ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVChemical InformationNEXT

Validation of a Field-Based Ligand Screener Using a Novel Benchmarking Data Set for Assessing 3D-Based Virtual Screening Methods

Cite this: J. Chem. Inf. Model. 2021, 61, 12, 5841–5852
Publication Date (Web):November 18, 2021
https://doi.org/10.1021/acs.jcim.1c00866
Copyright © 2021 American Chemical Society

    Article Views

    684

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (7 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Ligand-based methods play a crucial role in virtual screening when the 3D structure of the target is not available. This study discusses the results of a validation study of the CSD field-based ligand screener using a novel benchmarking data set containing 56 targets. The data set was created starting from the target UniProt IDs in a previously published data set (i.e., the AZ data set), by mining ChEMBL to find known active molecules for these targets and by using DUD-E to generate property-matched decoys of the identified actives. Several experiments were performed to assess the virtual screening performance of the new method. One of its strengths is that it can use an overlay of multiple flexible ligands as a query without the need to run several parallel calculations with one ligand at a time. Here, we discuss how changes to different parameter settings or adoption of different query models can influence the final performance compared to the performance when using the experimentally observed overlay of ligands. We have also generated the enrichment scores based on three external benchmark data sets to enable the comparison with existing methods previously validated using these data sets. Here, we present results for the standard DUD-E data set, the DUD-E+ data set, as well as the DUD_Lib_VS_1.0 data set which was designed for ligand-based virtual screening validation and hence is more suitable for this type of methods.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.1c00866.

    • Detailed analysis of 2D fingerprint methods against newly created validation set (PDF)

    • Script to cluster actives ligands obtained from ChEMBL (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 1 publications.

    1. Daniela Istrate, Luminita Crisan. Natural Compounds as DPP-4 Inhibitors: 3D-Similarity Search, ADME Toxicity, and Molecular Docking Approaches. Symmetry 2022, 14 (9) , 1842. https://doi.org/10.3390/sym14091842

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect