ACS Publications. Most Trusted. Most Cited. Most Read
Reaction Mechanism Generator v3.0: Advances in Automatic Mechanism Generation
My Activity

Figure 1Loading Img
    Chemical Information

    Reaction Mechanism Generator v3.0: Advances in Automatic Mechanism Generation
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2021, 61, 6, 2686–2696
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jcim.0c01480
    Published May 28, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters. Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. Most notably, RMG can now generate heterogeneous catalysis models in addition to the previously available gas- and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release includes parallelization for faster model generation and a new molecule isomorphism approach to improve computational performance. RMG has also been updated to use Python 3, ensuring compatibility with the latest cheminformatics and machine learning packages. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.0c01480.

    • Names and reaction recipes of all reaction families which are included in RMG 3.0 and available for use for model generation (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 184 publications.

    1. Michael Woulfe, Brett M. Savoie. Chemical Reaction Networks from Scratch with Reaction Prediction and Kinetics-Guided Exploration. Journal of Chemical Theory and Computation 2025, 21 (3) , 1276-1291. https://doi.org/10.1021/acs.jctc.4c01401
    2. Han-Chung Chang, Ming-Hsuan Tsai, Yi-Pei Li. Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks. Journal of Chemical Information and Modeling 2025, 65 (3) , 1367-1377. https://doi.org/10.1021/acs.jcim.4c02319
    3. Matthew S. Johnson, David H. Bross, Judit Zádor. Resolving the Coverage Dependence of Surface Reaction Kinetics with Machine Learning and Automated Quantum Chemistry Workflows. The Journal of Physical Chemistry C 2025, Article ASAP.
    4. Racha Varun Kumar, Mohnin Gopinath M, Balivada Kusum Kumar, Himanshu Goyal. Machine Learning Model for CFD Simulations of Fluidized Bed Reactors. Industrial & Engineering Chemistry Research 2025, 64 (2) , 999-1010. https://doi.org/10.1021/acs.iecr.4c02885
    5. Jan A. Meissner, Jan Meisner. Acceleration of Diffusion in Ab Initio Nanoreactor Molecular Dynamics and Application to Hydrogen Sulfide Oxidation. Journal of Chemical Theory and Computation 2025, 21 (1) , 218-229. https://doi.org/10.1021/acs.jctc.4c00826
    6. Jiawei Bai, Xingchen Liu, Tingyu Lei, Yuwei Zhou, Wenping Guo, Dennis R. Salahub, Xiaodong Wen. Automated Exploration of Heterogeneous Catalysis with a Gas–Solid Nanoreactor. ACS Catalysis 2024, 14 (24) , 18570-18578. https://doi.org/10.1021/acscatal.4c06026
    7. Alon Grinberg Dana, Kfir Kaplan, Michal Keslin, Chuangchuang Cao, William H. Green. Thermodynamic and Chemical Kinetic Parameters in Ammonia Oxidation: A Comparison of Recent Studies and Parameter Recommendations. Energy & Fuels 2024, 38 (22) , 22482-22500. https://doi.org/10.1021/acs.energyfuels.4c03352
    8. Nimal Naser, Samah Y. Mohamed, Gina M. Fioroni, Seonah Kim, Robert L. McCormick. Chemical Kinetics Investigations of Dibutyl Ether Isomers Oxidation in a Laminar Flow Reactor. Energy & Fuels 2024, 38 (22) , 22501-22515. https://doi.org/10.1021/acs.energyfuels.4c03432
    9. Yan Liu, Yiming Mo, Youwei Cheng. Uncertainty Qualification for Deep Learning-Based Elementary Reaction Property Prediction. Journal of Chemical Information and Modeling 2024, 64 (21) , 8131-8141. https://doi.org/10.1021/acs.jcim.4c01358
    10. Charlotte H. Müller, Miguel Steiner, Jan P. Unsleber, Thomas Weymuth, Moritz Bensberg, Katja-Sophia Csizi, Maximilian Mörchen, Paul L. Türtscher, Markus Reiher. Heron: Visualizing and Controlling Chemical Reaction Explorations and Networks. The Journal of Physical Chemistry A 2024, 128 (41) , 9028-9044. https://doi.org/10.1021/acs.jpca.4c03936
    11. Christopher J. Blais, Chao Xu, Richard H. West. Uncertainty Quantification of Linear Scaling, Machine Learning, and Density Functional Theory Derived Thermodynamics for the Catalytic Partial Oxidation of Methane on Rhodium. The Journal of Physical Chemistry C 2024, 128 (41) , 17418-17433. https://doi.org/10.1021/acs.jpcc.4c05107
    12. Kevin A. Spiekermann, Xiaorui Dong, Angiras Menon, William H. Green, Mark Pfeifle, Frederik Sandfort, Oliver Welz, Maike Bergeler. Accurately Predicting Barrier Heights for Radical Reactions in Solution Using Deep Graph Networks. The Journal of Physical Chemistry A 2024, 128 (39) , 8384-8403. https://doi.org/10.1021/acs.jpca.4c04121
    13. Qiang Xu, Jinyang Zhang, Bingzhi Liu, Hong Wang, Guangxian Xu, Jiao Gao, Zhandong Wang, Jiwen Guan. Probing the Reaction of Propargyl Radical with Molecular Oxygen by Synchrotron VUV Photoionization Mass Spectrometry. The Journal of Physical Chemistry A 2024, 128 (34) , 7105-7113. https://doi.org/10.1021/acs.jpca.4c03294
    14. Morteza Hosseinpour, Mohammad Fakhroleslam, Richard Djimasbe, Ameen A. Al-Muntaser, Muneer A. Suwaid, Ismail Khelil, Mikhail A. Varfolomeev, Danis K. Nurgaliev. Hot Compressed Water for Conversion and Upgrading of Unconventional Oil Resources: State of the Art, Perspectives, and Future Directions. Energy & Fuels 2024, 38 (14) , 12303-12336. https://doi.org/10.1021/acs.energyfuels.4c00099
    15. Moritz Bensberg, Markus Reiher. Uncertainty-Aware First-Principles Exploration of Chemical Reaction Networks. The Journal of Physical Chemistry A 2024, 128 (22) , 4532-4547. https://doi.org/10.1021/acs.jpca.3c08386
    16. Chao Xu, Emily J. Mazeau, Richard H. West. Implementing the Blowers–Masel Approximation to Scale Activation Energy Based on Reaction Enthalpy in Mean-Field Microkinetic Modeling for Catalytic Methane Partial Oxidation. ACS Catalysis 2024, 14 (10) , 8013-8029. https://doi.org/10.1021/acscatal.3c05436
    17. Matthew S. Johnson, Joy N. Mueller, Craig Daniels, Habib N. Najm, Judit Zádor. Diffusion-Limited Kinetics in Reactive Systems. The Journal of Physical Chemistry A 2024, 128 (18) , 3685-3702. https://doi.org/10.1021/acs.jpca.4c00727
    18. Hrishikesh Ram, C. Murphy DePompa, Phillip R. Westmoreland. Thermochemistry of Gas-Phase Thermal Oxidation of C2 to C8 Perfluorinated Sulfonic Acids with Extrapolation to C16. The Journal of Physical Chemistry A 2024, 128 (17) , 3387-3395. https://doi.org/10.1021/acs.jpca.4c01208
    19. Yu Ren, Yaoliang Mao, Yudong Shen, Zuwei Liao, Yao Yang, Jingyuan Sun, Binbo Jiang, Jingdai Wang, Yongrong Yang. Low-Temperature-Initiated Cracking of Hydrocarbons to Produce Olefins: Simulation and Comparison of Different Initiators. Industrial & Engineering Chemistry Research 2024, 63 (16) , 6857-6867. https://doi.org/10.1021/acs.iecr.3c04006
    20. Yuheng Ding, Bo Qiang, Qixuan Chen, Yiqiao Liu, Liangren Zhang, Zhenming Liu. Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective. Journal of Chemical Information and Modeling 2024, 64 (8) , 2955-2970. https://doi.org/10.1021/acs.jcim.4c00004
    21. Hui Guo, Hong Zhu, Gao-Yong Liu, Zhao-Xu Chen. General Reaction Network Exploration Scheme Based on Graph Theory Representation and Depth First Search Applied to CO2 Hydrogenation on Pd2Cu Catalyst. ACS Catalysis 2024, 14 (8) , 5720-5734. https://doi.org/10.1021/acscatal.4c00067
    22. Yu Harabuchi, Tomohiko Yokoyama, Wataru Matsuoka, Taihei Oki, Satoru Iwata, Satoshi Maeda. Differentiating the Yield of Chemical Reactions Using Parameters in First-Order Kinetic Equations to Identify Elementary Steps That Control the Reactivity from Complicated Reaction Path Networks. The Journal of Physical Chemistry A 2024, 128 (14) , 2883-2890. https://doi.org/10.1021/acs.jpca.4c00204
    23. Hao-Wei Pang, Xiaorui Dong, Matthew S. Johnson, William H. Green. Subgraph Isomorphic Decision Tree to Predict Radical Thermochemistry with Bounded Uncertainty Estimation. The Journal of Physical Chemistry A 2024, 128 (14) , 2891-2907. https://doi.org/10.1021/acs.jpca.4c00569
    24. Dongyu Xu, Xiaojie Zhang, Zhengyu Chen, Linzhou Zhang. Molecular-Level Kinetic Model for Light Hydrocarbon Steam Cracking Based on the SU-BEM Framework. ACS Omega 2024, 9 (13) , 14849-14859. https://doi.org/10.1021/acsomega.3c07749
    25. Rubik Asatryan, Jason Hudzik, Mark Swihart. Intramolecular Catalytic Hydrogen Atom Transfer (CHAT). The Journal of Physical Chemistry A 2024, 128 (11) , 2169-2190. https://doi.org/10.1021/acs.jpca.3c06794
    26. Z. P. Zhang, S. H. Wang, Y. L. Shang, J. H. Liu, S. N. Luo. Theoretical Study on Ethylamine Dissociation Reactions Using VRC-VTST and SS-QRRK Methods. The Journal of Physical Chemistry A 2024, 128 (11) , 2191-2199. https://doi.org/10.1021/acs.jpca.3c08373
    27. Hrishikesh Ram, Thomas P. Sadej, C. Claire Murphy, Tim J. Mallo, Phillip R. Westmoreland. Thermochemistry of Species in Gas-Phase Thermal Oxidation of C2 to C8 Perfluorinated Carboxylic Acids. The Journal of Physical Chemistry A 2024, 128 (7) , 1313-1326. https://doi.org/10.1021/acs.jpca.3c06937
    28. Hao-Wei Pang, Xiaorui Dong, William H. Green. Oxygen Chemistry in Polymer Fouling: Insights from Multiphase Detailed Kinetic Modeling. Industrial & Engineering Chemistry Research 2024, 63 (2) , 1013-1028. https://doi.org/10.1021/acs.iecr.3c03730
    29. Venus Amiri, Rubik Asatryan, Mark Swihart. Automated Generation of a Compact Chemical Kinetic Model for n-Pentane Combustion. ACS Omega 2023, 8 (51) , 49098-49114. https://doi.org/10.1021/acsomega.3c07079
    30. Yutai Zhang, Chao Xu, Zhenggang Lan. Automated Exploration of Reaction Networks and Mechanisms Based on Metadynamics Nanoreactor Simulations. Journal of Chemical Theory and Computation 2023, 19 (23) , 8718-8731. https://doi.org/10.1021/acs.jctc.3c00752
    31. Alexander M. Chang, Jan Meisner, Rui Xu, Todd J. Martínez. Efficient Acceleration of Reaction Discovery in the Ab Initio Nanoreactor: Phenyl Radical Oxidation Chemistry. The Journal of Physical Chemistry A 2023, 127 (45) , 9580-9589. https://doi.org/10.1021/acs.jpca.3c05484
    32. Hao-Wei Pang, Michael Forsuelo, Xiaorui Dong, Ryan E. Hawtof, Duminda S. Ranasinghe, William H. Green. Detailed Multiphase Chemical Kinetic Model for Polymer Fouling in a Distillation Column. Industrial & Engineering Chemistry Research 2023, 62 (36) , 14266-14285. https://doi.org/10.1021/acs.iecr.3c01461
    33. Matthew S. Johnson, Maciej Gierada, Eric D. Hermes, David H. Bross, Khachik Sargsyan, Habib N. Najm, Judit Zádor. Pynta─An Automated Workflow for Calculation of Surface and Gas–Surface Kinetics. Journal of Chemical Information and Modeling 2023, 63 (16) , 5153-5168. https://doi.org/10.1021/acs.jcim.3c00948
    34. Sayandeep Biswas, Yunsie Chung, Josephine Ramirez, Haoyang Wu, William H. Green. Predicting Critical Properties and Acentric Factors of Fluids Using Multitask Machine Learning. Journal of Chemical Information and Modeling 2023, 63 (15) , 4574-4588. https://doi.org/10.1021/acs.jcim.3c00546
    35. Bjarne Kreitz, Kento Abeywardane, C. Franklin Goldsmith. Linking Experimental and Ab Initio Thermochemistry of Adsorbates with a Generalized Thermochemical Hierarchy. Journal of Chemical Theory and Computation 2023, 19 (13) , 4149-4162. https://doi.org/10.1021/acs.jctc.3c00112
    36. Rinu Chacko, Kevin Keller, Steffen Tischer, Akash B. Shirsath, Patrick Lott, Sofia Angeli, Olaf Deutschmann. Automating the Optimization of Catalytic Reaction Mechanism Parameters Using Basin-Hopping: A Proof of Concept. The Journal of Physical Chemistry C 2023, 127 (16) , 7628-7639. https://doi.org/10.1021/acs.jpcc.2c08179
    37. Katharina Kohse-Höinghaus. Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews 2023, 123 (8) , 5139-5219. https://doi.org/10.1021/acs.chemrev.2c00828
    38. Xiaorui Dong, Gianmaria Pio, Farhan Arafin, Andrew Laich, Jessica Baker, Erik Ninnemann, Subith S. Vasu, William H. Green. Butyl Acetate Pyrolysis and Combustion Chemistry: Mechanism Generation and Shock Tube Experiments. The Journal of Physical Chemistry A 2023, 127 (14) , 3231-3245. https://doi.org/10.1021/acs.jpca.2c07545
    39. Mohammadamin Tavakoli, Yin Ting T. Chiu, Pierre Baldi, Ann Marie Carlton, David Van Vranken. RMechDB: A Public Database of Elementary Radical Reaction Steps. Journal of Chemical Information and Modeling 2023, 63 (4) , 1114-1123. https://doi.org/10.1021/acs.jcim.2c01359
    40. Siddha Sharma, Kento Abeywardane, C. Franklin Goldsmith. Theory-Based Mechanism for Fluoromethane Combustion I: Thermochemistry and Abstraction Reactions. The Journal of Physical Chemistry A 2023, 127 (6) , 1499-1511. https://doi.org/10.1021/acs.jpca.2c06623
    41. Lung-Yi Chen, Ting-Wei Hsu, Tsai-Chen Hsiung, Yi-Pei Li. Deep Learning-Based Increment Theory for Formation Enthalpy Predictions. The Journal of Physical Chemistry A 2022, 126 (41) , 7548-7556. https://doi.org/10.1021/acs.jpca.2c04848
    42. Bjarne Kreitz, Patrick Lott, Jongyoon Bae, Katrín Blöndal, Sofia Angeli, Zachary W. Ulissi, Felix Studt, C. Franklin Goldsmith, Olaf Deutschmann. Detailed Microkinetics for the Oxidation of Exhaust Gas Emissions through Automated Mechanism Generation. ACS Catalysis 2022, 12 (18) , 11137-11151. https://doi.org/10.1021/acscatal.2c03378
    43. Jan P. Unsleber, Stephanie A. Grimmel, Markus Reiher. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. Journal of Chemical Theory and Computation 2022, 18 (9) , 5393-5409. https://doi.org/10.1021/acs.jctc.2c00193
    44. Jinhu Liang, Fei Li, Shutong Cao, Xiaoliang Li, Ruining He, Ming-Xu Jia, Quan-De Wang. Experimental and Kinetic Modeling Study on High-Temperature Autoignition of Cyclohexene. ACS Omega 2022, 7 (32) , 28118-28128. https://doi.org/10.1021/acsomega.2c02229
    45. K. P. Shrestha, A. M. Elbaz, B. R. Giri, O. Z. Arab, M. Adil, L. Seidel, W. L. Roberts, A. Farooq, F. Mauss. Experimental and Kinetic Modeling Study of 1,3-Dioxolane Oxidation and Comparison with Dimethoxymethane. Energy & Fuels 2022, 36 (14) , 7744-7754. https://doi.org/10.1021/acs.energyfuels.2c01132
    46. Kevin A. Spiekermann, Lagnajit Pattanaik, William H. Green. Fast Predictions of Reaction Barrier Heights: Toward Coupled-Cluster Accuracy. The Journal of Physical Chemistry A 2022, 126 (25) , 3976-3986. https://doi.org/10.1021/acs.jpca.2c02614
    47. Florence H. Vermeire, Yunsie Chung, William H. Green. Predicting Solubility Limits of Organic Solutes for a Wide Range of Solvents and Temperatures. Journal of the American Chemical Society 2022, 144 (24) , 10785-10797. https://doi.org/10.1021/jacs.2c01768
    48. Lin Ji, Yue Li, Jie Wang, An Ning, Naixin Zhang, Shengyao Liang, Jiyun He, Tianyu Zhang, Zexing Qu, Jiali Gao. Community Reaction Network Reduction for Constructing a Coarse-Grained Representation of Combustion Reaction Mechanisms. Journal of Chemical Information and Modeling 2022, 62 (10) , 2352-2364. https://doi.org/10.1021/acs.jcim.2c00240
    49. Haoyang Wu, Alon Grinberg Dana, Duminda S. Ranasinghe, Frank C. Pickard, IV, Geoffrey P. F. Wood, Todd Zelesky, Gregory W. Sluggett, Jason Mustakis, William H. Green. Kinetic Modeling of API Oxidation: (2) Imipramine Stress Testing. Molecular Pharmaceutics 2022, 19 (5) , 1526-1539. https://doi.org/10.1021/acs.molpharmaceut.2c00043
    50. Yunsie Chung, Florence H. Vermeire, Haoyang Wu, Pierre J. Walker, Michael H. Abraham, William H. Green. Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free Energy, and Solvation Enthalpy. Journal of Chemical Information and Modeling 2022, 62 (3) , 433-446. https://doi.org/10.1021/acs.jcim.1c01103
    51. Florence H. Vermeire, Syam Ukkandath Aravindakshan, Agnes Jocher, Mengjie Liu, Te-Chun Chu, Ryan E. Hawtof, Ruben Van de Vijver, Matthew B. Prendergast, Kevin M. Van Geem, William H. Green. Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate. Energy & Fuels 2022, 36 (3) , 1304-1315. https://doi.org/10.1021/acs.energyfuels.1c03315
    52. A. Mark Payne, Kevin A. Spiekermann, William H. Green. Detailed Reaction Mechanism for 350–400 °C Pyrolysis of an Alkane, Aromatic, and Long-Chain Alkylaromatic Mixture. Energy & Fuels 2022, 36 (3) , 1635-1646. https://doi.org/10.1021/acs.energyfuels.1c03345
    53. Aleksandar Bojkovic, Florence H. Vermeire, Maja Kuzmanović, Hang Dao Thi, Kevin M. Van Geem. Analytics Driving Kinetics: Advanced Mass Spectrometric Characterization of Petroleum Products. Energy & Fuels 2022, 36 (1) , 6-59. https://doi.org/10.1021/acs.energyfuels.1c02355
    54. Mark Jacob Goldman, William H. Green, Jesse H. Kroll. Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NOx Level. The Journal of Physical Chemistry A 2021, 125 (48) , 10303-10314. https://doi.org/10.1021/acs.jpca.1c07203
    55. Victoria P. Barber, Jesse H. Kroll. Chemistry of Functionalized Reactive Organic Intermediates in the Earth’s Atmosphere: Impact, Challenges, and Progress. The Journal of Physical Chemistry A 2021, 125 (48) , 10264-10279. https://doi.org/10.1021/acs.jpca.1c08221
    56. David S. Farina Jr., Sai Krishna Sirumalla, Emily J. Mazeau, Richard H. West. Extensive High-Accuracy Thermochemistry and Group Additivity Values for Halocarbon Combustion Modeling. Industrial & Engineering Chemistry Research 2021, 60 (43) , 15492-15501. https://doi.org/10.1021/acs.iecr.1c03076
    57. Bjarne Kreitz, Khachik Sargsyan, Katrín Blöndal, Emily J. Mazeau, Richard H. West, Gregor D. Wehinger, Thomas Turek, C. Franklin Goldsmith. Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111). JACS Au 2021, 1 (10) , 1656-1673. https://doi.org/10.1021/jacsau.1c00276
    58. Katrín Blöndal, Khachik Sargsyan, David H. Bross, Branko Ruscic, C. Franklin Goldsmith. Adsorbate Partition Functions via Phase Space Integration: Quantifying the Effect of Translational Anharmonicity on Thermodynamic Properties. The Journal of Physical Chemistry C 2021, 125 (37) , 20249-20260. https://doi.org/10.1021/acs.jpcc.1c04009
    59. Victoria P. Barber, William H. Green, Jesse H. Kroll. Screening for New Pathways in Atmospheric Oxidation Chemistry with Automated Mechanism Generation. The Journal of Physical Chemistry A 2021, 125 (31) , 6772-6788. https://doi.org/10.1021/acs.jpca.1c04297
    60. Alon Grinberg Dana, Haoyang Wu, Duminda S. Ranasinghe, Frank C. Pickard, IV, Geoffrey P. F. Wood, Todd Zelesky, Gregory W. Sluggett, Jason Mustakis, William H. Green. Kinetic Modeling of API Oxidation: (1) The AIBN/H2O/CH3OH Radical “Soup”. Molecular Pharmaceutics 2021, 18 (8) , 3037-3049. https://doi.org/10.1021/acs.molpharmaceut.1c00261
    61. Udit Gupta, Dionisios G. Vlachos. Learning Chemistry of Complex Reaction Systems via a Python First-Principles Reaction Rule Stencil (pReSt) Generator. Journal of Chemical Information and Modeling 2021, 61 (7) , 3431-3441. https://doi.org/10.1021/acs.jcim.1c00297
    62. Emily J. Mazeau, Priyanka Satpute, Katrín Blöndal, C. Franklin Goldsmith, Richard H. West. Automated Mechanism Generation Using Linear Scaling Relationships and Sensitivity Analyses Applied to Catalytic Partial Oxidation of Methane. ACS Catalysis 2021, 11 (12) , 7114-7125. https://doi.org/10.1021/acscatal.0c04100
    63. Siyu Chen, Nan Kang, Quan Zhu, Zerong Li. Kinetic study of concerted HO2 elimination reactions of α,β-hydroxyalkylperoxy radicals in alcohols and alkenes combustion mechanism. Computational and Theoretical Chemistry 2025, 1246 , 115123. https://doi.org/10.1016/j.comptc.2025.115123
    64. Zhi-Min Wang, Du Wang, Ling-Nan Wu, Cheng-Yin Ye, Zi-Qiang Zhu, Zhen-Yu Tian. Theoretical and kinetic modeling investigation of N-methylpyrrolidone. Journal of Analytical and Applied Pyrolysis 2025, 186 , 106943. https://doi.org/10.1016/j.jaap.2024.106943
    65. Tobias Hülser, Bjarne Kreitz, C. Franklin Goldsmith, Sebastian Matera. Multilevel on-the-fly sparse grids for coupling coarse-grained and high fidelity models in heterogeneous catalysis. Computers & Chemical Engineering 2025, 194 , 108922. https://doi.org/10.1016/j.compchemeng.2024.108922
    66. Yannick Ureel, Lowie Tomme, Maarten K. Sabbe, Kevin M. Van Geem. Genesys-Cat: automatic microkinetic model generation for heterogeneous catalysis with improved Bayesian optimization. Catalysis Science & Technology 2025, 15 (3) , 750-764. https://doi.org/10.1039/D4CY01344A
    67. Matthew S. Johnson, Hao‐Wei Pang, Mengjie Liu, William H. Green. Species selection for automatic chemical kinetic mechanism generation. International Journal of Chemical Kinetics 2025, 57 (2) , 93-107. https://doi.org/10.1002/kin.21762
    68. Matthew S. Johnson, Charles J. McGill, William H. Green. Transitory sensitivity in automatic chemical kinetic mechanism analysis. International Journal of Chemical Kinetics 2025, 57 (2) , 125-138. https://doi.org/10.1002/kin.21766
    69. Timothée Fages, Roméo Veillet, René Fournet, Baptiste Sirjean, Pierre-Alexandre Glaude. An automatic merging method for large kinetic mechanisms: Application to a surrogate fuel combustion model. Chemical Engineering Science 2025, 302 , 120870. https://doi.org/10.1016/j.ces.2024.120870
    70. Weiwei Qian, Xiuyong Shi, Song Li, Shijin Shuai, Jiaojiao Kang. Effect of oxygen contents on morphology, nanostructure, and its formation of soot in laminar coflow ethylene-ammonia diffusion flames. Fuel 2025, 382 , 133740. https://doi.org/10.1016/j.fuel.2024.133740
    71. Rubik Asatryan, Jason Hudzik, Venus Amiri, Mark T. Swihart. Internally Catalyzed Hydrogen Atom Transfer (I-CHAT)—A New Class of Reactions in Combustion Chemistry. Molecules 2025, 30 (3) , 524. https://doi.org/10.3390/molecules30030524
    72. Shiyi Tang, Weijun Li, Zhou Tian, Weizhong Zheng, Zhaoyang Duan, Wenli Du, Feng Qian. Optimal kinetic modeling based on automatic reaction network generation for single and mixed light hydrocarbon steam cracking. Chemical Engineering Science 2025, 305 , 121096. https://doi.org/10.1016/j.ces.2024.121096
    73. Chongxin Xiang, Jiankang Cao, Rui Hu, Kaixuan Li, Tingyu Meng, Yutao Xia, Qunbo Meng, Kaiwen Liu, Lian Liu, Xuetao Zhu. Oleandrin inhibits osteoclast differentiation by targeting the LRP4/MAPK/NF-κB signalling pathway to treat osteoporosis. International Immunopharmacology 2025, 148 , 114073. https://doi.org/10.1016/j.intimp.2025.114073
    74. Michal Keslin, Kfir Kaplan, Alon Grinberg Dana. Pressure-dependent kinetic analysis of the N 2 H 3 potential energy surface. Physical Chemistry Chemical Physics 2025, 27 (5) , 2680-2691. https://doi.org/10.1039/D4CP03837A
    75. Quan-De Wang, Bi-Yao Wang, Qian Yao, Jinhu Liang, Ping Zeng, Jian-Gang Liu, Zu-Xi Xia. An experimental and kinetic modeling study on the ignition property of an alternative gas to liquid jet fuel. Combustion and Flame 2025, 271 , 113805. https://doi.org/10.1016/j.combustflame.2024.113805
    76. Zhi-Min Wang, Du Wang, Ahmed E. Mansy, Zhen-Yu Tian. Pyrolysis and kinetic modeling investigation of 1-methoxy-2-propanol. Combustion and Flame 2025, 271 , 113804. https://doi.org/10.1016/j.combustflame.2024.113804
    77. Matthew S. Johnson, Hao‐Wei Pang, Allen Mark Payne, William H. Green. ReactionMechanismSimulator.jl: A modern approach to chemical kinetic mechanism simulation and analysis. International Journal of Chemical Kinetics 2024, 56 (12) , 732-747. https://doi.org/10.1002/kin.21753
    78. Jinzeng Pan, Jinyu Tan, Shiling Wei, Shuyao Chen, Haikun Lang, Fangping Bin, Zhandong Wang, Lixia Wei. Experimental and kinetic model studies of 2,3-dimethylhexane pyrolysis at atmospheric pressure. Combustion and Flame 2024, 270 , 113781. https://doi.org/10.1016/j.combustflame.2024.113781
    79. Miguel Steiner, Markus Reiher. A human-machine interface for automatic exploration of chemical reaction networks. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47997-9
    80. Katja-Sophia Csizi, Miguel Steiner, Markus Reiher. Nanoscale chemical reaction exploration with a quantum magnifying glass. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-49594-2
    81. Quan-De Wang, Ming-Xu Jia, Da Yao, Yujia Feng, Jinchao Zhang, Jinhu Liang, Fei Huang, Xue-Feng Ren, Guo-Jun Kang. Ab initio chemical kinetics and shock-tube experimental study on nitrocyclohexane pyrolysis and combustion. Combustion and Flame 2024, 269 , 113693. https://doi.org/10.1016/j.combustflame.2024.113693
    82. Adrian Nolte, Malte Döntgen, Karl Alexander Heufer. Kinetic insights into double-branched acyclic ether: Methyl tert-butyl ether and 2,2-dimethoxypropane. Combustion and Flame 2024, 269 , 113702. https://doi.org/10.1016/j.combustflame.2024.113702
    83. A. Locaspi, A. Frassoldati, T. Faravelli. Reduced-order condensed-phase kinetic models for polyethylene, polypropylene and polystyrene thermochemical recycling. Chemical Engineering Journal 2024, 500 , 156949. https://doi.org/10.1016/j.cej.2024.156949
    84. Jan Spale, Andreas J. Hoess, Ian H. Bell, Davide Ziviani. Exploratory study on low-GWP working fluid mixtures for industrial high temperature heat pump with 200 °C supply temperature. Energy 2024, 308 , 132677. https://doi.org/10.1016/j.energy.2024.132677
    85. Bakr Hoblos, Zeynep Serinyel, Guillaume Dayma, Philippe Dagaut. A chemical kinetic study of tetrahydropyran high-pressure oxidation in a jet-stirred reactor. Combustion and Flame 2024, 268 , 113642. https://doi.org/10.1016/j.combustflame.2024.113642
    86. Linyi Chen, Yufeng Chen, Yao Wang, Wenhan Zhang, Wenwen Xia, Li Yao. Theoretical study of the anharmonic effect on the main reactions in the combustion mechanism of methanol. Chemical Physics Letters 2024, 852 , 141494. https://doi.org/10.1016/j.cplett.2024.141494
    87. Adnan Tolga Kurumus, Atmadeep Bhattacharya, Parsa Tamadonfar, Ossi Kaario. A skeletal mechanism for n-dodecane/ammonia combustion and an open-source reaction scheme optimization tool. Fuel 2024, 373 , 132168. https://doi.org/10.1016/j.fuel.2024.132168
    88. Pengbo Zhang, Shilong Li, Yecheng Song, Wei Shen, Dongping Chen, Kun Wang. An experimental and modeling study on pyrolysis reaction kinetics of oxygenated biofuel blended with aviation kerosene RP-3. Journal of Analytical and Applied Pyrolysis 2024, 183 , 106711. https://doi.org/10.1016/j.jaap.2024.106711
    89. Felix Schmalz, Wassja A. Kopp, Eirini Goudeli, Kai Leonhard. Reaction path identification and validation from molecular dynamics simulations of hydrocarbon pyrolysis. International Journal of Chemical Kinetics 2024, 56 (9) , 501-512. https://doi.org/10.1002/kin.21719
    90. Mark C. Barbet, Joe Lee, Carly E. LaGrotta, Rodger E. Cornell, Michael P. Burke. An experimental platform for semi-autonomous kinetic model refinement combining optimal experimental design, computer-controlled experiments, and optimization leads to new understanding of N 2 O + O. Combustion and Flame 2024, 267 , 113562. https://doi.org/10.1016/j.combustflame.2024.113562
    91. Dhishithaa Kumarandurai, Bradley Lin, Gabriel Perez, Adam Witterstaetter, William E. Acree. Abraham solvation parameter model: experiment-based solute descriptors for (2-nitrophenyl)acetic acid. Physics and Chemistry of Liquids 2024, , 1-11. https://doi.org/10.1080/00319104.2024.2397362
    92. Egor A. Nosach, Timofey P. Rozov, Arseniy A. Otlyotov, Yury Minenkov. Efficient Reaction‐Based Approaches for Gas‐Phase Enthalpy of Formation Prediction and their Application to Large (C 32 ) Polycyclic Aromatic Hydrocarbons. Advanced Theory and Simulations 2024, 7 (9) https://doi.org/10.1002/adts.202400319
    93. Zhi-Min Wang, Xu Zhang, Jie-Ming Lei, Kai-Ru Jin, Du-Wang, Zhen-Yu Tian. Revisit the PAH and soot formation in high-temperature pyrolysis of methane. Journal of Analytical and Applied Pyrolysis 2024, 182 , 106668. https://doi.org/10.1016/j.jaap.2024.106668
    94. Jiyao Pu, Haoran Duan, Junzhe Zhao, Yang Long. Rules for Expectation: Learning to Generate Rules via Social Environment Modeling. IEEE Transactions on Circuits and Systems for Video Technology 2024, 34 (8) , 6874-6887. https://doi.org/10.1109/TCSVT.2023.3334526
    95. Jeehyun Yang, Renyu Hu. Chemical Mapping of Temperate Sub-Neptune Atmospheres: Constraining the Deep Interior H 2 O/H 2 Ratio from the Atmospheric CO 2 /CH 4 Ratio. The Astrophysical Journal Letters 2024, 971 (2) , L48. https://doi.org/10.3847/2041-8213/ad6b25
    96. Zhi-Hao Zheng, Kai-Ru Jin, Du Wang, Wang Li, Xu-Peng Yu, Teng-Long Lv, Xiao-Dong Wang, Long Zhao, Jiu-Zhong Yang, Zhen-Yu Tian. Experimental and kinetic modeling study of iso-propylamine oxidation with SVUV-time of flight mass spectrometry. Combustion and Flame 2024, 265 , 113483. https://doi.org/10.1016/j.combustflame.2024.113483
    97. William H. Green. Perspective on automated predictive kinetics using estimates derived from large datasets. International Journal of Chemical Kinetics 2024, 35 https://doi.org/10.1002/kin.21744
    98. Matthew S. Johnson, William H. Green. A machine learning based approach to reaction rate estimation. Reaction Chemistry & Engineering 2024, 9 (6) , 1364-1380. https://doi.org/10.1039/D3RE00684K
    99. Yijun Heng, Gavin Kenny, Pengzhi Wang, Shijun Dong, Manik Kumer Ghosh, Gesheng Li, Junjie Liang, Henry J. Curran. An experimental and chemical kinetic modeling study of octane isomer oxidation. Part 1: 2,3,4-trimethyl pentane. Combustion and Flame 2024, 263 , 113226. https://doi.org/10.1016/j.combustflame.2023.113226
    100. Ning Li, Sanket Girhe, Mingzhi Zhang, Bingjie Chen, Yingjia Zhang, Shenghua Liu, Heinz Pitsch. A machine learning method to predict rate constants for various reactions in combustion kinetic models. Combustion and Flame 2024, 263 , 113375. https://doi.org/10.1016/j.combustflame.2024.113375
    Load all citations

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2021, 61, 6, 2686–2696
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jcim.0c01480
    Published May 28, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    6403

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.