ACS Publications. Most Trusted. Most Cited. Most Read
QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization
My Activity

Figure 1Loading Img
  • Open Access
Computational Chemistry

QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization
Click to copy article linkArticle link copied!

  • Masato Sumita*
    Masato Sumita
    RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
    International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan
    *Email: [email protected]
  • Kei Terayama
    Kei Terayama
    RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
    Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
    More by Kei Terayama
  • Ryo Tamura
    Ryo Tamura
    RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
    International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan
    Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
    Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, Japan
    More by Ryo Tamura
  • Koji Tsuda
    Koji Tsuda
    RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
    Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
    Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, Japan
    More by Koji Tsuda
Open PDFSupporting Information (1)

Journal of Chemical Information and Modeling

Cite this: J. Chem. Inf. Model. 2022, 62, 18, 4427–4434
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jcim.2c00812
Published September 8, 2022

Copyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Abstract

Click to copy section linkSection link copied!

To obtain observable physical or molecular properties such as ionization potential and fluorescent wavelength with quantum chemical (QC) computation, multi-step computation manipulated by a human is required. Hence, automating the multi-step computational process and making it a black box that can be handled by anybody are important for effective database construction and fast realistic material design through the framework of black-box optimization where machine learning algorithms are introduced as a predictor. Here, we propose a Python library, QCforever, to automate the computation of some molecular properties and chemical phenomena induced by molecules. This tool just requires a molecule file for providing its observable properties, automating the computation process of molecular properties (for ionization potential, fluorescence, etc.) and output analysis for providing their multi-values for evaluating a molecule. Incorporating the tool in black-box optimization, we can explore molecules that have properties we desired within the limitation of QC computation.

This publication is licensed under

CC-BY-NC-ND 4.0 .
  • cc licence
  • by licence
  • nc licence
  • nd licence
Copyright © 2022 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

In recent years, black-box optimization using machine learning (ML) algorithms as a predictor has achieved significant results in chemistry and materials science. (1,2) ML itself is not limited to these disciplines and can be applicable in many disciplines by changing the evaluating system (evaluator). (3−6) Similarly, the evaluator in black-box optimization decides what kind of materials and molecules we desired. If we can install experiments such as synthesizing materials and measuring their chemical or physical values as the evaluator, we can obtain the desired materials. Surely, several examples of black-box optimization with the experiments as the evaluators appear in inorganic materials because synthesizing inorganic materials is more efficient than the simulation depending on the target properties. (7−9) However, organic synthesis is not the case.
Organic synthesis is a time-consuming and formidable task including the characterization of synthesized molecules. (10) Hence, several simulation methods are developed as the preliminary methods that are expected to lower the experimental cost to find the expected molecules before the organic synthesis. Quantum chemical (QC) (11,12) computation is also one of them. In contrast to the expectation, QC computation has been mainly used as a tool to clarify chemical phenomena (13) through QC software packages. (14−16) Although QC computation is still developing, (17) many chemical phenomena for which no experimental information is available have been explained by QC computation. (18−23) To make black-box optimization efficient by incorporating QC computation instead of chemical experiments, we should develop an automated QC system whose input is a molecule and output is its properties.
Although QC computation is a powerful tool to obtain the electronic structures of molecules or materials, multi-step computation is required to obtain the practically meaningful physical or chemical values because most theories of QC computation are developed based on the orthogonal one-electron states, (24) which are not experimentally observable. Hence, to incorporate QC computation in black-box optimization, it is necessary to perform QC computation in a black box by automating the multi-step calculations and the analysis of the obtained results (usually text files). There are several tools for constructing inputs to perform complex computations and parsing output files such as cclib, (25) ASE, (26) and AutoSovate (27) for managing solvent systems, and QChASM (28) that target mainly on transition states of catalysis systems. However, these tools are not enough to incorporate QC computation in black-box optimization for observable properties because their target is managing structure, distilling the total energy of the system, and one-electron-state-based values. Furthermore, multi-objective optimization (optimizing multi-molecular properties) is necessary to obtain the practical materials through black-box optimization. Hence, the black box of QC computation should be a system that produces physically meaningful multi properties.
In this paper, we propose a black box of QC computation that is ready to be incorporated in black-box optimization, QCforever whose input is a well-known sdf file and output is a physically meaning multi properties, such as ionization potential, electronic affinity, absorption wavelength, fluorescent wavelength, and so forth (surely, one-electron-orbital-based properties such as the HOMO/LUMO gap are also available) because evaluating materials with multi properties is important for their practical use. In addition, QCforever is useful to exclude arbitrariness due to the different processes in the computation of the physical values with QC computation. Because the orbital and geometry optimization processes largely depend on the initial guess and geometry, there is the arbitrariness (same computations with different initials sometimes converge to different results). Excluding the arbitrariness, QCforever is also useful for building a database with standardized computational processes.

Method

Click to copy section linkSection link copied!

Although there are several theories in QC, we employed density functional theory (DFT) (29) implemented in Gaussian16 (14) because of its ease of use and versatility. Suitable processes for computing molecular properties are important for computational efficiency and reproducing chemical phenomena. Excluding the arbitrariness of the computation process is also important for building a reliable database.
Because Gaussian16 (14) supports multi-step jobs, we can summarize multi-step jobs to one input file and facilitate the computational process by reading previous electronic structures (orbitals). Figure 1 shows the computational flow to compute the several molecular properties and phenomena at one time. Different structures are saved as the different formatted checkpoint files. Currently, supported input is a common sdf file of one molecule, which is widely used in chemoinformatics, Gaussian chk, and Gaussian fchk files. When an sdf file is used as input, the number of radical electrons and charge are counted by the tool of RDkit. (30) For users who need to specify the spin multiplicity and charge of molecules, the instance valuables, self.SpecTotalCharge and self.SpecSpinMulti, are prepared.

Figure 1

Figure 1. Computational flow of available properties of a molecule in QCforever. An sdf file of one molecule or Gaussian chk/fchk file is accepted as input. Solid arrows indicate reading atomic and electronic structures from the origin of an arrow. The broken arrow indicates that only atomic arrangement is obtained from the state at the origin of the arrow. The base for all computing is the ground state. Same geometries are represented by the same color.

QCforever computes the ground state at the first step. Default values of Gaussian16 (14) were used as thresholds for the convergence criteria of SCF and geometry optimization. The values related to energies, the difference between ideal and computed values of S2S2), which would be useful to check whether the correct state is computed or not, are also printed. For conformation search, QCforever should rely on the other software. (31) It is possible to perform geometry optimization by option. At the present time, the force constant estimation method (Gaussian default) is employed. If geometry optimization is performed, one maximum bond length is printed for checking the geometry. After computation of the ground state, several molecular properties based on the orthogonal orbitals are obtained. The HOMO/LUMO gap, and their relative energies to some references, and atomization energy are of importance to provide speculation to the stability of a molecule in the ground state and its application to several materials. As the reference to compare the HOMO/LUMO level, their relative energies to the SOMO/LUMO energy of an oxygen molecule are computed using the following equations.
(1)
(2)
where, and are the LUMO and SOMO energies of O2, respectively. Et(HOMO) and Et(LUMO) are the HOMO and LUMO energies of the target molecule, respectively. Hence, Ox represents the proximity between HOMO of the target molecule and LUMO of O2, resulting in the oxidation of the target molecule by O2. On the other hand, because Rd represents the energetic proximity between LUMO of the target molecule and SOMO of O2, Rd indicates the possibility of the reduction of target molecules by O2. This value would be also useful to discuss the reaction that is induced by the energetic proximity of SOMO/LUMO of O2 with HOMO/LUMO of a target molecule. QCforever has the data of the SOMO and LUMO energies of O2 that are computed with each combination of basis sets and functionals in advance. Even if we used different computational levels or QC packages (e.g., when we compare orbital levels computed under the periodic boundary condition with those under boundary free), we can discuss the orbital energy levels, obtaining relative energies to the orbitals of O2. This function would be useful to compare the orbital levels to the band level of semiconductors. (32−34) Similarly, because QCforever has the energy of each atom which is computed with several basis sets and functionals, the atomization energy of the target molecule is computed.
Normal vibration modes of a molecule are computed by the vibrational analysis including intensities of frequency infrared (IR) and Raman spectra. Based on the normal mode, Gaussian calculates several thermochemical properties such as Gibbs free energy, heat capacity, entropy, and so forth. QCforever dilutes these values from the log file. Peak positions in nuclear magnetic resonance (NMR) spectrum to tetramethylsilane (TMS) of the target molecule are also computed using the GIAO method.
QCforever automatically computes the values that are relevant to photochemical properties/phenomena as shown in Figure 2, using the time-dependent density functional theory. Vertical excitation energies to other electronic structures from the ground state, which are observable as ultra-violet visible (UV) absorption measurement, can be computed at single point calculation. By using the time-dependent density functional theory, expected fluorescence is computed by optimizing the geometry in the target excited state as shown in Figure 2. (35) The value [the Delta(S-T), energetic delta between singlet and triplet excited states in Figure 2] for estimating the probability of thermally activated delayed fluorescence (TADF) (36) is computed through geometry optimization in the triplet state.

Figure 2

Figure 2. Schematics of potential energy surfaces of the singlet ground state (S0), singlet excited state (S1), and first triplet state (T1) of a molecule. Blue arrows indicate the optimization process starting from the atomic and electronic structures at the origin of the arrows.

Computation for estimating vertical/adiabatic ionization potential (IP) and electronic affinity (EA) (37) is also automated in QCforever through the method called ΔSCF. Vertical IP (VIP) and EA (VEA) are the energetic difference between the ground state and the positively/negatively charged state (assuming the ground state is a neutral and singlet state) at the same structure as shown in Figure 3 by using the following equations.
(3)
(4)
(5)
(6)
where is the ground-state energy of the target molecule as shown in Figure 3 (assuming that the ground-state optimization is performed). is the total energy of an electron donated or removed molecule as shown in Figure 3. The values of adiabatic IP (AIP) and adiabatic EA (AEA) are calculated using eqs 4 and 6, where D0minimum is the energy obtained by performing geometry optimization from D0vertical (Figure 3).

Figure 3

Figure 3. Schematics of potential energy surfaces of a neutral molecule (S0) and its positively/negatively charged one (D0), assuming a neutral molecule is in the singlet state. A blue arrow indicates the optimization process starting from the structure and electronic structure of origin of the arrow.

Currently available values are summarized in Table 1 and the keys of the dictionary are also as the computed values are outputted as the dictionary format of Python.
Table 1. Available Values of QCforever and Keys of the Output Dictionarya
option namesvalues obtainedkey
optgeometry optimization in the ground state is performedGS_MaxBoldLength (in Å)
energyground state energyenergy (in Eh) with ΔS2
homolumoHOMO/LUMO gaphomolumo (in eV)
stable2o2stability to O2stable2o2 (in Eh)
deenatomization energydeen (in Eh)
dipoledipole momentdipole
cdenMulliken charge and spin densitycden
symmmolecular symmetrysymm
nmrNMR chemical shift of each atom to TMSnmr (ppm to TMS)
uvtransition energies to excited stateuv (in nm with oscillator strength)
  state_index
freqvibrational analysis (298.15 K, 1.0 atm)freq (in cm–1)
  IR_int (IR intensity)
  Raman_int (Raman intensity)
  Ezp (zero point energy)
  Et (thermal energy)
  E_enth (enthalpy)
  E_free (free energy)
  Ei (thermal energy in kcal/mol)
  Cv (heat capacity in mol K)
  Si (entropy in mol K)
vipvertical ionization potentialvip (in eV) with ΔS2
veavertical electronic affinityvea (in eV) with ΔS2
aipadiabatic ionization potentialaip (in eV) with ΔS2
  relaxedIP_MaxBondLength (in Å)
aeaadiabatic ionization potentialaea (in eV) with ΔS2
  relaxedEA_MaxBondLength (in Å)
fluorfluorescent from a specified stateMinEtarget (in Eh)
  Min_MaxBondLength (in Å)
  fluor (in nm with oscillator strength)
tadfenergetic difference between the singlet and the triplet excited stateT_Min (in Eh)
  T_Min_MaxBondLength (in Å)
  T_Phos (in nm with oscillator strength)
  delta(S-T) (in Eh)
a

Job state is saved with “log” key.

Dependencies

Click to copy section linkSection link copied!

QCforever needs external quantum chemical computation package but mainly written in Python 3. Currently, only Gaussian16 (14) is supported. Although Gaussian16 users may separate the computational scratch folder and data folder, current QCforever requires that data folder is the same as the scratch. Because Gaussian tools, formchk and unfchk, are used for making fchk or chk files, the path to Gaussian should be suitably set before using QCforever. To count the number of radical electrons and the value of total charge from an sdf file, RDKit (30) is required. Another required Python library is NumPy. To generate the data for computing atomization energy, chemical shift from TMS, and oxygen orbital level, bash scripts are used.

Example Usage

Click to copy section linkSection link copied!

It is necessary to make an instance because the main of QCforever is written as a class of Python. QCforever needs the kind of functional and basis set, number of cores for Gaussian, options, and input file names at least as the arguments. If one wants to compute molecular properties in solvent, one can specify the kind of solvents listed in Gaussian. (14) The memory and computational time can be specified by giving the values as the instance variables. The example of code (main.py) for QCforever is shown in List 1.
In the example of List 1, QCforever tries to compute the HOMO/LUMO gap, the ground-state energy, dipole moment, atomization energy, the stability to O2 based on the optimized structure of the target molecule in the ground state, and the fluorescence from the third excited state at the B3LYP/STO-3G level.
This code can be executed as the command as shown in List 2.
The result can be obtained as shown in List 3, which is the dictionary style of Python code with the keys in Table 1. In the “uv” key, four lists are included. The first list indicates the excitation energy to each excited state in nm, the second is the intensity (oscillator strength) to them, the third indicates the length of circular dichroism (CD), and the fourth is the intensity of CD spectrum. Because we use unrestricted DFT calculation, spin-allowed and -forbidden excited states are mixed. Hence, the indices of spin-allowed states are enclosed in the first list of “state_index” key, and those of spin-forbidden states are in the second list. The excitation energies to spin-allowed states are printed in the “uv” key. Similar to the “uv” key, the “fluor” key includes the information of CD emission.

Applications

Click to copy section linkSection link copied!

Using QCforever combined the black-box optimization algorithms for discovering and designing materials, we have already reported several results. Combining a deep learning-based de novo molecule generator (DNMG) (38) with QCforever, we have successfully demonstrated that molecules designed in silico for optical absorption/emission can be realized experimentally. (39−41) In addition, the DNMG proposed to use a material that had never received attention as an electret material. (42) The DNMG becomes a molecular identifier by setting the computed property by QCforever NMR spectrum. (43) In addition to the collaboration with DNMG, QCforever is useful for screening database. We have also employed QCforever with boundLess Objective-free eXploration (BLOX) for searching out-of-trend materials from the database. (44) Here, we demonstrate database screening as an example of the use of QCforever. Recent development of material informatics increases the importance of experimental (45−47) and computational databases (48,49) of molecules. Although PubChemQC (48) provides the observable molecular properties such as absorption wavelength, computational databases basically provide total energies and properties based on one-electron states. (50−52) There might be important features but not practical properties. QCforever might be useful to translate another database to computational one with practical properties.
From the ZINC database, (47) we picked up 100 molecules available from vendors. For these molecules, we have computed the molecular properties at the B3LYP/6-31G* level, using QCforever with the following options listed in Table 1.
The success ratios for optimization in the ground state (GS), fluorescence (Fluor), TADF, and AIP computations are 91, 97, 69, and 90%, respectively, as tabulated in Table 2. The low ratio for TADF computation might be improved by including the solvent effect. The average computational time per one molecule is about 9 h for 20 cores. This computation is not definitely light. However, we can build the database for several molecular properties based on the electronic structure theory automatically. Because the multi properties can be simultaneously obtained, the correlation heat map among the computed molecular properties as shown in Figure 4 is also easily obtained.

Figure 4

Figure 4. Clustered correlation heat map among molecular properties of the 100 ZINC molecule computed by QCforever. Abs_it/Fluor_it, oscillator strength of absorption/fluorescence to/from the first excited state. Abs_wl/Fluor_wl, absorption/fluorescence wavelength to/from the first excited state. MW, molecular weight. Dipole, absolute value of the dipole moment. Raman/IR, intensity of the lowest vibration modes of Raman/IR spectra. Freq, the lowest vibration mode in wave number. VEA/AEA, vertical/adiabatic electronic affinity. HOMO/LUMO, energetic gap between HOMO and LUMO. Stable2o2, oxidizability by O2. VIP/AIP, vertical/adiabatic ionization potential. Energy, total energy of the ground state. E_free, Gibbs free energy at 297 K. Delta(S-T), the gap between minimums of the first excited state and the first triplet state.

Table 2. Success Ratio (%) for 100 Molecules with QCforever at the B3LYP/6-31G* Level
GSaFluorbTADFcAIPd
91976990
a

Ground-state optimization without any negative vibrational mode.

b

Geometry optimization in the first excited state valuable for evaluating fluorescence emission.

c

Computation for evaluating TADF.

d

Geometry optimization ionized state to obtain adiabatic ionization potential.

This correlation heat map shows the importance of the static analysis based on the database in spite of data of 100 molecules. The HOMO/LUMO gap shows the negative correlation with the absorption wavelength (Abs_wl), VEA, and AEA strongly. Furthermore, the gap has a positive correlation with Stable2o2 (oxidation by O2), VIP, and AIP. Hence, the HOMO/LUMO gap is a molecular property that dominates not only photochemical properties but also electronic properties. On the other hand, energy and E_free have no difference (this means that the contribution of the free energy is small in the small molecular size) and other properties [Delta(S-T), Fluor_wl, Freq, IR, Abs_it, Fluor_it] are not interrelated with the HOMO/LUMO gap. These results indicate the difficulty to make a prediction model of these properties.

Conclusions

Click to copy section linkSection link copied!

In this paper, we demonstrated a tool automating the process to compute several observable molecular properties through QC computation, QCforever, which is ready to be equipped with black-box optimization. When QC calculations are used to calculate various physical and chemical properties or phenomena, arbitrary values might be obtained even for the same molecule due to the different computation processes. To avoid this, a standard computation process should be provided. Especially, a standardized computation process as is in QCforever would be important for building a database based on QC calculation. As the demonstration of QCforever, we computed 100 molecules picked up from the ZINC database. (47) Although the current QCforever could not exclude the several failures including the molecules that have the negative vibrational modes, the computation of 90% of molecules succeeded. In the near future, we will develop QCforever to deal with the negative vibrational mode and several failures such as AiiDA. (53) In addition, an ML-based model for predicting the functional parameters of DFT will be presented to avoid the self-interaction error (54) that hinders the accuracy of many DFT methods.
Simulation tools are expected to reduce the difficulty to develop new materials. QC computation was also one of them. In practice, however, QC computation is mainly used as a tool giving speculation to chemical phenomena. The history of QC computation proves that it is a powerful tool to get plausible answers to the forward problems where input is molecules. On the other hand, QC computation is also used for finding the expected molecules for chemical synthesis in experimental chemistry laboratories. This process corresponds to an inverse problem (55,56) where we should deal with the diversity of the chemical compounds. Surely, the search space is restricted within professional knowledge and favor. Combining QCforever with the black-box optimization algorithm, we can remove this restriction and bias and expand the search space. (39−44)

Data and Software Availability

Click to copy section linkSection link copied!

Our implementation is available on GitHub at https://github.com/molecule-generator-collection/QCforever. The version of RDkit (30) we used is 2020.09.1.0. Gaussian16 (14) (https://gaussian.com) was used for QCs. The list of molecules in the article is shown in the Supporting Information.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.2c00812.

  • SMILES list that supports the findings of this study (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Masato Sumita - RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, JapanInternational Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, JapanOrcidhttps://orcid.org/0000-0002-3506-1028 Email: [email protected]
  • Authors
    • Kei Terayama - RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, JapanGraduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, JapanOrcidhttps://orcid.org/0000-0003-3914-248X
    • Ryo Tamura - RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, JapanInternational Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, JapanGraduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, JapanResearch and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, JapanOrcidhttps://orcid.org/0000-0002-0349-358X
    • Koji Tsuda - RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, JapanGraduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, JapanResearch and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, JapanOrcidhttps://orcid.org/0000-0002-4288-1606
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This research was conducted in “Development of a Next-generation Drug Discovery AI through Industry-academia Collaboration (DAIIA)” supported by Japan Agency for Medical Research and Development (AMED) under grant no. JP22nk0101111. This work was also supported by MEXT as a “Program for Promoting Researches on the Supercomputer Fugaku (Application of Molecular Dynamics Simulation to Precision Medicine Using Big Data Integration System for Drug Discovery)”. This research used the computational resources of the supercomputer center of RAIDEN of AIP (RIKEN).

References

Click to copy section linkSection link copied!

This article references 56 other publications.

  1. 1
    Terayama, K.; Sumita, M.; Tamura, R.; Tsuda, K. Black-Box Optimization for Automated Discovery. Acc. Chem. Res. 2021, 54, 1334,  DOI: 10.1021/acs.accounts.0c00713
  2. 2
    Pollice, R.; dos Passos Gomes, G.; Aldeghi, M.; Hickman, R. J.; Krenn, M.; Lavigne, C.; Lindner-D’Addario, M.; Nigam, A.; Ser, C. T.; Yao, Z.; Aspuru-Guzik, A. Data-Driven Strategies for Accelerated Materials Design. Acc. Chem. Res. 2021, 54, 849860,  DOI: 10.1021/acs.accounts.0c00785
  3. 3
    Snoek, J.; Larochelle, H.; Adams, R. P. Practical Bayesian Optimization of Machine Learning Algorithms. Advances in Neural Information Processing Systems , 2012.
  4. 4
    Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche, G. V. D.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; Hassabis, D. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484489,  DOI: 10.1038/nature16961
  5. 5
    Wigley, P. B.; Everitt, P. J.; van den Hengel, A. V. D.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R. Fast Machine-learning Online Optimization of Ultra-cold-atom Experiments. Sci. Rep. 2016, 6, 25890,  DOI: 10.1038/srep25890
  6. 6
    Degrave, J.; Felici, F.; Buchli, J.; Neunert, M.; Tracey, B.; Carpanese, F.; Ewalds, T.; Hafner, R.; Abdolmaleki, A.; de las Casas, D.; Donner, C.; Fritz, L.; Galperti, C.; Huber, A.; Keeling, J.; Tsimpoukelli, M.; Kay, J.; Merle, A.; Moret, J. M.; Noury, S.; Pesamosca, F.; Pfau, D.; Sauter, O.; Sommariva, C.; Coda, S.; Duval, B.; Fasoli, A.; Kohli, P.; Kavukcuoglu, K.; Hassabis, D.; Riedmiller, M. Magnetic Control of Tokamak Plasmas through Deep Reinforcement Learning. Nature 2022, 602, 414419,  DOI: 10.1038/s41586-021-04301-9
  7. 7
    Ren, F.; Ward, L.; Williams, T.; Laws, K. J.; Wolverton, C.; Hattrick-Simpers, J.; Mehta, A. Accelerated Discovery of Metallic Glasses through Iteration of Machine Learning and High-throughput Experiments. Sci. Adv. 2018, 4, eaaq1566  DOI: 10.1126/sciadv.aaq1566
  8. 8
    Homma, K.; Liu, Y.; Sumita, M.; Tamura, R.; Fushimi, N.; Iwata, J.; Tsuda, K.; Kaneta, C. Optimization of a Heterogeneous Ternary Li3 PO4–Li3BO3–Li2SO4 Mixture for Li-Ion Conductivity by Machine Learning. J. Phys. Chem. C 2020, 124, 1286512870,  DOI: 10.1021/acs.jpcc.9b11654
  9. 9
    Sumita, M.; Tamura, R.; Homma, K.; Kaneta, K.; Tsuda, K. Li-Ion Conductive Li3PO4-Li3BO3-Li2SO4 Mixture :Prevision through Density Functional Molecular Dynamics and Machine Learning. Bull. Chem. Soc. Jpn. 2019, 92, 11001106,  DOI: 10.1246/bcsj.20190041
  10. 10
    Nicolaou, K. C. Organic Synthesis: the Art and Science of Replicating the Molecules of Living Nature and Creating Others like Them in the Laboratory. Proc. Math. Phys. Eng. Sci. 2014, 470, 20130690,  DOI: 10.1098/rspa.2013.0690
  11. 11
    Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Dover Publications, Inc. Mineola: New York, 1989.
  12. 12
    Lowe, J. P. Quantum Chemistry; Academic press: London, 1993.
  13. 13
    Friesner, R. A. Ab Initio Quantum Chemistry: Methodology and Applications. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 66486653,  DOI: 10.1073/pnas.0408036102
  14. 14
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford CT, 2016.
  15. 15
    Barca, G. M. J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J. E.; Fedorov, D. G.; Gour, J. R.; Gunina, A. O.; Guidez, E.; Harville, T.; Irle, S.; Ivanic, J.; Kowalski, K.; Leang, S. S.; Li, H.; Li, W.; Lutz, J. J.; Magoulas, I.; Mato, J.; Mironov, V.; Nakata, H.; Pham, B. Q.; Piecuch, P.; Poole, D.; Pruitt, S. R.; Rendell, A. P.; Roskop, L. B.; Ruedenberg, K.; Sattasathuchana, T.; Schmidt, M. W.; Shen, J.; Slipchenko, L.; Sosonkina, M.; Sundriyal, V.; Tiwari, A.; Galvez Vallejo, J. L.; Westheimer, B.; Włoch, M.; Xu, P.; Zahariev, F.; Gordon, M. S. Recent Developments in the General Atomic and Molecular Electronic Structure System. J. Chem. Phys. 2020, 152, 154102,  DOI: 10.1063/5.0005188
  16. 16
    Aprà, E.; Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Valiev, M.; van Dam, H. J. J.; Alexeev, Y.; Anchell, J.; Anisimov, V.; Aquino, F. W.; Atta-Fynn, R.; Autschbach, J.; Bauman, N. P.; Becca, J. C.; Bernholdt, D. E.; Bhaskaran-Nair, K.; Bogatko, S.; Borowski, P.; Boschen, J.; Brabec, J.; Bruner, A.; Cauët, E.; Chen, Y.; Chuev, G. N.; Cramer, C. J.; Daily, J.; Deegan, M. J. O.; Dunning, T. H.; Dupuis, M.; Dyall, K. G.; Fann, G. I.; Fischer, S. A.; Fonari, A.; Früchtl, H.; Gagliardi, L.; Garza, J.; Gawande, N.; Ghosh, S.; Glaesemann, K.; Götz, A. W.; Hammond, J.; Helms, V.; Hermes, E. D.; Hirao, K.; Hirata, S.; Jacquelin, M.; Jensen, L.; Johnson, B. G.; Jónsson, H.; Kendall, R. A.; Klemm, M.; Kobayashi, R.; Konkov, V.; Krishnamoorthy, S.; Krishnan, M.; Lin, Z.; Lins, R. D.; Littlefield, R. J.; Logsdail, A. J.; Lopata, K.; Ma, W.; Marenich, A. V.; Martin del Campo, J.; Mejia-Rodriguez, D.; Moore, J. E.; Mullin, J. M.; Nakajima, T.; Nascimento, D. R.; Nichols, J. A.; Nichols, P. J.; Nieplocha, J.; Otero-de-la-Roza, A.; Palmer, B.; Panyala, A.; Pirojsirikul, T.; Peng, B.; Peverati, R.; Pittner, J.; Pollack, L.; Richard, R. M.; Sadayappan, P.; Schatz, G. C.; Shelton, W. A.; Silverstein, D. W.; Smith, D. M. A.; Soares, T. A.; Song, D.; Swart, M.; Taylor, H. L.; Thomas, G. S.; Tipparaju, V.; Truhlar, D. G.; Tsemekhman, K.; Van Voorhis, T.; Vázquez-Mayagoitia, A.; Verma, P.; Villa, O.; Vishnu, A.; Vogiatzis, K. D.; Wang, D.; Weare, J. H.; Williamson, M. J.; Windus, T. L.; Woliński, K.; Wong, A. T.; Wu, Q.; Yang, C.; Yu, Q.; Zacharias, M.; Zhang, Z.; Zhao, Y.; Harrison, R. NWChem: Past, Present, and Future. J. Chem. Phys. 2020, 152, 184102,  DOI: 10.1063/5.0004997
  17. 17
    Grimme, S.; Schreiner, P. R. Computational Chemistry: The Fate of Current Methods and Future Challenges. Angew. Chem., Int. Ed. 2018, 57, 41704176,  DOI: 10.1002/anie.201709943
  18. 18
    Sumiya, M.; Sumita, Y.; Tsuda, M.; Sakamoto, Y.; Sang, T.; Harada, L.; Yoshigoe, A. Y. High Reactivity of H2O Vapor on GaN Surfaces. Sci. Technol. Adv. Mater. 2022, 23, 189198,  DOI: 10.1080/14686996.2022.2052180
  19. 19
    Sumita, M.; Tanaka, Y.; Ohno, T. Possible Polymerization of PS4 at a Li3PS4/FePO4 Interface with Reduction of the FePO4 Phase. J. Phys. Chem. C 2017, 121, 96989704,  DOI: 10.1021/acs.jpcc.7b01009
  20. 20
    Sumita, M.; Tanaka, Y.; Ikeda, M.; Ohno, T. Charged and Discharged States of Cathode/Sulfide-Electrolyte Interfaces in All-Solid-State Lithium-Ion Batteries. J. Phys. Chem. C 2016, 120, 1333213339,  DOI: 10.1021/acs.jpcc.6b01207
  21. 21
    Sumita, M.; Morihashi, K. Theoretical Study of Singlet Oxygen Molecule Generation via an Exciplex with Valence-Excited Thiophene. J. Phys. Chem. A 2015, 119, 876883,  DOI: 10.1021/jp5123129
  22. 22
    Sumita, M.; Ryazantsev, N.; Saito, K. Acceleration of the Z to E Photoisomerization of Penta-2, 4-dieniminium by Hydrogen Out-of-plane Motion : Theoretical Study on a Model System of Retinal Protonated Schiff Base. Phys. Chem. Chem. Phys. 2009, 11, 64066414,  DOI: 10.1039/b900882a
  23. 23
    Sumita, M.; Saito, K. Ab initio Study on One-way Photoisomerization of the Maleic Acid and Fumaric Acid Anion Radical System as a Model System of Their Esters. J. Phys. Chem. A 2006, 110, 1227612281,  DOI: 10.1021/jp064377o
  24. 24
    Sumita, M.; Yoshikawa, N. Augmented Lagrangian Method for Spin-coupled Wave Function. Int. J. Quantum Chem. 2021, 121, e26746  DOI: 10.1002/qua.26746
  25. 25
    O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839845,  DOI: 10.1002/jcc.20823
  26. 26
    Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C.; Hermes, E. D.; Jennings, P. C.; Jensen, P. B.; Kermode, J.; Kitchin, J. R.; Kolsbjerg, E. L.; Kubal, J.; Kaasbjerg, K.; Lysgaard, S.; Maronsson, J. B.; Maxson, T.; Olsen, T.; Pastewka, L.; Peterson, A.; Rostgaard, C.; Schiøtz, J.; Schütt, O.; Strange, M.; Thygesen, K. S.; Vegge, T.; Vilhelmsen, L.; Walter, M.; Zeng, Z.; Jacobsen, K. W. The Atomic Simulation Environment─a Python Library for Working with Atoms. J. Phys. Condens. Matter 2017, 29, 273002,  DOI: 10.1088/1361-648x/aa680e
  27. 27
    Hruska, E.; Gale, A.; Huang, X.; Liu, F. AutoSolvate A toolkit for Automating Quantum Chemistry Design and Discovery of Solvated Molecules. J. Chem. Phys. 2022, 156, 124801,  DOI: 10.1063/5.0084833
  28. 28
    Ingman, V. M.; Shaefer, A. J.; Andreola, L. R. QChASM: Quantum Chemistry Automation and Structure Manipulation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1510  DOI: 10.1002/wcms.1510
  29. 29
    Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289320,  DOI: 10.1021/cr200107z
  30. 30
    Landrum, G. RDKit: Open-Source Cheminformatics Software , 2016. https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4.
  31. 31
    Terayama, K.; Sumita, M.; Katouda, M.; Tsuda, K.; Okuno, Y. Efficient Search for Energetically Favorable Molecular Conformations against Metastable States via Gray-Box Optimization. J. Chem. Theory Comput. 2021, 17, 54195427,  DOI: 10.1021/acs.jctc.1c00301
  32. 32
    Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized Solar Cells. Chem. Rev. 2010, 110, 65956663,  DOI: 10.1021/cr900356p
  33. 33
    Lu, M.; Liang, M.; Han, H.-Y.; Sun, Z.; Xue, S. Organic Dyes Incorporating Bis-hexapropyltruxeneamin Moiety for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2011, 115, 274281,  DOI: 10.1021/jp107439d
  34. 34
    Kranthiraja, K.; Saeki, A. Experiment-oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells. Adv. Funct. Mater. 2021, 31, 2011168,  DOI: 10.1002/adfm.202170168
  35. 35
    Atkins, P. Atkins’ Physical Chemistry; Oxford University Press, 2017.
  36. 36
    Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234238,  DOI: 10.1038/nature11687
  37. 37
    Boldyrev, A. I.; Simons, J.; Zakrzewski, V. G.; von Niessen, W. Vertical and Adiabatic Ionization Energies and Electron Affinities of New Silicon-carbon (SinC) and Silicon-oxygen (SinO) (n = 1-3) Molecules. J. Phys. Chem. 1994, 98, 1427,  DOI: 10.1021/j100056a010
  38. 38
    Yang, X.; Zhang, J.; Yoshizoe, K.; Terayama, K.; Tsuda, K. ChemTS: an Efficient Python Library for De Novo Molecular Generation. Sci. Technol. Adv. Mater. 2017, 18, 972976,  DOI: 10.1080/14686996.2017.1401424
  39. 39
    Sumita, M.; Yang, X.; Ishihara, S.; Tamura, R.; Tsuda, K. Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies. ACS Cent. Sci. 2018, 4, 1126,  DOI: 10.1021/acscentsci.8b00213
  40. 40
    Fujita, T.; Terayama, K.; Sumita, M.; Tamura, R.; Nakamura, Y.; Naito, M.; Tsuda, K. Understanding the Evolution of a De Novo Molecule Generator via Characteristic Functional Group Monitoring. Sci. Technol. Adv. Mater. 2022, 23, 352360,  DOI: 10.1080/14686996.2022.2075240
  41. 41
    Sumita, M.; Terayama, K.; Suzuki, N.; Ishihara, S.; Tamura, M. K.; Chahal, D. T.; Payne, K.; Yoshizoe, K. De Novo Creation of a Naked Eye–detectable Fluorescent Molecule Based on Quantum Chemical Computation and Machine Learning. Sci. Adv. 2022, 8, eabj3906  DOI: 10.1126/sciadv.abj3906
  42. 42
    Zhang, Y.; Zhang, J.; Suzuki, K.; Sumita, M.; Terayama, K.; Li, J.; Mao, Z.; Tsuda, K.; Suzuki, Y. Discovery of Polymer Electret Material via De Novo Molecule Generation and Functional Group Enrichment Analysis. Appl. Phys. Lett. 2021, 118, 223904,  DOI: 10.1063/5.0051902
  43. 43
    Zhang, J.; Terayama, K.; Sumita, M.; Yoshizoe, K.; Ito, K.; Kikuchi, J. NMR-TS: de novo molecule identification from NMR spectra. Sci. Technol. Adv. Mater. 2020, 21, 552561,  DOI: 10.1080/14686996.2020.1793382
  44. 44
    Terayama, K.; Sumita, M.; Tamura, R.; Payne, D. T.; Chahal, M. K.; Ishihara, S.; Tsuda, K. Pushing Property Limits in Materials Discovery via Boundless Objective-free Exploration. Chem. Sci. 2020, 11, 59595968,  DOI: 10.1039/d0sc00982b
  45. 45
    Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49, D1388D1395,  DOI: 10.1093/nar/gkaa971
  46. 46
    Joung, J. F.; Han, M.; Jeong, M.; Park, S. Experimental Database of Optical Properties of Organic Compounds. Sci. Data 2020, 7, 295,  DOI: 10.1038/s41597-020-00634-8
  47. 47
    Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757,  DOI: 10.1021/ci3001277
  48. 48
    Nakata, M.; Shimazaki, T. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry. J. Chem. Inf. Model. 2017, 57, 1300,  DOI: 10.1021/acs.jcim.7b00083
  49. 49
    Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Quantum Chemistry Structures and Properties of 134 Kilo Molecules. Sci. Data 2014, 1, 140022,  DOI: 10.1038/sdata.2014.22
  50. 50
    Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J. L. Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17. J. Chem. Inf. Model. 2012, 52, 28642875,  DOI: 10.1021/ci300415d
  51. 51
    von Lilienfeld, O. A.; Müller, K. R.; Tkatchenko, A. Exploring Chemical Compound Space with Quantum-Based Machine learning. Nat. Rev. Chem. 2020, 4, 347358,  DOI: 10.1038/s41570-020-0189-9
  52. 52
    Cai, J.; Chu, X.; Xu, K.; Li, H.; Wei, J. Machine Learning-driven New Material Discovery. Nanoscale Adv. 2020, 2, 31153130,  DOI: 10.1039/d0na00388c
  53. 53
    Huber, S. P. Automated Reproducible Workflows and Data Provenance with AiiDA. Nat. Rev. Phys. 2022, 4, 431,  DOI: 10.1038/s42254-022-00463-1
  54. 54
    Lundberg, M.; Siegbahn, P. E. M. Quantifying the Effects of the Self-interaction Error in DFT: When Do the Delocalized States Appear?. J. Chem. Phys. 2005, 122, 224103,  DOI: 10.1063/1.1926277
  55. 55
    Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular Design Using Machine Learning: Generative Models for Matter Engineering. Science 2018, 361, 360365,  DOI: 10.1126/science.aat2663
  56. 56
    Kim, K.; Kang, S.; Yoo, J.; Kwon, Y.; Nam, Y.; Lee, D.; Kim, I.; Choi, Y.-s.; Jung, Y.; Kim, S.; Son, W.-j.; Son, J.; Lee, H. S.; Kim, S.; Shin, J.; Hwang, S. Deep-learning-based Inverse Design Model for Intelligent Discovery of Organic Molecules. npj Comput. Mater. 2018, 4, 67,  DOI: 10.1038/s41524-018-0128-1

Cited By

Click to copy section linkSection link copied!

This article is cited by 5 publications.

  1. Kei Terayama, Yamato Osaki, Takehiro Fujita, Ryo Tamura, Masanobu Naito, Koji Tsuda, Toru Matsui, Masato Sumita. Koopmans’ Theorem-Compliant Long-Range Corrected (KTLC) Density Functional Mediated by Black-Box Optimization and Data-Driven Prediction for Organic Molecules. Journal of Chemical Theory and Computation 2023, 19 (19) , 6770-6781. https://doi.org/10.1021/acs.jctc.3c00764
  2. Mandeep K. Chahal, Masato Sumita, Jan Labuta, Daniel T. Payne, Jonathan P. Hill, Yusuke Yamauchi, Takashi Nakanishi, Takeshi Tanaka, Hiromichi Kataura, Kenji Koga, Hiroyuki Miyamura, Yoshihiro Kon, Dachao Hong, Shinsuke Ishihara. Selective Detection of Toxic C1 Chemicals Using a Hydroxylamine-Based Chemiresistive Sensor Array. ACS Sensors 2023, 8 (4) , 1585-1592. https://doi.org/10.1021/acssensors.2c02720
  3. Masato Sumita, Kei Terayama, Shoichi Ishida, Kensuke Suga, Shohei Saito, Koji Tsuda. Qcforever2: Advanced Automation of Quantum Chemistry Computations. Journal of Computational Chemistry 2025, 46 (3) https://doi.org/10.1002/jcc.70017
  4. Gaoyuan Zhang, Tobias Borgert, Carmen Stoffelen, Christian Schmitz. High-Throughput and Explainable Machine Learning for Lacquer Formulations: Enhancing Coating Development by Interpretable Models. 2024https://doi.org/10.2139/ssrn.5077294
  5. Shoichi Ishida, Tanuj Aasawat, Masato Sumita, Michio Katouda, Tatsuya Yoshizawa, Kazuki Yoshizoe, Koji Tsuda, Kei Terayama. ChemTSv2 : Functional molecular design using de novo molecule generator. WIREs Computational Molecular Science 2023, 13 (6) https://doi.org/10.1002/wcms.1680
  6. Fedor V. Ryzhkov, Yuliya E. Ryzhkova, Michail N. Elinson. Python in Chemistry: Physicochemical Tools. Processes 2023, 11 (10) , 2897. https://doi.org/10.3390/pr11102897

Journal of Chemical Information and Modeling

Cite this: J. Chem. Inf. Model. 2022, 62, 18, 4427–4434
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jcim.2c00812
Published September 8, 2022

Copyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Article Views

1372

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Computational flow of available properties of a molecule in QCforever. An sdf file of one molecule or Gaussian chk/fchk file is accepted as input. Solid arrows indicate reading atomic and electronic structures from the origin of an arrow. The broken arrow indicates that only atomic arrangement is obtained from the state at the origin of the arrow. The base for all computing is the ground state. Same geometries are represented by the same color.

    Figure 2

    Figure 2. Schematics of potential energy surfaces of the singlet ground state (S0), singlet excited state (S1), and first triplet state (T1) of a molecule. Blue arrows indicate the optimization process starting from the atomic and electronic structures at the origin of the arrows.

    Figure 3

    Figure 3. Schematics of potential energy surfaces of a neutral molecule (S0) and its positively/negatively charged one (D0), assuming a neutral molecule is in the singlet state. A blue arrow indicates the optimization process starting from the structure and electronic structure of origin of the arrow.

    Figure 4

    Figure 4. Clustered correlation heat map among molecular properties of the 100 ZINC molecule computed by QCforever. Abs_it/Fluor_it, oscillator strength of absorption/fluorescence to/from the first excited state. Abs_wl/Fluor_wl, absorption/fluorescence wavelength to/from the first excited state. MW, molecular weight. Dipole, absolute value of the dipole moment. Raman/IR, intensity of the lowest vibration modes of Raman/IR spectra. Freq, the lowest vibration mode in wave number. VEA/AEA, vertical/adiabatic electronic affinity. HOMO/LUMO, energetic gap between HOMO and LUMO. Stable2o2, oxidizability by O2. VIP/AIP, vertical/adiabatic ionization potential. Energy, total energy of the ground state. E_free, Gibbs free energy at 297 K. Delta(S-T), the gap between minimums of the first excited state and the first triplet state.

  • References


    This article references 56 other publications.

    1. 1
      Terayama, K.; Sumita, M.; Tamura, R.; Tsuda, K. Black-Box Optimization for Automated Discovery. Acc. Chem. Res. 2021, 54, 1334,  DOI: 10.1021/acs.accounts.0c00713
    2. 2
      Pollice, R.; dos Passos Gomes, G.; Aldeghi, M.; Hickman, R. J.; Krenn, M.; Lavigne, C.; Lindner-D’Addario, M.; Nigam, A.; Ser, C. T.; Yao, Z.; Aspuru-Guzik, A. Data-Driven Strategies for Accelerated Materials Design. Acc. Chem. Res. 2021, 54, 849860,  DOI: 10.1021/acs.accounts.0c00785
    3. 3
      Snoek, J.; Larochelle, H.; Adams, R. P. Practical Bayesian Optimization of Machine Learning Algorithms. Advances in Neural Information Processing Systems , 2012.
    4. 4
      Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche, G. V. D.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; Hassabis, D. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484489,  DOI: 10.1038/nature16961
    5. 5
      Wigley, P. B.; Everitt, P. J.; van den Hengel, A. V. D.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R. Fast Machine-learning Online Optimization of Ultra-cold-atom Experiments. Sci. Rep. 2016, 6, 25890,  DOI: 10.1038/srep25890
    6. 6
      Degrave, J.; Felici, F.; Buchli, J.; Neunert, M.; Tracey, B.; Carpanese, F.; Ewalds, T.; Hafner, R.; Abdolmaleki, A.; de las Casas, D.; Donner, C.; Fritz, L.; Galperti, C.; Huber, A.; Keeling, J.; Tsimpoukelli, M.; Kay, J.; Merle, A.; Moret, J. M.; Noury, S.; Pesamosca, F.; Pfau, D.; Sauter, O.; Sommariva, C.; Coda, S.; Duval, B.; Fasoli, A.; Kohli, P.; Kavukcuoglu, K.; Hassabis, D.; Riedmiller, M. Magnetic Control of Tokamak Plasmas through Deep Reinforcement Learning. Nature 2022, 602, 414419,  DOI: 10.1038/s41586-021-04301-9
    7. 7
      Ren, F.; Ward, L.; Williams, T.; Laws, K. J.; Wolverton, C.; Hattrick-Simpers, J.; Mehta, A. Accelerated Discovery of Metallic Glasses through Iteration of Machine Learning and High-throughput Experiments. Sci. Adv. 2018, 4, eaaq1566  DOI: 10.1126/sciadv.aaq1566
    8. 8
      Homma, K.; Liu, Y.; Sumita, M.; Tamura, R.; Fushimi, N.; Iwata, J.; Tsuda, K.; Kaneta, C. Optimization of a Heterogeneous Ternary Li3 PO4–Li3BO3–Li2SO4 Mixture for Li-Ion Conductivity by Machine Learning. J. Phys. Chem. C 2020, 124, 1286512870,  DOI: 10.1021/acs.jpcc.9b11654
    9. 9
      Sumita, M.; Tamura, R.; Homma, K.; Kaneta, K.; Tsuda, K. Li-Ion Conductive Li3PO4-Li3BO3-Li2SO4 Mixture :Prevision through Density Functional Molecular Dynamics and Machine Learning. Bull. Chem. Soc. Jpn. 2019, 92, 11001106,  DOI: 10.1246/bcsj.20190041
    10. 10
      Nicolaou, K. C. Organic Synthesis: the Art and Science of Replicating the Molecules of Living Nature and Creating Others like Them in the Laboratory. Proc. Math. Phys. Eng. Sci. 2014, 470, 20130690,  DOI: 10.1098/rspa.2013.0690
    11. 11
      Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Dover Publications, Inc. Mineola: New York, 1989.
    12. 12
      Lowe, J. P. Quantum Chemistry; Academic press: London, 1993.
    13. 13
      Friesner, R. A. Ab Initio Quantum Chemistry: Methodology and Applications. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 66486653,  DOI: 10.1073/pnas.0408036102
    14. 14
      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford CT, 2016.
    15. 15
      Barca, G. M. J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J. E.; Fedorov, D. G.; Gour, J. R.; Gunina, A. O.; Guidez, E.; Harville, T.; Irle, S.; Ivanic, J.; Kowalski, K.; Leang, S. S.; Li, H.; Li, W.; Lutz, J. J.; Magoulas, I.; Mato, J.; Mironov, V.; Nakata, H.; Pham, B. Q.; Piecuch, P.; Poole, D.; Pruitt, S. R.; Rendell, A. P.; Roskop, L. B.; Ruedenberg, K.; Sattasathuchana, T.; Schmidt, M. W.; Shen, J.; Slipchenko, L.; Sosonkina, M.; Sundriyal, V.; Tiwari, A.; Galvez Vallejo, J. L.; Westheimer, B.; Włoch, M.; Xu, P.; Zahariev, F.; Gordon, M. S. Recent Developments in the General Atomic and Molecular Electronic Structure System. J. Chem. Phys. 2020, 152, 154102,  DOI: 10.1063/5.0005188
    16. 16
      Aprà, E.; Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Valiev, M.; van Dam, H. J. J.; Alexeev, Y.; Anchell, J.; Anisimov, V.; Aquino, F. W.; Atta-Fynn, R.; Autschbach, J.; Bauman, N. P.; Becca, J. C.; Bernholdt, D. E.; Bhaskaran-Nair, K.; Bogatko, S.; Borowski, P.; Boschen, J.; Brabec, J.; Bruner, A.; Cauët, E.; Chen, Y.; Chuev, G. N.; Cramer, C. J.; Daily, J.; Deegan, M. J. O.; Dunning, T. H.; Dupuis, M.; Dyall, K. G.; Fann, G. I.; Fischer, S. A.; Fonari, A.; Früchtl, H.; Gagliardi, L.; Garza, J.; Gawande, N.; Ghosh, S.; Glaesemann, K.; Götz, A. W.; Hammond, J.; Helms, V.; Hermes, E. D.; Hirao, K.; Hirata, S.; Jacquelin, M.; Jensen, L.; Johnson, B. G.; Jónsson, H.; Kendall, R. A.; Klemm, M.; Kobayashi, R.; Konkov, V.; Krishnamoorthy, S.; Krishnan, M.; Lin, Z.; Lins, R. D.; Littlefield, R. J.; Logsdail, A. J.; Lopata, K.; Ma, W.; Marenich, A. V.; Martin del Campo, J.; Mejia-Rodriguez, D.; Moore, J. E.; Mullin, J. M.; Nakajima, T.; Nascimento, D. R.; Nichols, J. A.; Nichols, P. J.; Nieplocha, J.; Otero-de-la-Roza, A.; Palmer, B.; Panyala, A.; Pirojsirikul, T.; Peng, B.; Peverati, R.; Pittner, J.; Pollack, L.; Richard, R. M.; Sadayappan, P.; Schatz, G. C.; Shelton, W. A.; Silverstein, D. W.; Smith, D. M. A.; Soares, T. A.; Song, D.; Swart, M.; Taylor, H. L.; Thomas, G. S.; Tipparaju, V.; Truhlar, D. G.; Tsemekhman, K.; Van Voorhis, T.; Vázquez-Mayagoitia, A.; Verma, P.; Villa, O.; Vishnu, A.; Vogiatzis, K. D.; Wang, D.; Weare, J. H.; Williamson, M. J.; Windus, T. L.; Woliński, K.; Wong, A. T.; Wu, Q.; Yang, C.; Yu, Q.; Zacharias, M.; Zhang, Z.; Zhao, Y.; Harrison, R. NWChem: Past, Present, and Future. J. Chem. Phys. 2020, 152, 184102,  DOI: 10.1063/5.0004997
    17. 17
      Grimme, S.; Schreiner, P. R. Computational Chemistry: The Fate of Current Methods and Future Challenges. Angew. Chem., Int. Ed. 2018, 57, 41704176,  DOI: 10.1002/anie.201709943
    18. 18
      Sumiya, M.; Sumita, Y.; Tsuda, M.; Sakamoto, Y.; Sang, T.; Harada, L.; Yoshigoe, A. Y. High Reactivity of H2O Vapor on GaN Surfaces. Sci. Technol. Adv. Mater. 2022, 23, 189198,  DOI: 10.1080/14686996.2022.2052180
    19. 19
      Sumita, M.; Tanaka, Y.; Ohno, T. Possible Polymerization of PS4 at a Li3PS4/FePO4 Interface with Reduction of the FePO4 Phase. J. Phys. Chem. C 2017, 121, 96989704,  DOI: 10.1021/acs.jpcc.7b01009
    20. 20
      Sumita, M.; Tanaka, Y.; Ikeda, M.; Ohno, T. Charged and Discharged States of Cathode/Sulfide-Electrolyte Interfaces in All-Solid-State Lithium-Ion Batteries. J. Phys. Chem. C 2016, 120, 1333213339,  DOI: 10.1021/acs.jpcc.6b01207
    21. 21
      Sumita, M.; Morihashi, K. Theoretical Study of Singlet Oxygen Molecule Generation via an Exciplex with Valence-Excited Thiophene. J. Phys. Chem. A 2015, 119, 876883,  DOI: 10.1021/jp5123129
    22. 22
      Sumita, M.; Ryazantsev, N.; Saito, K. Acceleration of the Z to E Photoisomerization of Penta-2, 4-dieniminium by Hydrogen Out-of-plane Motion : Theoretical Study on a Model System of Retinal Protonated Schiff Base. Phys. Chem. Chem. Phys. 2009, 11, 64066414,  DOI: 10.1039/b900882a
    23. 23
      Sumita, M.; Saito, K. Ab initio Study on One-way Photoisomerization of the Maleic Acid and Fumaric Acid Anion Radical System as a Model System of Their Esters. J. Phys. Chem. A 2006, 110, 1227612281,  DOI: 10.1021/jp064377o
    24. 24
      Sumita, M.; Yoshikawa, N. Augmented Lagrangian Method for Spin-coupled Wave Function. Int. J. Quantum Chem. 2021, 121, e26746  DOI: 10.1002/qua.26746
    25. 25
      O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839845,  DOI: 10.1002/jcc.20823
    26. 26
      Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C.; Hermes, E. D.; Jennings, P. C.; Jensen, P. B.; Kermode, J.; Kitchin, J. R.; Kolsbjerg, E. L.; Kubal, J.; Kaasbjerg, K.; Lysgaard, S.; Maronsson, J. B.; Maxson, T.; Olsen, T.; Pastewka, L.; Peterson, A.; Rostgaard, C.; Schiøtz, J.; Schütt, O.; Strange, M.; Thygesen, K. S.; Vegge, T.; Vilhelmsen, L.; Walter, M.; Zeng, Z.; Jacobsen, K. W. The Atomic Simulation Environment─a Python Library for Working with Atoms. J. Phys. Condens. Matter 2017, 29, 273002,  DOI: 10.1088/1361-648x/aa680e
    27. 27
      Hruska, E.; Gale, A.; Huang, X.; Liu, F. AutoSolvate A toolkit for Automating Quantum Chemistry Design and Discovery of Solvated Molecules. J. Chem. Phys. 2022, 156, 124801,  DOI: 10.1063/5.0084833
    28. 28
      Ingman, V. M.; Shaefer, A. J.; Andreola, L. R. QChASM: Quantum Chemistry Automation and Structure Manipulation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1510  DOI: 10.1002/wcms.1510
    29. 29
      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289320,  DOI: 10.1021/cr200107z
    30. 30
      Landrum, G. RDKit: Open-Source Cheminformatics Software , 2016. https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4.
    31. 31
      Terayama, K.; Sumita, M.; Katouda, M.; Tsuda, K.; Okuno, Y. Efficient Search for Energetically Favorable Molecular Conformations against Metastable States via Gray-Box Optimization. J. Chem. Theory Comput. 2021, 17, 54195427,  DOI: 10.1021/acs.jctc.1c00301
    32. 32
      Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized Solar Cells. Chem. Rev. 2010, 110, 65956663,  DOI: 10.1021/cr900356p
    33. 33
      Lu, M.; Liang, M.; Han, H.-Y.; Sun, Z.; Xue, S. Organic Dyes Incorporating Bis-hexapropyltruxeneamin Moiety for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2011, 115, 274281,  DOI: 10.1021/jp107439d
    34. 34
      Kranthiraja, K.; Saeki, A. Experiment-oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells. Adv. Funct. Mater. 2021, 31, 2011168,  DOI: 10.1002/adfm.202170168
    35. 35
      Atkins, P. Atkins’ Physical Chemistry; Oxford University Press, 2017.
    36. 36
      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234238,  DOI: 10.1038/nature11687
    37. 37
      Boldyrev, A. I.; Simons, J.; Zakrzewski, V. G.; von Niessen, W. Vertical and Adiabatic Ionization Energies and Electron Affinities of New Silicon-carbon (SinC) and Silicon-oxygen (SinO) (n = 1-3) Molecules. J. Phys. Chem. 1994, 98, 1427,  DOI: 10.1021/j100056a010
    38. 38
      Yang, X.; Zhang, J.; Yoshizoe, K.; Terayama, K.; Tsuda, K. ChemTS: an Efficient Python Library for De Novo Molecular Generation. Sci. Technol. Adv. Mater. 2017, 18, 972976,  DOI: 10.1080/14686996.2017.1401424
    39. 39
      Sumita, M.; Yang, X.; Ishihara, S.; Tamura, R.; Tsuda, K. Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies. ACS Cent. Sci. 2018, 4, 1126,  DOI: 10.1021/acscentsci.8b00213
    40. 40
      Fujita, T.; Terayama, K.; Sumita, M.; Tamura, R.; Nakamura, Y.; Naito, M.; Tsuda, K. Understanding the Evolution of a De Novo Molecule Generator via Characteristic Functional Group Monitoring. Sci. Technol. Adv. Mater. 2022, 23, 352360,  DOI: 10.1080/14686996.2022.2075240
    41. 41
      Sumita, M.; Terayama, K.; Suzuki, N.; Ishihara, S.; Tamura, M. K.; Chahal, D. T.; Payne, K.; Yoshizoe, K. De Novo Creation of a Naked Eye–detectable Fluorescent Molecule Based on Quantum Chemical Computation and Machine Learning. Sci. Adv. 2022, 8, eabj3906  DOI: 10.1126/sciadv.abj3906
    42. 42
      Zhang, Y.; Zhang, J.; Suzuki, K.; Sumita, M.; Terayama, K.; Li, J.; Mao, Z.; Tsuda, K.; Suzuki, Y. Discovery of Polymer Electret Material via De Novo Molecule Generation and Functional Group Enrichment Analysis. Appl. Phys. Lett. 2021, 118, 223904,  DOI: 10.1063/5.0051902
    43. 43
      Zhang, J.; Terayama, K.; Sumita, M.; Yoshizoe, K.; Ito, K.; Kikuchi, J. NMR-TS: de novo molecule identification from NMR spectra. Sci. Technol. Adv. Mater. 2020, 21, 552561,  DOI: 10.1080/14686996.2020.1793382
    44. 44
      Terayama, K.; Sumita, M.; Tamura, R.; Payne, D. T.; Chahal, M. K.; Ishihara, S.; Tsuda, K. Pushing Property Limits in Materials Discovery via Boundless Objective-free Exploration. Chem. Sci. 2020, 11, 59595968,  DOI: 10.1039/d0sc00982b
    45. 45
      Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49, D1388D1395,  DOI: 10.1093/nar/gkaa971
    46. 46
      Joung, J. F.; Han, M.; Jeong, M.; Park, S. Experimental Database of Optical Properties of Organic Compounds. Sci. Data 2020, 7, 295,  DOI: 10.1038/s41597-020-00634-8
    47. 47
      Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757,  DOI: 10.1021/ci3001277
    48. 48
      Nakata, M.; Shimazaki, T. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry. J. Chem. Inf. Model. 2017, 57, 1300,  DOI: 10.1021/acs.jcim.7b00083
    49. 49
      Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Quantum Chemistry Structures and Properties of 134 Kilo Molecules. Sci. Data 2014, 1, 140022,  DOI: 10.1038/sdata.2014.22
    50. 50
      Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J. L. Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17. J. Chem. Inf. Model. 2012, 52, 28642875,  DOI: 10.1021/ci300415d
    51. 51
      von Lilienfeld, O. A.; Müller, K. R.; Tkatchenko, A. Exploring Chemical Compound Space with Quantum-Based Machine learning. Nat. Rev. Chem. 2020, 4, 347358,  DOI: 10.1038/s41570-020-0189-9
    52. 52
      Cai, J.; Chu, X.; Xu, K.; Li, H.; Wei, J. Machine Learning-driven New Material Discovery. Nanoscale Adv. 2020, 2, 31153130,  DOI: 10.1039/d0na00388c
    53. 53
      Huber, S. P. Automated Reproducible Workflows and Data Provenance with AiiDA. Nat. Rev. Phys. 2022, 4, 431,  DOI: 10.1038/s42254-022-00463-1
    54. 54
      Lundberg, M.; Siegbahn, P. E. M. Quantifying the Effects of the Self-interaction Error in DFT: When Do the Delocalized States Appear?. J. Chem. Phys. 2005, 122, 224103,  DOI: 10.1063/1.1926277
    55. 55
      Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular Design Using Machine Learning: Generative Models for Matter Engineering. Science 2018, 361, 360365,  DOI: 10.1126/science.aat2663
    56. 56
      Kim, K.; Kang, S.; Yoo, J.; Kwon, Y.; Nam, Y.; Lee, D.; Kim, I.; Choi, Y.-s.; Jung, Y.; Kim, S.; Son, W.-j.; Son, J.; Lee, H. S.; Kim, S.; Shin, J.; Hwang, S. Deep-learning-based Inverse Design Model for Intelligent Discovery of Organic Molecules. npj Comput. Mater. 2018, 4, 67,  DOI: 10.1038/s41524-018-0128-1
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.2c00812.

    • SMILES list that supports the findings of this study (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.