de la Peña
    A. de la Peña
    Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
  • Mar Ramos
    Mar Ramos
    Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, Madrid 28933, Spain
    More by Mar Ramos
  • Félix Zamora
    Félix Zamora
    Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
  • , and 
  • José L. Segura
    José L. Segura
    Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
Cite this: J. Chem. Educ. 2019, 96, 8, 1745–1751
Publication Date (Web):June 19, 2019
https://doi.org/10.1021/acs.jchemed.8b00810
Copyright © 2019 American Chemical Society and Division of Chemical Education, Inc.

    Article Views

    3000

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    In order to introduce the concept of covalent organic frameworks (COFs), an important class of predictable crystalline porous polymers, an integrated laboratory experiment for advanced organic chemistry students is reported. The importance of these kind of polymers and their multiple applications are presented as a part of key concepts in polymer and organic chemistry, bridging these disciplines to materials science. Students carry out the synthesis and characterization of an imine-linked COF and its building blocks. The polymer is formed at room temperature by using solvent-assisted synthesis and mechanochemistry. Students are trained in solid state characterization techniques, including FTIR spectroscopy, thermogravimetric analysis (TGA), 13C NMR cross-polarization–magic angle spinning (CP-MAS) NMR spectroscopy, and powder X-ray diffraction (PXRD), which are essential in the important field of reticular chemistry. Therefore, this lab experience constitutes a practical introduction to COFs.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 10 publications.

    1. Qi Sun, Qing Guo, Xiuhui Zuo, Sai Wang. Exploring Cation-Exchange Membranes: Synthesis, Characterization, and Real-World Applications in a Multidisciplinary Laboratory. Journal of Chemical Education 2024, 101 (1) , 158-164. https://doi.org/10.1021/acs.jchemed.3c01019
    2. Francis Bru, Sofie M. P. Vanden Broeck, Gianmarco Pisanò, Klaartje De Buysser, Catherine S. J. Cazin. Learning Green Chemistry Principles by Comparing Three Synthetic Routes to a Copper-NHC (NHC = N-heterocyclic carbene) Complex. Journal of Chemical Education 2023, 100 (6) , 2359-2366. https://doi.org/10.1021/acs.jchemed.2c01134
    3. Qianqian Yang, Xinyu Li, Changsong Xie, Ning Liu, Jianjian Yang, Zhihui Kong, Zixi Kang, Rongming Wang, Xiyou Li, Daofeng Sun. Expanding the dimensionality of proton conduction enables ultrahigh anhydrous proton conductivity of phosphoric acid-doped covalent-organic frameworks. Nano Research 2023, 16 (8) , 10946-10955. https://doi.org/10.1007/s12274-023-5812-x
    4. Manisha Nigam, Dylan Tuttle, Barbora Morra, Andrew P. Dicks, Jose Rodriguez. Putting the squeeze on imine synthesis: citrus juice as a reaction medium in the introductory organic laboratory. Green Chemistry Letters and Reviews 2023, 16 (1) https://doi.org/10.1080/17518253.2023.2185107
    5. Piyali Sabui, Sadhucharan Mallick, Kshitij RB Singh, Arunadevi Natarajan, Ranjana Verma, Jay Singh, Ravindra Pratap Singh. Potentialities of fluorescent carbon nanomaterials as sensor for food analysis. Luminescence 2022, 131 https://doi.org/10.1002/bio.4406
    6. Annika Krusenbaum, Sven Grätz, Getinet Tamiru Tigineh, Lars Borchardt, Jeung Gon Kim. The mechanochemical synthesis of polymers. Chemical Society Reviews 2022, 51 (7) , 2873-2905. https://doi.org/10.1039/D1CS01093J
    7. Maarten Debruyne, Veronique Van Speybroeck, Pascal Van Der Voort, Christian V. Stevens. Porous organic polymers as metal free heterogeneous organocatalysts. Green Chemistry 2021, 23 (19) , 7361-7434. https://doi.org/10.1039/D1GC02319E
    8. Mei Ying Teo, Seyoung Kee, Logan Stuart, Jonathan Stringer, Kean C. Aw. Printing of covalent organic frameworks using multi-material in-air coalescence inkjet printing technique. Journal of Materials Chemistry C 2021, 9 (36) , 12051-12056. https://doi.org/10.1039/D1TC03189A
    9. Xiumin Yang, Shuaihua Zhang, Junmin Wang, Wenjin Wang, Jinqiu Li, Jingwei Chen, Yajun Zhao, Chun Wang, Zhi Wang. Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples. Analytica Chimica Acta 2020, 1134 , 50-57. https://doi.org/10.1016/j.aca.2020.07.072
    10. Xiaoying Zhang, Luyao Liu, Yu Qiao, Jiaxin Liu, Aiguo Kong, Yongkui Shan. Sn(OH) x -assisted synthesis of mesoporous Mn-porphyrinic frameworks and their carbon derivatives for electrocatalysis. Dalton Transactions 2019, 48 (39) , 14678-14686. https://doi.org/10.1039/C9DT03085A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect