ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVChemical InformationNEXT

Reaction Mechanism Generator v3.0: Advances in Automatic Mechanism Generation

Cite this: J. Chem. Inf. Model. 2021, 61, 6, 2686–2696
Publication Date (Web):May 28, 2021
https://doi.org/10.1021/acs.jcim.0c01480
Copyright © 2021 American Chemical Society

    Article Views

    5321

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters. Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. Most notably, RMG can now generate heterogeneous catalysis models in addition to the previously available gas- and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release includes parallelization for faster model generation and a new molecule isomorphism approach to improve computational performance. RMG has also been updated to use Python 3, ensuring compatibility with the latest cheminformatics and machine learning packages. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.0c01480.

    • Names and reaction recipes of all reaction families which are included in RMG 3.0 and available for use for model generation (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 102 publications.

    1. Yu Ren, Yaoliang Mao, Yudong Shen, Zuwei Liao, Yao Yang, Jingyuan Sun, Binbo Jiang, Jingdai Wang, Yongrong Yang. Low-Temperature-Initiated Cracking of Hydrocarbons to Produce Olefins: Simulation and Comparison of Different Initiators. Industrial & Engineering Chemistry Research 2024, 63 (16) , 6857-6867. https://doi.org/10.1021/acs.iecr.3c04006
    2. Yuheng Ding, Bo Qiang, Qixuan Chen, Yiqiao Liu, Liangren Zhang, Zhenming Liu. Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective. Journal of Chemical Information and Modeling 2024, 64 (8) , 2955-2970. https://doi.org/10.1021/acs.jcim.4c00004
    3. Hui Guo, Hong Zhu, Gao-Yong Liu, Zhao-Xu Chen. General Reaction Network Exploration Scheme Based on Graph Theory Representation and Depth First Search Applied to CO2 Hydrogenation on Pd2Cu Catalyst. ACS Catalysis 2024, 14 (8) , 5720-5734. https://doi.org/10.1021/acscatal.4c00067
    4. Hrishikesh Ram, C. Murphy DePompa, Phillip R. Westmoreland. Thermochemistry of Gas-Phase Thermal Oxidation of C2 to C8 Perfluorinated Sulfonic Acids with Extrapolation to C16. The Journal of Physical Chemistry A 2024, Article ASAP.
    5. Yu Harabuchi, Tomohiko Yokoyama, Wataru Matsuoka, Taihei Oki, Satoru Iwata, Satoshi Maeda. Differentiating the Yield of Chemical Reactions Using Parameters in First-Order Kinetic Equations to Identify Elementary Steps That Control the Reactivity from Complicated Reaction Path Networks. The Journal of Physical Chemistry A 2024, 128 (14) , 2883-2890. https://doi.org/10.1021/acs.jpca.4c00204
    6. Hao-Wei Pang, Xiaorui Dong, Matthew S. Johnson, William H. Green. Subgraph Isomorphic Decision Tree to Predict Radical Thermochemistry with Bounded Uncertainty Estimation. The Journal of Physical Chemistry A 2024, 128 (14) , 2891-2907. https://doi.org/10.1021/acs.jpca.4c00569
    7. Dongyu Xu, Xiaojie Zhang, Zhengyu Chen, Linzhou Zhang. Molecular-Level Kinetic Model for Light Hydrocarbon Steam Cracking Based on the SU-BEM Framework. ACS Omega 2024, 9 (13) , 14849-14859. https://doi.org/10.1021/acsomega.3c07749
    8. Z. P. Zhang, S. H. Wang, Y. L. Shang, J. H. Liu, S. N. Luo. Theoretical Study on Ethylamine Dissociation Reactions Using VRC-VTST and SS-QRRK Methods. The Journal of Physical Chemistry A 2024, 128 (11) , 2191-2199. https://doi.org/10.1021/acs.jpca.3c08373
    9. Rubik Asatryan, Jason Hudzik, Mark Swihart. Intramolecular Catalytic Hydrogen Atom Transfer (CHAT). The Journal of Physical Chemistry A 2024, 128 (11) , 2169-2190. https://doi.org/10.1021/acs.jpca.3c06794
    10. Hrishikesh Ram, Thomas P. Sadej, C. Claire Murphy, Tim J. Mallo, Phillip R. Westmoreland. Thermochemistry of Species in Gas-Phase Thermal Oxidation of C2 to C8 Perfluorinated Carboxylic Acids. The Journal of Physical Chemistry A 2024, 128 (7) , 1313-1326. https://doi.org/10.1021/acs.jpca.3c06937
    11. Hao-Wei Pang, Xiaorui Dong, William H. Green. Oxygen Chemistry in Polymer Fouling: Insights from Multiphase Detailed Kinetic Modeling. Industrial & Engineering Chemistry Research 2024, 63 (2) , 1013-1028. https://doi.org/10.1021/acs.iecr.3c03730
    12. Venus Amiri, Rubik Asatryan, Mark Swihart. Automated Generation of a Compact Chemical Kinetic Model for n-Pentane Combustion. ACS Omega 2023, 8 (51) , 49098-49114. https://doi.org/10.1021/acsomega.3c07079
    13. Yutai Zhang, Chao Xu, Zhenggang Lan. Automated Exploration of Reaction Networks and Mechanisms Based on Metadynamics Nanoreactor Simulations. Journal of Chemical Theory and Computation 2023, 19 (23) , 8718-8731. https://doi.org/10.1021/acs.jctc.3c00752
    14. Alexander M. Chang, Jan Meisner, Rui Xu, Todd J. Martínez. Efficient Acceleration of Reaction Discovery in the Ab Initio Nanoreactor: Phenyl Radical Oxidation Chemistry. The Journal of Physical Chemistry A 2023, 127 (45) , 9580-9589. https://doi.org/10.1021/acs.jpca.3c05484
    15. Hao-Wei Pang, Michael Forsuelo, Xiaorui Dong, Ryan E. Hawtof, Duminda S. Ranasinghe, William H. Green. Detailed Multiphase Chemical Kinetic Model for Polymer Fouling in a Distillation Column. Industrial & Engineering Chemistry Research 2023, 62 (36) , 14266-14285. https://doi.org/10.1021/acs.iecr.3c01461
    16. Matthew S. Johnson, Maciej Gierada, Eric D. Hermes, David H. Bross, Khachik Sargsyan, Habib N. Najm, Judit Zádor. Pynta─An Automated Workflow for Calculation of Surface and Gas–Surface Kinetics. Journal of Chemical Information and Modeling 2023, 63 (16) , 5153-5168. https://doi.org/10.1021/acs.jcim.3c00948
    17. Sayandeep Biswas, Yunsie Chung, Josephine Ramirez, Haoyang Wu, William H. Green. Predicting Critical Properties and Acentric Factors of Fluids Using Multitask Machine Learning. Journal of Chemical Information and Modeling 2023, 63 (15) , 4574-4588. https://doi.org/10.1021/acs.jcim.3c00546
    18. Bjarne Kreitz, Kento Abeywardane, C. Franklin Goldsmith. Linking Experimental and Ab Initio Thermochemistry of Adsorbates with a Generalized Thermochemical Hierarchy. Journal of Chemical Theory and Computation 2023, 19 (13) , 4149-4162. https://doi.org/10.1021/acs.jctc.3c00112
    19. Rinu Chacko, Kevin Keller, Steffen Tischer, Akash B. Shirsath, Patrick Lott, Sofia Angeli, Olaf Deutschmann. Automating the Optimization of Catalytic Reaction Mechanism Parameters Using Basin-Hopping: A Proof of Concept. The Journal of Physical Chemistry C 2023, 127 (16) , 7628-7639. https://doi.org/10.1021/acs.jpcc.2c08179
    20. Katharina Kohse-Höinghaus. Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews 2023, 123 (8) , 5139-5219. https://doi.org/10.1021/acs.chemrev.2c00828
    21. Xiaorui Dong, Gianmaria Pio, Farhan Arafin, Andrew Laich, Jessica Baker, Erik Ninnemann, Subith S. Vasu, William H. Green. Butyl Acetate Pyrolysis and Combustion Chemistry: Mechanism Generation and Shock Tube Experiments. The Journal of Physical Chemistry A 2023, 127 (14) , 3231-3245. https://doi.org/10.1021/acs.jpca.2c07545
    22. Mohammadamin Tavakoli, Yin Ting T. Chiu, Pierre Baldi, Ann Marie Carlton, David Van Vranken. RMechDB: A Public Database of Elementary Radical Reaction Steps. Journal of Chemical Information and Modeling 2023, 63 (4) , 1114-1123. https://doi.org/10.1021/acs.jcim.2c01359
    23. Siddha Sharma, Kento Abeywardane, C. Franklin Goldsmith. Theory-Based Mechanism for Fluoromethane Combustion I: Thermochemistry and Abstraction Reactions. The Journal of Physical Chemistry A 2023, 127 (6) , 1499-1511. https://doi.org/10.1021/acs.jpca.2c06623
    24. Lung-Yi Chen, Ting-Wei Hsu, Tsai-Chen Hsiung, Yi-Pei Li. Deep Learning-Based Increment Theory for Formation Enthalpy Predictions. The Journal of Physical Chemistry A 2022, 126 (41) , 7548-7556. https://doi.org/10.1021/acs.jpca.2c04848
    25. Bjarne Kreitz, Patrick Lott, Jongyoon Bae, Katrín Blöndal, Sofia Angeli, Zachary W. Ulissi, Felix Studt, C. Franklin Goldsmith, Olaf Deutschmann. Detailed Microkinetics for the Oxidation of Exhaust Gas Emissions through Automated Mechanism Generation. ACS Catalysis 2022, 12 (18) , 11137-11151. https://doi.org/10.1021/acscatal.2c03378
    26. Jan P. Unsleber, Stephanie A. Grimmel, Markus Reiher. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. Journal of Chemical Theory and Computation 2022, 18 (9) , 5393-5409. https://doi.org/10.1021/acs.jctc.2c00193
    27. Jinhu Liang, Fei Li, Shutong Cao, Xiaoliang Li, Ruining He, Ming-Xu Jia, Quan-De Wang. Experimental and Kinetic Modeling Study on High-Temperature Autoignition of Cyclohexene. ACS Omega 2022, 7 (32) , 28118-28128. https://doi.org/10.1021/acsomega.2c02229
    28. K. P. Shrestha, A. M. Elbaz, B. R. Giri, O. Z. Arab, M. Adil, L. Seidel, W. L. Roberts, A. Farooq, F. Mauss. Experimental and Kinetic Modeling Study of 1,3-Dioxolane Oxidation and Comparison with Dimethoxymethane. Energy & Fuels 2022, 36 (14) , 7744-7754. https://doi.org/10.1021/acs.energyfuels.2c01132
    29. Kevin A. Spiekermann, Lagnajit Pattanaik, William H. Green. Fast Predictions of Reaction Barrier Heights: Toward Coupled-Cluster Accuracy. The Journal of Physical Chemistry A 2022, 126 (25) , 3976-3986. https://doi.org/10.1021/acs.jpca.2c02614
    30. Florence H. Vermeire, Yunsie Chung, William H. Green. Predicting Solubility Limits of Organic Solutes for a Wide Range of Solvents and Temperatures. Journal of the American Chemical Society 2022, 144 (24) , 10785-10797. https://doi.org/10.1021/jacs.2c01768
    31. Lin Ji, Yue Li, Jie Wang, An Ning, Naixin Zhang, Shengyao Liang, Jiyun He, Tianyu Zhang, Zexing Qu, Jiali Gao. Community Reaction Network Reduction for Constructing a Coarse-Grained Representation of Combustion Reaction Mechanisms. Journal of Chemical Information and Modeling 2022, 62 (10) , 2352-2364. https://doi.org/10.1021/acs.jcim.2c00240
    32. Haoyang Wu, Alon Grinberg Dana, Duminda S. Ranasinghe, Frank C. Pickard, IV, Geoffrey P. F. Wood, Todd Zelesky, Gregory W. Sluggett, Jason Mustakis, William H. Green. Kinetic Modeling of API Oxidation: (2) Imipramine Stress Testing. Molecular Pharmaceutics 2022, 19 (5) , 1526-1539. https://doi.org/10.1021/acs.molpharmaceut.2c00043
    33. Yunsie Chung, Florence H. Vermeire, Haoyang Wu, Pierre J. Walker, Michael H. Abraham, William H. Green. Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free Energy, and Solvation Enthalpy. Journal of Chemical Information and Modeling 2022, 62 (3) , 433-446. https://doi.org/10.1021/acs.jcim.1c01103
    34. Florence H. Vermeire, Syam Ukkandath Aravindakshan, Agnes Jocher, Mengjie Liu, Te-Chun Chu, Ryan E. Hawtof, Ruben Van de Vijver, Matthew B. Prendergast, Kevin M. Van Geem, William H. Green. Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate. Energy & Fuels 2022, 36 (3) , 1304-1315. https://doi.org/10.1021/acs.energyfuels.1c03315
    35. A. Mark Payne, Kevin A. Spiekermann, William H. Green. Detailed Reaction Mechanism for 350–400 °C Pyrolysis of an Alkane, Aromatic, and Long-Chain Alkylaromatic Mixture. Energy & Fuels 2022, 36 (3) , 1635-1646. https://doi.org/10.1021/acs.energyfuels.1c03345
    36. Aleksandar Bojkovic, Florence H. Vermeire, Maja Kuzmanović, Hang Dao Thi, Kevin M. Van Geem. Analytics Driving Kinetics: Advanced Mass Spectrometric Characterization of Petroleum Products. Energy & Fuels 2022, 36 (1) , 6-59. https://doi.org/10.1021/acs.energyfuels.1c02355
    37. Mark Jacob Goldman, William H. Green, Jesse H. Kroll. Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NOx Level. The Journal of Physical Chemistry A 2021, 125 (48) , 10303-10314. https://doi.org/10.1021/acs.jpca.1c07203
    38. Victoria P. Barber, Jesse H. Kroll. Chemistry of Functionalized Reactive Organic Intermediates in the Earth’s Atmosphere: Impact, Challenges, and Progress. The Journal of Physical Chemistry A 2021, 125 (48) , 10264-10279. https://doi.org/10.1021/acs.jpca.1c08221
    39. David S. Farina Jr., Sai Krishna Sirumalla, Emily J. Mazeau, Richard H. West. Extensive High-Accuracy Thermochemistry and Group Additivity Values for Halocarbon Combustion Modeling. Industrial & Engineering Chemistry Research 2021, 60 (43) , 15492-15501. https://doi.org/10.1021/acs.iecr.1c03076
    40. Bjarne Kreitz, Khachik Sargsyan, Katrín Blöndal, Emily J. Mazeau, Richard H. West, Gregor D. Wehinger, Thomas Turek, C. Franklin Goldsmith. Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111). JACS Au 2021, 1 (10) , 1656-1673. https://doi.org/10.1021/jacsau.1c00276
    41. Katrín Blöndal, Khachik Sargsyan, David H. Bross, Branko Ruscic, C. Franklin Goldsmith. Adsorbate Partition Functions via Phase Space Integration: Quantifying the Effect of Translational Anharmonicity on Thermodynamic Properties. The Journal of Physical Chemistry C 2021, 125 (37) , 20249-20260. https://doi.org/10.1021/acs.jpcc.1c04009
    42. Victoria P. Barber, William H. Green, Jesse H. Kroll. Screening for New Pathways in Atmospheric Oxidation Chemistry with Automated Mechanism Generation. The Journal of Physical Chemistry A 2021, 125 (31) , 6772-6788. https://doi.org/10.1021/acs.jpca.1c04297
    43. Alon Grinberg Dana, Haoyang Wu, Duminda S. Ranasinghe, Frank C. Pickard, IV, Geoffrey P. F. Wood, Todd Zelesky, Gregory W. Sluggett, Jason Mustakis, William H. Green. Kinetic Modeling of API Oxidation: (1) The AIBN/H2O/CH3OH Radical “Soup”. Molecular Pharmaceutics 2021, 18 (8) , 3037-3049. https://doi.org/10.1021/acs.molpharmaceut.1c00261
    44. Udit Gupta, Dionisios G. Vlachos. Learning Chemistry of Complex Reaction Systems via a Python First-Principles Reaction Rule Stencil (pReSt) Generator. Journal of Chemical Information and Modeling 2021, 61 (7) , 3431-3441. https://doi.org/10.1021/acs.jcim.1c00297
    45. Emily J. Mazeau, Priyanka Satpute, Katrín Blöndal, C. Franklin Goldsmith, Richard H. West. Automated Mechanism Generation Using Linear Scaling Relationships and Sensitivity Analyses Applied to Catalytic Partial Oxidation of Methane. ACS Catalysis 2021, 11 (12) , 7114-7125. https://doi.org/10.1021/acscatal.0c04100
    46. Manik Kumer Ghosh, Sarah N. Elliott, Kieran P. Somers, Stephen J. Klippenstein, Henry J. Curran. Group additivity values for the heat of formation of C2–C8 alkanes, alkyl hydroperoxides, and their radicals. Combustion and Flame 2023, 257 , 112492. https://doi.org/10.1016/j.combustflame.2022.112492
    47. Matthew S. Johnson, Alon Grinberg Dana, William H. Green. A workflow for automatic generation and efficient refinement of individual pressure-dependent networks. Combustion and Flame 2023, 257 , 112516. https://doi.org/10.1016/j.combustflame.2022.112516
    48. Manik Kumer Ghosh, Sarah N. Elliott, Kieran P. Somers, Stephen J. Klippenstein, Henry J. Curran. Group additivity values for entropy and heat capacities of C2–C8 alkanes, alkyl hydroperoxides, and their radicals. Combustion and Flame 2023, 257 , 112706. https://doi.org/10.1016/j.combustflame.2023.112706
    49. Bjarne Kreitz, Patrick Lott, Felix Studt, Andrew J. Medford, Olaf Deutschmann, C. Franklin Goldsmith. Automatisierte Generierung von Mikrokinetiken für heterogen katalysierte Reaktionen unter Berücksichtigung korrelierter Unsicherheiten**. Angewandte Chemie 2023, 135 (39) https://doi.org/10.1002/ange.202306514
    50. Bjarne Kreitz, Patrick Lott, Felix Studt, Andrew J. Medford, Olaf Deutschmann, C. Franklin Goldsmith. Automated Generation of Microkinetics for Heterogeneously Catalyzed Reactions Considering Correlated Uncertainties**. Angewandte Chemie International Edition 2023, 62 (39) https://doi.org/10.1002/anie.202306514
    51. Mikael Kuwahara, Yu Harabuchi, Satoshi Maeda, Jun Fujima, Keisuke Takahashi. Searching chemical action and network (SCAN): an interactive chemical reaction path network platform. Digital Discovery 2023, 2 (4) , 1104-1111. https://doi.org/10.1039/D3DD00026E
    52. Moritz Bensberg, Markus Reiher. Concentration‐Flux‐Steered Mechanism Exploration with an Organocatalysis Application. Israel Journal of Chemistry 2023, 63 (7-8) https://doi.org/10.1002/ijch.202200123
    53. Chenyu Tuo, Xin Hui, Chih-Jen Sung. A hierarchical reduction method with selective targets for combustion modeling of large Hydrocarbons: A case study of 1,3,5-Trimethylbenzene skeletal mechanism. Fuel 2023, 346 , 128277. https://doi.org/10.1016/j.fuel.2023.128277
    54. Rui Xu, Jan Meisner, Alexander M. Chang, Keiran C. Thompson, Todd J. Martínez. First principles reaction discovery: from the Schrodinger equation to experimental prediction for methane pyrolysis. Chemical Science 2023, 14 (27) , 7447-7464. https://doi.org/10.1039/D3SC01202F
    55. Ajin Rajan, Anoop P. Pushkar, Balaji C. Dharmalingam, Jithin John Varghese. Iterative multiscale and multi-physics computations for operando catalyst nanostructure elucidation and kinetic modeling. iScience 2023, 26 (7) , 107029. https://doi.org/10.1016/j.isci.2023.107029
    56. Alon Grinberg Dana, Matthew S. Johnson, Joshua W. Allen, Sandeep Sharma, Sumathy Raman, Mengjie Liu, Connie W. Gao, Colin A. Grambow, Mark J. Goldman, Duminda S. Ranasinghe, Ryan J. Gillis, A. Mark Payne, Yi‐Pei Li, Xiaorui Dong, Kevin A. Spiekermann, Haoyang Wu, Enoch E. Dames, Zachary J. Buras, Nick M. Vandewiele, Nathan W. Yee, Shamel S. Merchant, Beat Buesser, Caleb A. Class, Franklin Goldsmith, Richard H. West, William H. Green. Automated reaction kinetics and network exploration (Arkane): A statistical mechanics, thermodynamics, transition state theory, and master equation software. International Journal of Chemical Kinetics 2023, 55 (6) , 300-323. https://doi.org/10.1002/kin.21637
    57. Rakhi, Vivien Günther, Fabian Mauss. Insights into dry reforming of methane over nickel catalyst using a thermodynamic model. Reaction Kinetics, Mechanisms and Catalysis 2023, 136 (3) , 1197-1210. https://doi.org/10.1007/s11144-023-02426-8
    58. Shambhawi, Jana M. Weber, Alexei A. Lapkin. Micro-kinetics analysis based on partial reaction networks to compare catalysts performances for methane dry reforming reaction. Chemical Engineering Journal 2023, 466 , 143212. https://doi.org/10.1016/j.cej.2023.143212
    59. Nicholas S. Dewey, Brandon Rotavera. Reaction mechanisms of alkyloxiranes for combustion modeling. Combustion and Flame 2023, 252 , 112753. https://doi.org/10.1016/j.combustflame.2023.112753
    60. Jinhu Liang, Chen Zhao, Ziwen Zhao, Xinhui Wang, Ming-Xu Jia, Quan-De Wang, Yang Zhang, Fengqi Zhao. An experimental and kinetic modeling study on the high-temperature ignition and pyrolysis characteristics of cyclohexylamine. Combustion and Flame 2023, 252 , 112769. https://doi.org/10.1016/j.combustflame.2023.112769
    61. Shang-Min Tsai, Elspeth K. H. Lee, Diana Powell, Peter Gao, Xi Zhang, Julianne Moses, Eric Hébrard, Olivia Venot, Vivien Parmentier, Sean Jordan, Renyu Hu, Munazza K. Alam, Lili Alderson, Natalie M. Batalha, Jacob L. Bean, Björn Benneke, Carver J. Bierson, Ryan P. Brady, Ludmila Carone, Aarynn L. Carter, Katy L. Chubb, Julie Inglis, Jérémy Leconte, Michael Line, Mercedes López-Morales, Yamila Miguel, Karan Molaverdikhani, Zafar Rustamkulov, David K. Sing, Kevin B. Stevenson, Hannah R. Wakeford, Jeehyun Yang, Keshav Aggarwal, Robin Baeyens, Saugata Barat, Miguel de Val-Borro, Tansu Daylan, Jonathan J. Fortney, Kevin France, Jayesh M. Goyal, David Grant, James Kirk, Laura Kreidberg, Amy Louca, Sarah E. Moran, Sagnick Mukherjee, Evert Nasedkin, Kazumasa Ohno, Benjamin V. Rackham, Seth Redfield, Jake Taylor, Pascal Tremblin, Channon Visscher, Nicole L. Wallack, Luis Welbanks, Allison Youngblood, Eva-Maria Ahrer, Natasha E. Batalha, Patrick Behr, Zachory K. Berta-Thompson, Jasmina Blecic, S. L. Casewell, Ian J. M. Crossfield, Nicolas Crouzet, Patricio E. Cubillos, Leen Decin, Jean-Michel Désert, Adina D. Feinstein, Neale P. Gibson, Joseph Harrington, Kevin Heng, Thomas Henning, Eliza M.-R. Kempton, Jessica Krick, Pierre-Olivier Lagage, Monika Lendl, Joshua D. Lothringer, Megan Mansfield, N. J. Mayne, Thomas Mikal-Evans, Enric Palle, Everett Schlawin, Oliver Shorttle, Peter J. Wheatley, Sergei N. Yurchenko. Photochemically produced SO2 in the atmosphere of WASP-39b. Nature 2023, 617 (7961) , 483-487. https://doi.org/10.1038/s41586-023-05902-2
    62. Solmaz Nadiri, Bo Shu, C. Franklin Goldsmith, Ravi Fernandes. Development of comprehensive kinetic models of ammonia/methanol ignition using Reaction Mechanism Generator (RMG). Combustion and Flame 2023, 251 , 112710. https://doi.org/10.1016/j.combustflame.2023.112710
    63. Jinhu Liang, Ruining He, Shashank S. Nagaraja, A. Abd El-Sabor Mohamed, Haitao Lu, Yousef M. Almarzooq, Xiaorui Dong, Olivier Mathieu, William H. Green, Eric L. Petersen, S. Mani Sarathy, Henry J. Curran. A wide range experimental and kinetic modeling study of the oxidation of 2,3-dimethyl-2-butene: Part 1. Combustion and Flame 2023, 251 , 112731. https://doi.org/10.1016/j.combustflame.2023.112731
    64. Jeehyun Yang, Murthy S. Gudipati, Bryana L. Henderson, Benjamin Fleury. High-fidelity Reaction Kinetic Modeling of Hot-Jupiter Atmospheres Incorporating Thermal and UV Photochemistry Enhanced by Metastable CO(a 3 Π). The Astrophysical Journal 2023, 947 (1) , 26. https://doi.org/10.3847/1538-4357/acbd9b
    65. Rakhi, Vivien Günther, Fabian Mauss. A detailed surface reaction mechanism to investigate oxidation of methane over nickel catalyst. PAMM 2023, 22 (1) https://doi.org/10.1002/pamm.202200055
    66. Daniel Barter, Evan Walter Clark Spotte-Smith, Nikita S. Redkar, Aniruddh Khanwale, Shyam Dwaraknath, Kristin A. Persson, Samuel M. Blau. Predictive stochastic analysis of massive filter-based electrochemical reaction networks. Digital Discovery 2023, 2 (1) , 123-137. https://doi.org/10.1039/D2DD00117A
    67. Yingtao Wu, Xiangdong Kong, Tao Yu, Zhaoming Mai, Shutong Cao, Qingwei Yu, Jinhu Liang, Shashank S. Nagaraja, S. Mani Sarathy, Zuohua Huang, Chenglong Tang. Experimental and kinetic modeling study of tetramethylethylenediamine: A promising green propellant fuel. Combustion and Flame 2023, 248 , 112584. https://doi.org/10.1016/j.combustflame.2022.112584
    68. Katharina Kohse-Höinghaus, Alison M. Ferris, Johan Zetterberg, Deanna A. Lacoste, Peter Fjodorow, Steven Wagner, Liming Cai, Charlotte Rudolph, Judit Zádor, Yuyang Li, Lena Ruwe, Nina Gaiser, Zhandong Wang, Klaus Peter Geigle. Chemistry diagnostics for monitoring. 2023, 417-501. https://doi.org/10.1016/B978-0-323-99213-8.00017-5
    69. Tairan Wang, Kiran K. Yalamanchi, Xin Bai, Shuyuan Liu, Yang Li, Bei Qu, Goutham Kukkadapu, S. Mani Sarathy. Computational thermochemistry of oxygenated polycyclic aromatic hydrocarbons and relevant radicals. Combustion and Flame 2023, 247 , 112484. https://doi.org/10.1016/j.combustflame.2022.112484
    70. David S. Farina, Sai Krishna Sirumalla, Richard H. West. Automating the generation of detailed kinetic models for halocarbon combustion with the Reaction Mechanism Generator. Proceedings of the Combustion Institute 2023, 39 (1) , 223-232. https://doi.org/10.1016/j.proci.2022.07.204
    71. Sirio Brunialti, Xiaoyuan Zhang, Tiziano Faravelli, Alessio Frassoldati, S. Mani Sarathy. Automatically generated detailed and lumped reaction mechanisms for low- and high-temperature oxidation of alkanes. Proceedings of the Combustion Institute 2023, 39 (1) , 335-344. https://doi.org/10.1016/j.proci.2022.08.084
    72. Mingjian Wen, Evan Walter Clark Spotte-Smith, Samuel M. Blau, Matthew J. McDermott, Aditi S. Krishnapriyan, Kristin A. Persson. Chemical reaction networks and opportunities for machine learning. Nature Computational Science 2023, 3 (1) , 12-24. https://doi.org/10.1038/s43588-022-00369-z
    73. Arun Pankajakshan, Solomon Gajere Bawa, Asterios Gavriilidis, Federico Galvanin. Autonomous kinetic model identification using optimal experimental design and retrospective data analysis: methane complete oxidation as a case study. Reaction Chemistry & Engineering 2023, 117 https://doi.org/10.1039/D3RE00156C
    74. Nelly Mitnik, Sharon Haba, Alon Grinberg Dana. Non‐physical Species in Chemical Kinetic Models: A Case Study of Diazenyl Hydroxy and Diazenyl Peroxide**. ChemPhysChem 2022, 23 (23) https://doi.org/10.1002/cphc.202200373
    75. Rakhi, Krishna Prasad Shrestha, Vivien Günther, Fabian Mauss. Kinetically consistent detailed surface reaction mechanism for steam reforming of methane over nickel catalyst. Reaction Kinetics, Mechanisms and Catalysis 2022, 135 (6) , 3059-3083. https://doi.org/10.1007/s11144-022-02314-7
    76. Kevin Spiekermann, Lagnajit Pattanaik, William H. Green. High accuracy barrier heights, enthalpies, and rate coefficients for chemical reactions. Scientific Data 2022, 9 (1) https://doi.org/10.1038/s41597-022-01529-6
    77. Usman Sanwal, Thai Son Hoang, Luigia Petre, Ion Petre. Scalable reaction network modeling with automatic validation of consistency in Event-B. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-05308-6
    78. Mo Yang, Qianpeng Wang, Cong Wang, Yilun Liang, Juan Wang, Shubao Song, Wang Li, Long Zhao, Jiuzhong Yang. An experimental and kinetic modeling investigation on low‐temperature oxidation chemistry of 1,3,5‐trimethylcyclohexane in a jet‐stirred reactor. Combustion and Flame 2022, 245 , 112365. https://doi.org/10.1016/j.combustflame.2022.112365
    79. Hannu T. Vuori, J. Mikko Rautiainen, Erkki T. Kolehmainen, Heikki M. Tuononen. Computational thermochemistry: extension of Benson group additivity approach to organoboron compounds and reliable predictions of their thermochemical properties. Dalton Transactions 2022, 51 (41) , 15816-15829. https://doi.org/10.1039/D2DT02659G
    80. Matthew S. Johnson, William H. Green. Examining the accuracy of methods for obtaining pressure dependent rate coefficients. Faraday Discussions 2022, 238 , 380-404. https://doi.org/10.1039/D2FD00040G
    81. William H. Green. Concluding remarks: Faraday Discussion on unimolecular reactions. Faraday Discussions 2022, 238 , 741-766. https://doi.org/10.1039/D2FD00136E
    82. Shrabanti Roy, Omid Askari. Detailed kinetics for anisole oxidation under various range of operating conditions. Fuel 2022, 325 , 124907. https://doi.org/10.1016/j.fuel.2022.124907
    83. Emil Annevelink, Rachel Kurchin, Eric Muckley, Lance Kavalsky, Vinay I. Hegde, Valentin Sulzer, Shang Zhu, Jiankun Pu, David Farina, Matthew Johnson, Dhairya Gandhi, Adarsh Dave, Hongyi Lin, Alan Edelman, Bharath Ramsundar, James Saal, Christopher Rackauckas, Viral Shah, Bryce Meredig, Venkatasubramanian Viswanathan. AutoMat: Automated materials discovery for electrochemical systems. MRS Bulletin 2022, 47 (10) , 1036-1044. https://doi.org/10.1557/s43577-022-00424-0
    84. Bjarne Kreitz, Gregor D. Wehinger, C. Franklin Goldsmith, Thomas Turek. Microkinetic Modeling of the Transient CO 2 Methanation with DFT‐Based Uncertainties in a Berty Reactor. ChemCatChem 2022, 14 (18) https://doi.org/10.1002/cctc.202200570
    85. Yu Ren, Zuwei Liao, Yao Yang, Jingyuan Sun, Binbo Jiang, Jingdai Wang, Yongrong Yang. Direct prediction of steam cracking products from naphtha bulk properties: Application of the two sub-networks ANN. Frontiers in Chemical Engineering 2022, 4 https://doi.org/10.3389/fceng.2022.983035
    86. David T. Wang, Jeffrey S. Seewald, Eoghan P. Reeves, Shuhei Ono, Sean P. Sylva. Incorporation of water-derived hydrogen into methane during artificial maturation of source rock under hydrothermal conditions. Organic Geochemistry 2022, 171 , 104468. https://doi.org/10.1016/j.orggeochem.2022.104468
    87. Luc-Sy Tran, Olivier Herbinet, Hans-Heinrich Carstensen, Frédérique Battin-Leclerc. Chemical kinetics of cyclic ethers in combustion. Progress in Energy and Combustion Science 2022, 92 , 101019. https://doi.org/10.1016/j.pecs.2022.101019
    88. Gregor D. Wehinger, Matteo Ambrosetti, Raffaele Cheula, Zhao-Bin Ding, Martin Isoz, Bjarne Kreitz, Kevin Kuhlmann, Martin Kutscherauer, Kaustav Niyogi, Jeroen Poissonnier, Romain Réocreux, Dominik Rudolf, Janika Wagner, Ronny Zimmermann, Mauro Bracconi, Hannsjörg Freund, Ulrike Krewer, Matteo Maestri. Quo vadis multiscale modeling in reaction engineering? – A perspective. Chemical Engineering Research and Design 2022, 184 , 39-58. https://doi.org/10.1016/j.cherd.2022.05.030
    89. Yang Li, Tairan Wang, Kiran K. Yalamanchi, Goutham Kukkadapu, S. Mani Sarathy. Accurate thermochemistry prediction of extensive Polycyclic aromatic hydrocarbons (PAHs) and relevant radicals. Combustion and Flame 2022, 242 , 112159. https://doi.org/10.1016/j.combustflame.2022.112159
    90. Anand Gupta, Shikhar Nigam, Vijay M. Shinde. Gas‐phase kinetic of boron carbide chemical vapor deposition using BCl 3 +CH 4 +H 2 mixture. Journal of the American Ceramic Society 2022, 105 (6) , 3885-3895. https://doi.org/10.1111/jace.18396
    91. Bjarne Kreitz, Philip Biessey, Marion Börnhorst, Verena Schallhart, Thomas Westermann. Trendbericht Technische Chemie 2022. Nachrichten aus der Chemie 2022, 70 (4) , 56-64. https://doi.org/10.1002/nadc.20224124649
    92. Gerhard R. Wittreich, Dionisios G. Vlachos. Python Group Additivity (pGrAdd) software for estimating species thermochemical properties. Computer Physics Communications 2022, 273 , 108277. https://doi.org/10.1016/j.cpc.2021.108277
    93. Bhavin Siritanaratkul. Generalizability and limitations of machine learning for yield prediction of oxidative coupling of methane. Digital Chemical Engineering 2022, 2 , 100013. https://doi.org/10.1016/j.dche.2022.100013
    94. Gregor D. Wehinger, Bjarne Kreitz, C. Franklin Goldsmith. Non-Idealities in Lab-Scale Kinetic Testing: A Theoretical Study of a Modular Temkin Reactor. Catalysts 2022, 12 (3) , 349. https://doi.org/10.3390/catal12030349
    95. Mingjian Wen, Samuel M. Blau, Xiaowei Xie, Shyam Dwaraknath, Kristin A. Persson. Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining. Chemical Science 2022, 13 (5) , 1446-1458. https://doi.org/10.1039/D1SC06515G
    96. Miguel Steiner, Markus Reiher. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis 2022, 65 (1-4) , 6-39. https://doi.org/10.1007/s11244-021-01543-9
    97. Selin Bac, Zhenzhuo Lan, Shaama Mallikarjun Sharada. Transition Structures, Reaction Paths, and Kinetics: Methods and Applications in Catalysis. 2022https://doi.org/10.1016/B978-0-12-821978-2.00006-4
    98. Ghobad Bagheri, Matteo Pelucchi. Chemical kinetics of flameless combustion. 2022, 377-420. https://doi.org/10.1016/B978-0-323-85244-9.00015-0
    99. Tomoki SHIONOYA, Iori SHIMADA. Data-driven Reaction Pathway Estimation with Efficient Use of Small Number of Data. Journal of Computer Chemistry, Japan 2022, 21 (2) , 36-38. https://doi.org/10.2477/jccj.2022-0024
    100. Siddhant Sharma, Aayush Arya, Romulo Cruz, Henderson Cleaves II. Automated Exploration of Prebiotic Chemical Reaction Space: Progress and Perspectives. Life 2021, 11 (11) , 1140. https://doi.org/10.3390/life11111140
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect