ACS Publications. Most Trusted. Most Cited. Most Read
Molassembler: Molecular Graph Construction, Modification, and Conformer Generation for Inorganic and Organic Molecules
My Activity

Figure 1Loading Img
    Computational Chemistry

    Molassembler: Molecular Graph Construction, Modification, and Conformer Generation for Inorganic and Organic Molecules
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2020, 60, 8, 3884–3900
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jcim.0c00503
    Published July 1, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present the graph-based molecule software Molassembler for building organic and inorganic molecules. Molassembler provides algorithms for the construction of molecules built from any set of elements from the periodic table. In particular, polynuclear transition-metal complexes and clusters can be considered. Structural information is encoded as a graph. Stereocenter configurations are interpretable from Cartesian coordinates into an abstract index of permutation for an extensible set of polyhedral shapes. Substituents are distinguished through a ranking algorithm. Graph and stereocenter representations are freely modifiable, and the chiral state is propagated where possible through incurred ranking changes. Conformers are generated with full stereoisomer control by four spatial dimension Distance Geometry with a refinement error function including dihedral terms. Molecules are comparable by an extended graph isomorphism, and their representation is canonicalizeable. Molassembler is written in C++ and provides Python bindings.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.0c00503.

    • Shape classification, stereopermutation enumeration, and feasibility algorithm specifications; Derivative of Distance Geometry error function; and reproduction instructions for demonstration section (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 47 publications.

    1. Young Sebastian Ye, Aragorn Laverny, Matthew D. Wodrich, Ruben Laplaza, Farzaneh Fadaei-Tirani, Rosario Scopelliti, Clemence Corminboeuf, Nicolai Cramer. Enantiospecific Synthesis of Planar Chiral Rhodium and Iridium Cyclopentadienyl Complexes: Enabling Streamlined and Computer-Guided Access to Highly Selective Catalysts for Asymmetric C–H Functionalizations. Journal of the American Chemical Society 2024, 146 (50) , 34786-34795. https://doi.org/10.1021/jacs.4c13279
    2. Charlotte H. Müller, Miguel Steiner, Jan P. Unsleber, Thomas Weymuth, Moritz Bensberg, Katja-Sophia Csizi, Maximilian Mörchen, Paul L. Türtscher, Markus Reiher. Heron: Visualizing and Controlling Chemical Reaction Explorations and Networks. The Journal of Physical Chemistry A 2024, 128 (41) , 9028-9044. https://doi.org/10.1021/acs.jpca.4c03936
    3. Hongni Jin, Kenneth M. Merz, Jr.. Partial to Total Generation of 3D Transition-Metal Complexes. Journal of Chemical Theory and Computation 2024, 20 (18) , 8367-8377. https://doi.org/10.1021/acs.jctc.4c00775
    4. Bence Balázs Mészáros, Károly Kubicskó, Dávid Dorián Németh, János Daru. Emerging Conformational-Analysis Protocols from the RTCONF55-16K Reaction Thermochemistry Conformational Benchmark Set. Journal of Chemical Theory and Computation 2024, 20 (17) , 7385-7392. https://doi.org/10.1021/acs.jctc.4c00565
    5. Ruben Laplaza, Matthew D. Wodrich, Clemence Corminboeuf. Overcoming the Pitfalls of Computing Reaction Selectivity from Ensembles of Transition States. The Journal of Physical Chemistry Letters 2024, 15 (29) , 7363-7370. https://doi.org/10.1021/acs.jpclett.4c01657
    6. Moritz Bensberg, Markus Reiher. Uncertainty-Aware First-Principles Exploration of Chemical Reaction Networks. The Journal of Physical Chemistry A 2024, 128 (22) , 4532-4547. https://doi.org/10.1021/acs.jpca.3c08386
    7. Ivan Yu. Chernyshov, Evgeny A. Pidko. MACE: Automated Assessment of Stereochemistry of Transition Metal Complexes and Its Applications in Computational Catalysis. Journal of Chemical Theory and Computation 2024, 20 (5) , 2313-2320. https://doi.org/10.1021/acs.jctc.3c01313
    8. Marco Foscato, Giovanni Occhipinti, Sondre H. Hopen Eliasson, Vidar R. Jensen. Automated de Novo Design of Olefin Metathesis Catalysts: Computational and Experimental Analysis of a Simple Thermodynamic Design Criterion. Journal of Chemical Information and Modeling 2024, 64 (2) , 412-424. https://doi.org/10.1021/acs.jcim.3c01649
    9. Burai Murayama, Masato Kobayashi, Masamitsu Aoki, Suguru Ishibashi, Takuya Saito, Takenobu Nakamura, Hiroshi Teramoto, Tetsuya Taketsugu. Characterizing Reaction Route Map of Realistic Molecular Reactions Based on Weight Rank Clique Filtration of Persistent Homology. Journal of Chemical Theory and Computation 2023, 19 (15) , 5007-5023. https://doi.org/10.1021/acs.jctc.2c01204
    10. Jan P. Unsleber. Accelerating Reaction Network Explorations with Automated Reaction Template Extraction and Application. Journal of Chemical Information and Modeling 2023, 63 (11) , 3392-3403. https://doi.org/10.1021/acs.jcim.3c00102
    11. Paul L. Türtscher, Markus Reiher. Pathfinder─Navigating and Analyzing Chemical Reaction Networks with an Efficient Graph-Based Approach. Journal of Chemical Information and Modeling 2023, 63 (1) , 147-160. https://doi.org/10.1021/acs.jcim.2c01136
    12. Bas van Beek, Juliette Zito, Lucas Visscher, Ivan Infante. CAT: A Compound Attachment Tool for the Construction of Composite Chemical Compounds. Journal of Chemical Information and Modeling 2022, 62 (22) , 5525-5535. https://doi.org/10.1021/acs.jcim.2c00690
    13. Jan P. Unsleber, Stephanie A. Grimmel, Markus Reiher. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. Journal of Chemical Theory and Computation 2022, 18 (9) , 5393-5409. https://doi.org/10.1021/acs.jctc.2c00193
    14. Florian Spenke, Bernd Hartke. Graph-based Automated Macro-Molecule Assembly. Journal of Chemical Information and Modeling 2022, 62 (16) , 3714-3723. https://doi.org/10.1021/acs.jcim.2c00609
    15. Jon Paul Janet . Data-Driven Mapping of Inorganic Chemical Space for the Design of Transition Metal Complexes and Metal-Organic Frameworks. , 127-179. https://doi.org/10.1021/bk-2022-1416.ch007
    16. E. Adrian Henle, Nickolas Gantzler, Praveen K. Thallapally, Xiaoli Z. Fern, Cory M. Simon. PoreMatMod.jl: Julia Package for in Silico Postsynthetic Modification of Crystal Structure Models. Journal of Chemical Information and Modeling 2022, 62 (3) , 423-432. https://doi.org/10.1021/acs.jcim.1c01219
    17. Aditya Nandy, Chenru Duan, Michael G. Taylor, Fang Liu, Adam H. Steeves, Heather J. Kulik. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chemical Reviews 2021, 121 (16) , 9927-10000. https://doi.org/10.1021/acs.chemrev.1c00347
    18. Miguel Steiner, Markus Reiher. A human-machine interface for automatic exploration of chemical reaction networks. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47997-9
    19. Katja-Sophia Csizi, Miguel Steiner, Markus Reiher. Nanoscale chemical reaction exploration with a quantum magnifying glass. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-49594-2
    20. Adarsh V. Kalikadien, Adrian Mirza, Aydin Najl Hossaini, Avadakkam Sreenithya, Evgeny A. Pidko. Paving the road towards automated homogeneous catalyst design. ChemPlusChem 2024, 89 (7) https://doi.org/10.1002/cplu.202300702
    21. Thomas Weymuth, Jan P. Unsleber, Paul L. Türtscher, Miguel Steiner, Jan-Grimo Sobez, Charlotte H. Müller, Maximilian Mörchen, Veronika Klasovita, Stephanie A. Grimmel, Marco Eckhoff, Katja-Sophia Csizi, Francesco Bosia, Moritz Bensberg, Markus Reiher. SCINE—Software for chemical interaction networks. The Journal of Chemical Physics 2024, 160 (22) https://doi.org/10.1063/5.0206974
    22. Hannes Kneiding, Ainara Nova, David Balcells. Directional multiobjective optimization of metal complexes at the billion-system scale. Nature Computational Science 2024, 4 (4) , 263-273. https://doi.org/10.1038/s43588-024-00616-5
    23. Philipp Pracht, Stefan Grimme, Christoph Bannwarth, Fabian Bohle, Sebastian Ehlert, Gereon Feldmann, Johannes Gorges, Marcel Müller, Tim Neudecker, Christoph Plett, Sebastian Spicher, Pit Steinbach, Patryk A. Wesołowski, Felix Zeller. CREST—A program for the exploration of low-energy molecular chemical space. The Journal of Chemical Physics 2024, 160 (11) https://doi.org/10.1063/5.0197592
    24. Freya Edholm, Aditya Nandy, Clorice R. Reinhardt, David W. Kastner, Heather J. Kulik. Protein3D: Enabling analysis and extraction of metal‐containing sites from the Protein Data Bank with molSimplify. Journal of Computational Chemistry 2024, 45 (6) , 352-361. https://doi.org/10.1002/jcc.27242
    25. Hongni Jin, Kenneth M. Merz. Toward AI/ML-assisted discovery of transition metal complexes. 2024, 225-267. https://doi.org/10.1016/bs.arcc.2024.10.003
    26. Katja‐Sophia Csizi, Markus Reiher. Automated preparation of nanoscopic structures: Graph‐based sequence analysis, mismatch detection, and pH‐consistent protonation with uncertainty estimates. Journal of Computational Chemistry 2023, 114 https://doi.org/10.1002/jcc.27276
    27. Michael G. Taylor, Daniel J. Burrill, Jan Janssen, Enrique R. Batista, Danny Perez, Ping Yang. Architector for high-throughput cross-periodic table 3D complex building. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38169-2
    28. Moritz Bensberg, Markus Reiher. Concentration‐Flux‐Steered Mechanism Exploration with an Organocatalysis Application. Israel Journal of Chemistry 2023, 63 (7-8) https://doi.org/10.1002/ijch.202200123
    29. Emma G. L. Robert, Vincent Pirenne, Matthew D. Wodrich, Jérôme Waser. Donor‐Acceptor Aminocyclobutane Monoesters: Synthesis and Silylium‐Catalyzed (4+2) Annulation with Indoles. Angewandte Chemie 2023, 135 (26) https://doi.org/10.1002/ange.202302420
    30. Emma G. L. Robert, Vincent Pirenne, Matthew D. Wodrich, Jérôme Waser. Donor‐Acceptor Aminocyclobutane Monoesters: Synthesis and Silylium‐Catalyzed (4+2) Annulation with Indoles. Angewandte Chemie International Edition 2023, 62 (26) https://doi.org/10.1002/anie.202302420
    31. Alessandra Toniato, Jan P. Unsleber, Alain C. Vaucher, Thomas Weymuth, Daniel Probst, Teodoro Laino, Markus Reiher. Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning. Digital Discovery 2023, 2 (3) , 663-673. https://doi.org/10.1039/D3DD00006K
    32. Kyeong‐jun Jeong, Seungwon Jeong, Sangmin Lee, Chang Yun Son. Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. Advanced Materials 2023, 35 (4) https://doi.org/10.1002/adma.202204272
    33. Markus Bursch, Jan‐Michael Mewes, Andreas Hansen, Stefan Grimme. Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angewandte Chemie 2022, 134 (42) https://doi.org/10.1002/ange.202205735
    34. Markus Bursch, Jan‐Michael Mewes, Andreas Hansen, Stefan Grimme. Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angewandte Chemie International Edition 2022, 61 (42) https://doi.org/10.1002/anie.202205735
    35. Paul Boone, Christopher E. Wilmer. MOFUN: a Python package for molecular find and replace. Digital Discovery 2022, 1 (5) , 679-688. https://doi.org/10.1039/D2DD00044J
    36. Rubén Laplaza, Jan-Grimo Sobez, Matthew D. Wodrich, Markus Reiher, Clémence Corminboeuf. The (not so) simple prediction of enantioselectivity – a pipeline for high-fidelity computations. Chemical Science 2022, 13 (23) , 6858-6864. https://doi.org/10.1039/D2SC01714H
    37. Ruben Laplaza, Simone Gallarati, Clemence Corminboeuf. Genetic Optimization of Homogeneous Catalysts. Chemistry–Methods 2022, 2 (6) https://doi.org/10.1002/cmtd.202100107
    38. Andrew Tarzia, Kim E. Jelfs. Unlocking the computational design of metal–organic cages. Chemical Communications 2022, 58 (23) , 3717-3730. https://doi.org/10.1039/D2CC00532H
    39. Adarsh V. Kalikadien, Evgeny A. Pidko, Vivek Sinha. ChemSpaX : exploration of chemical space by automated functionalization of molecular scaffold. Digital Discovery 2022, 1 (1) , 8-25. https://doi.org/10.1039/D1DD00017A
    40. Shusen Chen, Taylor Nielson, Elayna Zalit, Bastian Bjerkem Skjelstad, Braden Borough, William J. Hirschi, Spencer Yu, David Balcells, Daniel H. Ess. Automated Construction and Optimization Combined with Machine Learning to Generate Pt(II) Methane C–H Activation Transition States. Topics in Catalysis 2022, 65 (1-4) , 312-324. https://doi.org/10.1007/s11244-021-01506-0
    41. Miguel Steiner, Markus Reiher. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis 2022, 65 (1-4) , 6-39. https://doi.org/10.1007/s11244-021-01543-9
    42. Maren Podewitz. Trendbericht Theoretische Chemie 2/2: Mit dem Computer zu effizienteren Katalysatoren. Nachrichten aus der Chemie 2021, 69 (11) , 60-62. https://doi.org/10.1002/nadc.20214119408
    43. Siddhant Sharma, Aayush Arya, Romulo Cruz, Henderson Cleaves II. Automated Exploration of Prebiotic Chemical Reaction Space: Progress and Perspectives. Life 2021, 11 (11) , 1140. https://doi.org/10.3390/life11111140
    44. Vincenzo Barone, Cristina Puzzarini, Giordano Mancini. Integration of theory, simulation, artificial intelligence and virtual reality: a four-pillar approach for reconciling accuracy and interpretability in computational spectroscopy. Physical Chemistry Chemical Physics 2021, 23 (32) , 17079-17096. https://doi.org/10.1039/D1CP02507D
    45. Seik Weng Ng. Ψ-Polyhedral symbols for coordination geometries of lead(II) with a stereochemically active lone pair. Acta Crystallographica Section C Structural Chemistry 2021, 77 (8) , 443-448. https://doi.org/10.1107/S205322962100663X
    46. Lukas Turcani, Andrew Tarzia, Filip T. Szczypiński, Kim E. Jelfs. stk : An extendable Python framework for automated molecular and supramolecular structure assembly and discovery. The Journal of Chemical Physics 2021, 154 (21) https://doi.org/10.1063/5.0049708
    47. Markus Bursch, Andreas Hansen, Philipp Pracht, Julia T. Kohn, Stefan Grimme. Theoretical study on conformational energies of transition metal complexes. Physical Chemistry Chemical Physics 2021, 23 (1) , 287-299. https://doi.org/10.1039/D0CP04696E

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2020, 60, 8, 3884–3900
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jcim.0c00503
    Published July 1, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2062

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.