ACS Publications. Most Trusted. Most Cited. Most Read
Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry
My Activity

Figure 1Loading Img
  • Open Access
Machine Learning and Deep Learning

Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry
Click to copy article linkArticle link copied!

  • Po-Yu Kao
    Po-Yu Kao
    Insilico Medicine Taiwan Ltd., Taipei 110208, Taiwan
    More by Po-Yu Kao
  • Ya-Chu Yang
    Ya-Chu Yang
    Insilico Medicine Taiwan Ltd., Taipei 110208, Taiwan
    More by Ya-Chu Yang
  • Wei-Yin Chiang
    Wei-Yin Chiang
    Hon Hai (Foxconn) Research Institute, Taipei 114699, Taiwan
  • Jen-Yueh Hsiao
    Jen-Yueh Hsiao
    Hon Hai (Foxconn) Research Institute, Taipei 114699, Taiwan
  • Yudong Cao
    Yudong Cao
    Zapata Computing, Inc., Boston, Massachusetts 02110, United States
    More by Yudong Cao
  • Alex Aliper
    Alex Aliper
    Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
    More by Alex Aliper
  • Feng Ren
    Feng Ren
    Insilico Medicine Shanghai Ltd., Shanghai 201203, China
    More by Feng Ren
  • Alán Aspuru-Guzik
    Alán Aspuru-Guzik
    Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
    Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
    Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
    Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5S 1M1, Canada
  • Alex Zhavoronkov*
    Alex Zhavoronkov
    Insilico Medicine Hong Kong Ltd., Hong Kong SAR, 999077, China
    *E-mail: [email protected]
  • Min-Hsiu Hsieh*
    Min-Hsiu Hsieh
    Hon Hai (Foxconn) Research Institute, Taipei 114699, Taiwan
    *E-mail: [email protected]
  • Yen-Chu Lin*
    Yen-Chu Lin
    Insilico Medicine Taiwan Ltd., Taipei 110208, Taiwan
    Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
    *E-mail: [email protected]
    More by Yen-Chu Lin
Open PDFSupporting Information (1)

Journal of Chemical Information and Modeling

Cite this: J. Chem. Inf. Model. 2023, 63, 11, 3307–3318
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jcim.3c00562
Published May 12, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Abstract

Click to copy section linkSection link copied!

De novo drug design with desired biological activities is crucial for developing novel therapeutics for patients. The drug development process is time- and resource-consuming, and it has a low probability of success. Recent advances in machine learning and deep learning technology have reduced the time and cost of the discovery process and therefore, improved pharmaceutical research and development. In this paper, we explore the combination of two rapidly developing fields with lead candidate discovery in the drug development process. First, artificial intelligence has already been demonstrated to successfully accelerate conventional drug design approaches. Second, quantum computing has demonstrated promising potential in different applications, such as quantum chemistry, combinatorial optimizations, and machine learning. This article explores hybrid quantum-classical generative adversarial networks (GAN) for small molecule discovery. We substituted each element of GAN with a variational quantum circuit (VQC) and demonstrated the quantum advantages in the small drug discovery. Utilizing a VQC in the noise generator of a GAN to generate small molecules achieves better physicochemical properties and performance in the goal-directed benchmark than the classical counterpart. Moreover, we demonstrate the potential of a VQC with only tens of learnable parameters in the generator of GAN to generate small molecules. We also demonstrate the quantum advantage of a VQC in the discriminator of GAN. In this hybrid model, the number of learnable parameters is significantly less than the classical ones, and it can still generate valid molecules. The hybrid model with only tens of training parameters in the quantum discriminator outperforms the MLP-based one in terms of both generated molecule properties and the achieved KL divergence. However, the hybrid quantum-classical GANs still face challenges in generating unique and valid molecules compared to their classical counterparts.

This publication is licensed under

CC-BY-NC-ND 4.0 .
  • cc licence
  • by licence
  • nc licence
  • nd licence
Copyright © 2023 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

The drug development process includes discovery and development, preclinical research, clinical research, Food and Drug Administration (FDA) review, and FDA postmarket safe monitoring. The entire process is time- and resource-consuming and has a low probability of success, with ∼4% of preclinical drugs being eventually granted license. (1) The average time for a new medicine to complete the journey from initial discovery to the marketplace takes at least ten years. (2) The estimated median capitalized research and design (R&D) cost per new drug (accounting for the cost of failures) was $985 million between 2009 and 2018. (3) Recent advances in machine learning and deep learning technology have improved and reduced the cost of pharmaceutical R&D. (4−9) For example, our team (10) discovered potent inhibitors of discoidin domain receptor 1 (DDR1), a kinase target implicated in fibrosis and other diseases, in 21 days. Chan et al. (11) estimated their machine learning algorithms would shrink the drug candidate identification phase from a few months to one year.
De novo drug design refers to a novel chemical compound design with desired pharmacological and physicochemical properties. (12) The discovery of novel chemical compounds with desired biological activities is a critical step to keep the drug discovery pipeline moving forward. (13) It is also crucial for developing novel therapeutics for patients. (14) Conventional approaches include ligand-based drug design (LBDD), fragment-based drug design (FBDD), and structure-based drug design (SBDD). LBDD is based on known active binders of a biological target, and FBDD identifies small molecular fragments with weak affinity for a biomolecular target of interest and assembles them into fully druglike compounds. (15) Aside from LBDD and FBDD, SBDD is based on the properties of the active site of a biological target.
Artificial intelligence (AI) has made a breakthrough in the recent de novo molecule design. (16−18) We identify four well-known generative machine learning algorithms (19) in the field: evolutionary algorithms (EA), recurrent neural networks (RNNs) (such as gated recurrent unit (GRU) and long short-term memory (LSTM)), autoencoders (such as adversarial autoencoder (AAE) and variational autoencoder (VAE)), (20) and generative adversarial network (GAN). GAN (21) has become a popular network architecture for generating highly realistic data, (22) and it has shown remarkable results for generating data that mimics a data distribution in different tasks. (23−26) GAN consists of a generator and a discriminator defined by an artificial neural network (ANN). The parameters of a GAN can be learned by back propagation. The generator takes random noises as input and tries to imitate the data distribution, and the discriminator tries to distinguish between the fake and real samples. A GAN is trained until the discriminator cannot distinguish the generated data from the real data.
GANs are one of the most successful generative models in the drug discovery field, and several different GAN architectures have been proposed in the past decades in de novo drug discovery. (27−29) Zhavoronkov et al. (10) proposed a deep generative model called generative tensorial reinforcement learning (GENTRL) for de novo small-molecule generation. The GENTRL generates novel drugs with better synthetic feasibility and biological activity. Guimaraes et al. (30) proposed an objective-reinforced generative adversarial network (ORGAN) that combines the GAN and reinforcement learning (RL) algorithm. ORGAN is built on SeqGAN (31) and is the first GAN architecture in the de novo molecule generation. It is a sequential generative model operating on simplified molecular-input line-entry system (SMILES) string representations of molecules. The generated samples of ORGAN maintain information originally learned from data, retain sample diversity, and show improvement in the desired drug properties. Prykhodko et al. (32) presented a novel neural network architecture called LatentGAN for de novo molecular design. It combines an autoencoder and a generative adversarial neural network. The generator and discriminator of LatentGAN take n-dimensional vectors as inputs. These inputs derived from the code layer of an autoencoder are trained as a SMILES heteroencoder. (33) This method allows LatentGAN to focus on optimizing the sampling without worrying about SMILES syntax issues. Cao and Kipf introduced MolGAN (34) for small-molecule de novo design, which operates directly on graph-structured data. It is the first GAN to address the generation of graph-structured data in the context of molecular generation. MolGAN is demonstrated to generate close to 100% valid compounds in experiments on the quantum machines 9 (QM9) chemical database. The generated molecules of MolGAN have better chemical properties particularly in synthesizability and solubility than the generated compounds of ORGAN. Neither ORGAN nor MolGAN is directly compared with LatentGAN in the paper. These generative models have the potential to be improved with quantum machine learning algorithms.
The applications of quantum computing can be found in different fields, such as solving routing problems, (35,36) stock price forecasting, (37,38) multitask classification, (39) the two-player zero-sum game, (40) high-resolution handwritten digits generation, (41) the discovery of molecular properties, (42−49) tautomeric state prediction, (50) and drug design. (51,52) We can obtain more efficient and accurate results by utilizing the technique of quantum annealer, quantum machine learning, and quantum algorithm. These advantages that utilize the fundamental properties of quantum mechanics to achieve better performances, compared to the classical methods, are called quantum advantages. Several studies have demonstrated that variational quantum circuit (VQC) (53) performs the advantages in expression power, (54) learnability, (55) and robustness. (56) It indicates that VQC can greatly boost the solution to the problem, e.g., drug discovery, which is hard to tackle by the classical neural network.
Quantum generative adversarial network (QuGAN) (57) provided the first theoretical framework of quantum adversarial learning. QuGAN’s exponential advantages over classical GANs directly result from the ability of quantum information processors to represent N-dimensional features using log N qubits with time complexity of O(poly(log N)). Recent studies also showed that generative models implemented by quantum circuits with fewer architectural complexities could easily bypass their classical counterparts. (52,58) Dallaire-Demers et al. provided the first feasible implementation of QuGAN using quantum circuits in a simulator. (59) Analogous proposals of QuGAN for continuous functions have been proposed during the same period. (60) Later on, QuGANs demonstrated its first successful training on the MNIST dataset on a physical quantum device. (58) Li et al. (52) pushed the research to the real world further by showing the QuGANs can learn or generate the distribution of the QM9 dataset, which provides the quantum chemical properties for small organic molecules in drug design. However, the source code (61) they provided struggles with generating training-set-like molecules. In addition, it lacks a detailed comparison between the generated samples from QuGAN and those from classical GAN.
In this work, we perform the training tasks on the QM9 dataset using the classical and quantum GAN. We not only demonstrate that the quantum GAN outperforms the classical GAN in the drug properties of generated compounds and the goal-directed benchmark but ensure that the trained quantum GANs can generate training-set-like molecules by using the variational quantum circuit as the noise generator. In addition, we show the potential of the variational quantum circuit in the generator of GAN to generate small molecules. In the end, we demonstrate that the quantum discriminator of GAN outperforms the classical counterpart in terms of generated molecule properties and KL-divergence score.

Computational Results and Discussion

Click to copy section linkSection link copied!

In this study, we would like to computationally explore the potential benefits of our algorithms as compared to classical algorithms in small molecule discovery. We endeavored to find the best hyper-parameters for the base MolGAN. We first examined different complexities of generators and observed that MolGAN-HR (high reduction) has the best performance, compared to other generator complexities (see Table S1 in the Supporting Information). We then examined different input noise dimensions of generators and determined that the number of unique and valid molecules saturated at the input dimension was equal to 4 (z_dim = 4) (see Table S2 in the Supporting Information). In addition, we also tested different numbers of parametrized layers in the variational quantum circuit (VQC) and observed that MolGAN-HR with three parametrized layers of VQC as a noise generator has the best performance, compared to other numbers of parametrized layers (Table S3 in the Supporting Information). Therefore, in the following experiments, MolGAN-HR is used as the base model, and VQC with three parametrized layers is used as the base quantum circuit.
In the first experiment, we substitute the noise generator of MolGAN with a VQC and discover the quantum advantage in the generated molecules with better drug properties. In the second experiment, we replace the generator of MolGAN with a VQC and show the potential of generating small molecules using a VQC. In the third experiment, we supplant the discriminator of MolGAN with a VQC and demonstrate the quantum advantage. Figure 1a illustrates different combinations of the classical/quantum noise/generator/discriminator, and their corresponding model name is shown in Table S4 in the Supporting Information. MolGAN uses a classical noise generator, a generator, and a graph-based discriminator. QuMolGAN uses a quantum noise generator, a classical generator, and a classical graph-based discriminator. MolGAN-QC uses a classical noise generator, a quantum generator, and a classical graph-based discriminator. MolGAN-CQ uses a classical noise generator, a classical generator, and a quantum discriminator. MolGAN-CC uses a classical noise generator, a classical generator, and a classical MLP-based discriminator. All experiments are implemented by using Pennylane (63) and PyTorch. (64)

Figure 1

Figure 1. Overall pipeline. (a) The overall pipeline of MolGAN with different combinations of classical/quantum components. The reward neural network branch is enabled in the goal-directed benchmark. The classical noise generator samples from the Gaussian distribution, and the quantum one uses the variational quantum circuit (VQC). The classical generator is built by neural networks, and the quantum one uses the patch-based VQC to generate the molecular graph. The molecular graph is represented by a bond matrix and atom vector. The classical discriminator is built by a graph-based neural network or multilayer perceptron (MLP), and the VQC is used in the quantum one. (b) The example of VQC in the noise generator. (c) The patch method uses multiple VQCs as subgenerators. Each subgenerator takes noise as input and outputs a partial part of the final molecular graph. The final molecular graph is constructed by concatenating all the partial patches together. (d) The example of VQC in the quantum generator. (e) The VQC of the quantum discriminator consists of the amplitude embedding circuit (Sx), the strong entanglement layers (Uθ), and the measurement. (f) The VQC of strongly entanglement layers contains multiple CNOT gates and parametrized rotational gates (R). (g) MLP-based discriminator architecture in MolGAN-CC.

Quantum Noise Generator

In the first experiment, we would like to compare the performance of QuMolGAN and classical MolGAN. We have examined different qubits for VQC and found that its performance saturates at 4 qubits (Table S5 in the Supporting Information). In addition, we have also tested different numbers of parametrized layers in the VQC and observed that QuMolGAN with three parametrized layers of VQC as a noise generator has the best performance, compared to other numbers of parametrized layers (Table S3). We use the same hyperparameters to train the QuMolGAN and MolGAN, (34) except for the learning rate. The learning rate of the quantum noise generator is 0.04, and the learning rate for the generator and discriminator is 0.001. The models are trained for 150 epochs. The WGAN (Wasserstein generative adversarial networks) loss (65) is used to train the models. QuMolGAN with three parametrized layers is used in this experiment. We have examined the input dimension of the generator at 2, 3, and 4, and the results are shown in Table 1. The performance of MolGAN and QuMolGAN saturates at z_dim = 4. It is noted that the QED, Solute, and SA scores in this table are calculated from the valid and unique molecules. The QuMolGAN is lacking in generating as many molecules as classical MolGAN which results in worse KL Scores. However, the QuMolGAN can generate molecules with significantly (p < 0.05) better drug properties, compared to the MolGAN, particularly when the input noise dimension is small (z_dim = 2 and z_dim = 3). The drug properties distributions of MolGAN-generated and QuMolGAN-generated molecules are shown in Figure 2a for z_dim = 2. It shows that QuMolGAN can generate molecules with better drug properties, particularly in QED. QuMolGAN has less probability to generate molecules whose QED is <0.4. For the KL-divergence task, the MolLogP, BertzCT, and MolWt distributions of generated molecules are also shown in Figure 2b for z_dim = 2. The classical MolGAN (black) tends to generate molecules with similar distributions to the training set (gray), which results in a better KL-divergence score. In the end, we randomly sample 12 valid and unique molecules from both MolGAN and QuMolGAN for z_dim = 2, and the example molecules are shown in Figures 3a and 3b, respectively. QuMolGAN can generate training-set-like molecules with better drug properties.
Table 1. Comparing Generated Molecules of QuMolGAN and MolGAN in Drug Propertiesa
 z_dim = 2z_dim = 3z_dim = 4
 QuMolGANMolGANp-valueQuMolGANMolGANp-valueQuMolGANMolGANp-value
number of moleculesb36365741421635113085
QED ↑0.4890.475<0.010.4890.465<0.010.4730.465<0.05
solubility ↑0.3430.324<0.050.3700.305<0.010.3170.298<0.01
SA ↑0.3670.336<0.050.3100.307<0.050.3080.2960.246
KL score (S)c ↑0.6530.8240.7970.9130.8460.957
a

Bold numbers highlight the better scores in QuMolGAN, compared to the corresponding MolGAN. Note that the QED, Solute, and SA scores in this table are calculated from the valid and unique molecules.

b

Number of valid and unique molecules from 5000 samples.

c

From eq 2.

Figure 2

Figure 2. Property distributions of molecules. (a) Drug properties distributions (left to right: QED, SA, and Solute) from valid and unique MolGAN-generated (in blue) and QuMolGAN-generated (in orange) molecules. (b) KL-divergence distributions (left to right: MolLogP, BertzCT, and MolWt) of valid and unique MolGAN-generated (blue), QuMolGAN-generated (orange), and QM9 (gray) molecules. (c) KL-divergence distributions (from left to right: MolLogP, BertzCT, and MolWt) of MolGAN-CC-ER-generated (orange), MolGAN-CQ-generated (yellow), MolGAN-generated (blue), and QM9 (gray) molecules.

Figure 3

Figure 3. Example molecules. (a) Example molecules of MolGAN with z_dim = 2. (b) Example molecules of QuMolGAN with z_dim = 2. (c) Example molecules of MolGAN-CQ.

Goal-Directed Benchmark

As mentioned in ref (66), the goal-directed optimization of molecules tries to improve the demanded scores for the generated molecules. These scores reflect how well molecules satisfy the required properties. The goal is to find molecules that maximize the scoring function. In this experiment, we also would like to check if the quantum circuit can bring advantages to the MolGAN in the goal-directed benchmark. Therefore, we enable the reward network branch of the original schema as shown in the gray block in Figure 1a. At this time, the generator is trained using a linear combination of the WGAN (65) loss and the RL (67) (reinforcement learning) loss:
L(ω)=αLWGAN(ω)+(1α)LRL(ω)
(1)
where α ∈ [0, 1] is a hyperparameter that controls the tradeoff between WGAN loss and RL loss, and ω are the inputs to networks. Here, we set α = {1.0, 0.5, 0.01} to weigh the loss between two components and the goal of improving SA, and QED to train MolGAN and QuMolGAN, as suggested by the medical chemists. In addition, we also add the unique score into the goal to prevent the model from generating the same molecules. We have trained MolGAN and QuMolGAN with (α = {0.5, 0.01}) and without (α = 1.0) RL loss using the same hyperparameters for 150 epochs, and the results are shown in Table 2. The input noise dimension to the generator is 4 (z_dim = 4). It is noted that the QED, Solute, and SA scores in this table are calculated from the valid molecules. In this table, the KL Scores of MolGAN are always greater than their quantum counterparts in different weights of RL loss. However, QuMolGAN can achieve a higher goal (from 0.47 to 0.57 in QED and from 0.29 to 0.76 in SA), compared to MolGAN (from 0.47 to 0.52 in QED and from 0.30 to 0.60 in SA) while α = 0.01. The solute is not the goal so these scores are close for MolGAN and QuMolGAN.
Table 2. Performance Comparison between MolGAN and QuMolGAN with (α = {0.5, 0.01}) and without (α = 1.0) Reinforcement Learning Loss in the Goal-Directed Benchmarka
 MolGANQuMolGAN
 α = 1.0α = 0.5α = 0.01α = 1.0α = 0.5α = 0.01
number of moleculesb28902700696534309116
validity ↑80.4078.4868.7670.0270.3242.94
uniqueness ↑71.8968.8120.2415.258.785.40
QED ↑0.470.480.520.470.490.57
Solute ↑0.310.310.450.320.300.44
SA ↑0.300.310.650.290.280.76
KL Score (S)c ↑0.950.940.580.920.820.31
a

Note that the QED, Solute, and SA scores in this table are calculated from the valid molecules. Bold numbers indicate better scores among the same type of models with different RL weights α, and the underlined numbers indicate the best scores across different types of models.

b

Number of valid and unique molecules from 5000 samples.

c

From eq 2.

Quantum Generator

In the second experiment, we try to benchmark the advantage of the quantum circuit in the generator of GAN. We have tried to substitute the generator of MolGAN with a VQC described in ref (58) for the small molecule generation. The performance of MolGAN with the quantum generator (MolGAN-QC) is reported in Table 3.
Table 3. Performance of MolGAN with the Quantum Generatora
# epochnumber of moleculesbvalidity ↑uniqueness ↑novelty ↑diversity ↑QED ↑solubility ↑SA ↑KL Score (S)c ↑
17379.394.491001.000.430.750.240.24
25476.373.451001.000.470.750.240.25
34378.472.681001.000.480.750.110.28
42978.611.801001.000.480.750.130.29
53077.931.881001.000.480.750.140.30
64078.372.491001.000.480.750.090.21
72980.271.761001.000.470.750.060.28
83978.912.411001.000.480.750.160.28
94174.662.681001.000.480.750.220.25
102979.741.781001.000.480.750.080.27
a

The QED, Solute, and SA scores in this table are calculated from the valid molecules.

b

Number of valid and unique molecules from 2048 samples from Gaussian distribution.

c

From eq 2.

Although the integration works smoothly, the training processing is time-consuming and resource-consuming. The average training time per step takes ∼39 s in the Amazon EC2 C6a Metal Instance, which results in ∼3.5 days per epoch. In addition, the model has difficulty generating more valid and unique molecules after being trained for ten epochs. It fails to generate the training-data-like molecules, even after 10 epochs of training. Random-picked and cherry-picked examples of generated molecules are shown in Figure S1. Most generated molecules are similar to the randomly sampled molecules in Figure S1. However, we demonstrate that the quantum generator has the potential to generate small molecules.

Quantum Discriminator

In the third experiment, in addition to substituting the generator architecture, the architecture with a quantum discriminator combined with the classical generator described in MolGAN has been examined. Our goal is to determine if the quantum discriminator shows any advantage over its classical counterparts. We have found that the number of learnable parameters is significantly less than the classical ones, while the model can still generate valid molecules. Furthermore, to conduct a fair comparison between the classical discriminator and the quantum one, we changed the MolGAN classical graph-based discriminator to the multiple-layer perceptron (MLP) architecture, which is more similar to our proposed quantum discriminator architecture, reduced the number of its training parameters, and found that quantum discriminator with 50 training parameters outperforms the classical discriminator with 22,500 parameters in terms of generated molecule properties and KL divergence. For simplicity, all the combinations of the classical/quantum noise/generator/discriminator are listed in Table S4. In this experiment, the noises of the generator are always sampled from the Gaussian distribution.
In the following subparagraphs, we first present our proposed MolGAN-CQ and the training details. Second, we compare the results of MolGAN-CQ with MolGAN. In the end, we made architecture modifications from the Graph-Classical-Discriminator in MolGAN to the MLP-Classical-Discriminator (MolGAN-CC) and reduced the amount of the learnable parameters to make a fair comparison with MolGAN-CQ.

MolGAN-CQ Architecture and Training Details

As illustrated in Figure 1a, the MolGAN-CQ consists of three components: a classical noise generator, a classical generator, and a quantum discriminator. To encode two generator outputs, a bond matrix and an atom vector, into the quantum discriminator efficiently, we first flatten the bond matrix into a vector, which is subsequently concatenated with the atom vector to a new vector with a size of 450. After that, the resulting vector will be the input of the Q-Discriminator, composed of an amplitude embedding layer followed by three strongly entangling layers as described in Figure 1e. For the training details, at first, we followed the best hyperparameters set in MolGAN. However, applying the same training details on MolGAN-CQ makes the training process hard to converge. Therefore, we change the learning rate from 1 × 10–3 to 1 × 10–4 for the generator to make it more stable. Moreover, we have experimented with the alternating training times between the classical generator and quantum discriminator with several sets, including (G, D)=(1, 5), (1, 8), (1, 10). We found out that training 1 step C-Generator followed by 10 steps Q-Discriminator stabilizes the training process. The other hyperparameters remain identical to the ones in MolGAN.

Comparison with Classical MolGAN

In this section, we compare MolGAN-CQ with MolGAN. We trained MolGAN according to the best hyperparameter sets found in the previous section. Notice here, since training a quantum network is time-consuming, and the loss curve from classical MolGAN at epoch 30 shows the trend of convergence, both MolGAN-CQ and MolGAN were only trained to epoch 30 and evaluated at epoch 30 instead of epoch 150. After that, both models generate 5000 samples to do a further comparison. Table 4 demonstrates that MolGAN-CQ can generate valid and druglike molecules. In addition, MolGAN-CQ can generate molecules with better drug properties, particularly in Solute and SA. However, compared to classical MolGAN, MolGAN-CQ does not have an advantage in KL divergence with training data probability. Figure 3c shows some molecules generated from MolGAN-CQ.
Table 4. Performance Comparison between MolGAN and MolGAN-CQa
 MolGANMolGAN-CQ
# of moleculesb2693730
Validity ↑7631.34
Uniqueness ↑70.8746.59
QED ↑0.470.48
Solute ↑0.310.44
SA ↑0.310.66
KL Score (S)c0.940.75
a

The models are only trained for 30 epochs. Bold numbers indicate better scores. The QED, Solute, and SA scores in this table are calculated from the valid molecules.

b

Number of valid and unique molecules from 5000 samples.

c

From eq 2

Comparison with MolGAN-CC

In this section, MolGAN-CQ is compared with MolGAN-CC with different numbers of hidden layers to evaluate MolGAN-CQ’s capacity. To have a fair comparison, we modified the original graph-based network to a multiple-layer perceptron (MLP), as shown in Figure 1g. Under this condition, the input of the MLP-based discriminator would be the same as the one in MolGAN-CQ’s quantum discriminator, a flattened vector instead of a graph. The network architecture of MolGAN-CC consists of a classical noise generator, a classical generator, and the classical MLP-based discriminator, as shown in Figure 1a. Furthermore, since the discriminator of MolGAN-CQ only has 50 learnable parameters, we have tried to reduce the discriminator size of MolGAN-CC as small as possible for a fair and reasonable evaluation. However, the input vector is already a size of 450, it is not possible to decrease the parameter size to 50 in the classical MLP. Therefore, we have tried MolGAN-CC with three different parameter sizes of discriminator, as shown in Table S6 in the Supporting Information. MolGAN-CC-ER (extremely reduction) has three layers with sizes (450, 50, 1) in the discriminator, and the total parameter size is 22 000. MolGAN-CC-HR (highly reduction) has three layers with size (450, 100, 1) in the discriminator, and the total parameter size is 45 000, MolGAN-CC-NR (no reduction) has four layers with sizes (450, 150, 50, 1) in the discriminator, and the total parameter size is 82 000.
Table 5 demonstrates that, although MolGAN-CC-NR and MolGAN-CC-HR have a higher capacity to generate molecules whose molecule properties are more similar to the training data, MolGAN-CQ with only 50 parameters can achieve an outstanding performance, compared to MolGAN-CC-ER with 22K parameters in terms of KL-score which shows the quantum advantage in the expression power. The distributions of molecular properties of MolLogP, MolWt, and BertzCT, generated from MolGAN-CC-ER, MolGAN-CQ, MolGAN, and QM9, are shown in Figure 2c. As we can see from Figure 2c, molecular properties from MolGAN are closer to the ones from the training data, QM9, compared to MolGAN-CQ and MolGAN-CC-ER. Nevertheless, MolGAN-CQ with only 50 parameters could generate molecules with similar distribution to the training data in comparison to MolGAN-CC-ER with 22 000 parameters.
Table 5. Performance Comparison between MolGAN-CQ and MolGAN-CC with Three Different Sizes of the MLP-Based Discriminatora
 MolGAN-CQMolGAN-CC-ERMolGAN-CC-HRMolGAN-CC-NR
number of parameters5022K45K82K
number of moleculesb73010419192284
Validity ↑31.3499.7844.154.7
Uniqueness ↑46.592.0887.0383.51
QED ↑0.480.510.490.5
Solute ↑0.440.630.350.38
SA ↑0.660.970.480.50
KL Score (S)c0.750.280.840.81
a

Bold numbers indicate better performance across different types of models. The QED, Solute, and SA scores in this table are calculated from the valid molecules.

b

Number of valid and unique molecules from 5000 samples.

c

From eq 2

Conclusions

Click to copy section linkSection link copied!

In this paper, we have explored the quantum advantage in small-molecule drug discovery by substituting each part of MolGAN (34) with a VQC step by step and comparing its performance with the classical counterpart. In the first experiment, using a VQC as a noise generator to the classical GAN can generate small molecules with better drug properties, including QED, SA, and LogP, particularly when the input dimension to the generator is small, e.g., z_dim = 2 or z_dim = 3. However, QuMolGAN has difficulty generating as many unique molecules compared to classical MolGAN, which results in a lower KL Score. In addition, this hybrid model achieves better performance in the goal-directed benchmark, compared to the classical counterpart. In the second experiment, we substitute the classical generator with a VQC with the patch method. (58) We demonstrated the potential of generating training-set-like small molecules using a quantum generator. However, the training processing is resource-consuming and time-consuming, even in the advanced classical computer. In the third experiment, we replace the classical discriminator with a VQC and compare its performance with the classical counterpart. This hybrid model MolGAN-CQ outperforms the classical counterpart, in terms of generated molecule properties and the KL score. We also demonstrated that the hybrid model could generate valid molecules with only tens of learnable parameters in a quantum discriminator. The proposed hybrid model has the potential to be integrated into the Insilico Medicine Chemistry42 (62) platform (see Figure S2 in the Supporting Information).
Finally, expressive power illustrates the capability of a model to capture the distribution of the target features. Increasing model complexity can normally enhance this capability. In our work, we demonstrate that a quantum circuit consisting of only 50 learnable parameters is able to generate a distribution similar to what classical generates but with 20K learnable parameters. Therefore, the quantum advantage in expressive power is observed.

Materials and Methods

Click to copy section linkSection link copied!

In this section, we will first introduce the evaluation method and metrics followed by the dataset, we used to train the generative models. Then, the methodologies will be introduced.

Evaluation Method and Metrics

To evaluate the performance of different generative models, we first generate 5000 noise samples from Gaussian distribution and variational quantum circuits for MolGAN and QuMolGAN, respectively. The generated noise samples are then fed into the trained generator of models to produce the atom vectors and bond matrices. In the end, these vectors and matrices are used to construct the molecular graphs. Seven evaluation metrics described below will be calculated from the molecular graphs.
Three quality metrics, i.e., validity, uniqueness, and novelty used in refs (68) and (69) and three drug properties, i.e., quantitative estimation of drug-likeness (QED), solubility, and synthesizability (SA), is used to compare different generative models in this work. Validity is the ratio of the valid molecules to all generated molecules, and uniqueness is the ratio of unique molecules to the valid molecules. Novelty is defined as the ratio of valid molecules that are not in the training dataset to all valid molecules. In addition, we also measure the diversity of generated molecules which is defined as how likely the generated molecules are to be diverse to the training dataset. We also report the valid and unique molecules (number of molecules) from 5000 noise samples. QED (70) measures how likely a molecule is to be a drug based on the concept of desirability. Solubility reports the n-octanol–water partition coefficient (logP) (71) of the molecule that is the degree of a molecule being hydrophilic. SA (72) quantifies how easy a molecule is to be synthesized based on the molecular complexity and fragment contributions. These property metrics are calculated by using RDKit. (73)
The Kullback–Leibler (KL) divergences (74) are also calculated, and it measures how well a probability distribution approximates another distribution. The probability distributions of a variety of physicochemical descriptors including BertzCT (molecular complexity index), MolLogP (Wildman-Crippen LogP value (71)), MolWt (molecular weight), TPSA (molecular polar surface area), NumHAcceptors (number of hydrogen acceptors), NumHDonors (number of hydrogen donors), NumRotatableBonds (number of rotatable bonds), NumAliphaticRings (number of aliphatic rings), and NumAromaticRings (number of aromatic rings) for the generated molecules and the molecules of the training set are compared, and the corresponding KL-divergence scores DKL,i are computed. Models able to capture the distributions of molecules in the training set will lead to small KL-divergence scores (DKL). However, the final KL-divergence score (S) (66) used in this paper is computed by
S=19i=19exp(DKL,i)
(2)
Therefore, the larger final KL-divergence score (S) represents how well the model can capture these nine physicochemical distributions of molecules in the training set.

Dataset

Click to copy section linkSection link copied!

All experiments of this work use the QM9 (Quantum Machines 9) (75) dataset. The QM9 dataset is curated from the GDB-17 chemical database, (76) which has ∼166.4 billion molecules. QM9 consists of 133 171 molecules containing less than or equal to nine non-hydrogen atoms (carbon, nitrogen, oxygen, and fluorine). Figure S3 in the Supporting Information shows some molecules from the QM9 dataset, and the average QED, solubility, and SA of those 133 171 molecules are 0.461, 0.289, and 0.327, respectively.

Methodology

Click to copy section linkSection link copied!

Variational Quantum Circuits (VQCs)

A Quantum gate is a basic quantum circuit operating on a small number of qubits. In this work, two controlled gates (Controlled-X gate and Controlled-Z gate) and four single-qubit rotations (Rx, Ry, Rz, and R) are used to construct the variational quantum circuit. Controlled-X (CNOT) gate is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the second qubit as the target qubit.
CNOT=[1000010000010010]
(3)
A Controlled-Z (CZ) gate is a two-qubit operation defined as
CZ=[1000010000100001]
(4)
The Rx, Ry, and Rz gates are the essential rotation operators in the quantum circuit. The Rx gate is a single-qubit rotation through an angle θ in radians around the x-axis, and it is defined as
Rx(θ)=(cos(θ/2)isin(θ/2)isin(θ/2)cos(θ/2))
(5)
The Ry gate is a single-qubit rotation through an angle θ in radians around the y-axis, and it is defined as
Ry(θ)=(cos(θ/2)sin(θ/2)sin(θ/2)cos(θ/2))
(6)
The Rz gate is a single-qubit rotation through an angle θ in radians around the z-axis, and it is defined as
Rz(θ)=(eiθ/200eiθ/2)
(7)
The R gate is a single-qubit rotation through arbitrary angles α, β, and γ (in radians), and it can be decomposed into Ry and Rz gates. It is defined as
R(α,β,γ)=Rz(γ)Ry(β)Rz(α)=(ei(α+γ)/2cos(β/2)ei(αγ)/2sin(β/2)ei(αγ)/2sin(β/2)ei(α+γ)/2cos(β/2))
(8)
A variational quantum circuit (VQC) shown in Figures 1b and 1d consists of three ingredients: (1) the preparation of a fixed initial state, (2) a quantum circuit, and (3) the measurement. The initialization layer may contain Rx, Ry, Rz, and R gates, and the rotation angles are sampled from a uniform distribution or Gaussian distribution. The parametrized layers, which could be repeated for L times could have CNOT gates, CZ gates, and parametrized rotational gates whose parameters (rotation angle) can be learned through the back-propagation. The measurement takes the expected value of each qubit.

VQC of Noise Generator

In this work, MolGAN (34) is used as the base model for small molecule generation. We extend its noise generation part to the quantum domain and demonstrate the quantum advantage in the small molecule generation. MolGAN (34) is an implicit and likelihood-free generative model for small molecular graph generation. In contrast to the sequence-based models, MolGAN directly works on the graph representation of molecules. MolGAN also bypasses the requirement of expensive graph-matching procedures and node-ordering heuristics of likelihood-based methods. In the classical GANs, (21) the inputs to the generator are sampled from a distribution, e.g., uniform distribution or Gaussian distribution. Here, we would like to demonstrate the quantum advantage in the small molecule generation by utilizing a variational quantum circuit to generate the inputs of the generator, and we call this hybrid model QuMolGAN. The schema of MolGAN and QuMolGAN is shown in Figure 1a. The generator takes the noise as input and generates the molecular graph including the atom vector and bond matrix. The noise is sampled from the Gaussian distribution for the MolGAN, and the noise is generated from the VQC in Figure 1b for the QuMolGAN. The discriminator tries to distinguish between the fake molecular graph from the generator and the real molecular graph from the data distribution. More details of MolGAN can be found in the original MolGAN (34) paper.

VQC of Quantum Generator

We implement the patch method (58) in the quantum generator of MolGAN (MolGAN-QC). This method uses multiple VQCs as subgenerators, and each subgenerator is responsible for constructing a partial part of the final output, e.g., the molecular graph in this study. The final molecular graph, which consists of the atom vector and bond matrix, is constructed by concatenating all the partial patches together, as shown in Figure 1c. The subgenerator shares the same ansatz architecture as shown in Figure 1d. Each ansatz circuit consists of the preparation of the initialization state, a single layer of a 4-qubit circuit, and the measurement. The initialization layer contains Ry gates, and the rotation angles (zi) are sampled from a uniform distribution. The parametrized layers (could be repeated for L times) have CZ gates and one type of parametrized rotational gates, Ry whose parameters (θk) can be learned through back-propagation.

VQC of Quantum Discriminator

The quantum discriminator takes the molecular graph as input and determines if this molecular graph is fake (from the generator) or real (from the data distribution). The VQC of the quantum discriminator consists of the amplitude encoding layer (77) (Sx), the strongly entangling layers (Uθ) inspired by ref (78) and the measurement, as shown in Figure 1e. Amplitude encoding is used to encode the atom vector and bond matrix. The strongly entangling layers (78) have multiple CNOT gates and parametrized rotational gates R(α,β,γ), as shown in Figure 1f. In each layer, each qubit starts with parametrized rotational gates Riii) followed by a CNOT gate. The parametrized angles αiii can be learned through back-propagation. The measurement takes the expected value of one qubit, and this value is used to determine if the input molecular graph is real or fake. In our experiment, we use nine qubits to encode the molecular graph and three layers of strongly entanglement layers.

Data Availability

Click to copy section linkSection link copied!

The data acquisition code and source codes associated with this study are publicly available at https://github.com/pykao/QuantumMolGAN-PyTorch. The discriminator branch contains a classical/quantum noise generator, a classical generator, and a classical/quantum discriminator. This branch can be used for the quantum noise generator and the quantum discriminator. The generator branch contains a classical/quantum noise generator, a classical/quantum generator, and a classical discriminator. This branch can be used for the quantum generator.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.3c00562.

  • Different complexities of generators in MolGAN; different input noise dimensions of the generator in MolGAN-HR; different parametrized layers of QuMolGAN-HR; all the combinations of the classical/quantum noise/generator/discriminator and their corresponding model name; different numbers of qubits in the quantum circuit of QuMolGAN-HR; the details of MolGAN-CC models with the varied size of discriminators; example molecules from the quantum generator; integration of proposed hybrid generative models with Insilico Medicine Chemistry42 (62) platform; example molecules of QM9 (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Alex Zhavoronkov - Insilico Medicine Hong Kong Ltd., Hong Kong SAR, 999077, China Email: [email protected]
    • Min-Hsiu Hsieh - Hon Hai (Foxconn) Research Institute, Taipei 114699, Taiwan Email: [email protected]
    • Yen-Chu Lin - Insilico Medicine Taiwan Ltd., Taipei 110208, TaiwanDepartment of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan Email: [email protected]
  • Authors
    • Po-Yu Kao - Insilico Medicine Taiwan Ltd., Taipei 110208, TaiwanOrcidhttps://orcid.org/0000-0002-9439-8819
    • Ya-Chu Yang - Insilico Medicine Taiwan Ltd., Taipei 110208, Taiwan
    • Wei-Yin Chiang - Hon Hai (Foxconn) Research Institute, Taipei 114699, Taiwan
    • Jen-Yueh Hsiao - Hon Hai (Foxconn) Research Institute, Taipei 114699, Taiwan
    • Yudong Cao - Zapata Computing, Inc., Boston, Massachusetts 02110, United States
    • Alex Aliper - Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
    • Feng Ren - Insilico Medicine Shanghai Ltd., Shanghai 201203, China
    • Alán Aspuru-Guzik - Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, CanadaDepartment of Computer Science, University of Toronto, Toronto, ON M5S 2E4, CanadaVector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, CanadaLebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5S 1M1, CanadaOrcidhttps://orcid.org/0000-0002-8277-4434
  • Notes
    The authors declare no competing financial interest.

References

Click to copy section linkSection link copied!

This article references 78 other publications.

  1. 1
    Hingorani, A. D.; Kuan, V.; Finan, C.; Kruger, F. A.; Gaulton, A.; Chopade, S.; Sofat, R.; MacAllister, R. J.; Overington, J. P.; Hemingway, H.; Denaxas, S.; Prieto, D.; Casas, J. P. Improving the odds of drug development success through human genomics: modelling study. Sci. Rep. 2019, 9, 125,  DOI: 10.1038/s41598-019-54849-w
  2. 2
    Abreu, J. L. Ivermectin for the Prevention of COVID-19 So...WHO is Telling the Truth. Revista Daena (Int. J. Good Conscience) 2020, 15 (2), 130
  3. 3
    Wouters, O. J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. Jama 2020, 323, 844853,  DOI: 10.1001/jama.2020.1166
  4. 4
    Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharmaceutics 2016, 13, 25242530,  DOI: 10.1021/acs.molpharmaceut.6b00248
  5. 5
    Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 2017, 8, 10883,  DOI: 10.18632/oncotarget.14073
  6. 6
    Zhavoronkov, A. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Mol. Pharmaceutics 2018, 15, 4311,  DOI: 10.1021/acs.molpharmaceut.8b00930
  7. 7
    Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F. J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021, 19, 45384558,  DOI: 10.1016/j.csbj.2021.08.011
  8. 8
    Kao, P.-Y.; Kao, S.-M.; Huang, N.-L.; Lin, Y.-C. Toward Drug-Target Interaction Prediction via Ensemble Modeling and Transfer Learning. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) , 2021; pp 23842391.
  9. 9
    Kolluri, S.; Lin, J.; Liu, R.; Zhang, Y.; Zhang, W. Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: a Review. AAPS J. 2022, 24, 110,  DOI: 10.1208/s12248-021-00644-3
  10. 10
    Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.; Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 10381040,  DOI: 10.1038/s41587-019-0224-x
  11. 11
    Chan, H. S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 2019, 40, 592604,  DOI: 10.1016/j.tips.2019.06.004
  12. 12
    Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discovery 2005, 4, 649663,  DOI: 10.1038/nrd1799
  13. 13
    Fischer, T.; Gazzola, S.; Riedl, R. Approaching target selectivity by de novo drug design. Expert Opin. Drug Discovery 2019, 14, 791803,  DOI: 10.1080/17460441.2019.1615435
  14. 14
    Mouchlis, V. D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A. G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci. 2021, 22, 1676,  DOI: 10.3390/ijms22041676
  15. 15
    Speck-Planche, A. Recent advances in fragment-based computational drug design: tackling simultaneous targets/biological effects. Future Med. Chem. 2018, 10, 20212024,  DOI: 10.4155/fmc-2018-0213
  16. 16
    Mamoshina, P.; Ojomoko, L.; Yanovich, Y.; Ostrovski, A.; Botezatu, A.; Prikhodko, P.; Izumchenko, E.; Aliper, A.; Romantsov, K.; Zhebrak, A.; Ogu, I. O.; Zhavoronkov, A. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018, 9, 5665,  DOI: 10.18632/oncotarget.22345
  17. 17
    Zhavoronkov, A.; Zagribelnyy, B.; Zhebrak, A.; Aladinskiy, V.; Terentiev, V.; Vanhaelen, Q.; Bezrukov, D. S.; Polykovskiy, D.; Shayakhmetov, R.; Filimonov, A.; Filimonov, A.; Bishop, M.; McCloskey, S.; Lejia, E.; Bright, D.; Funakawa, K.; Lin, Y.-C.; Huang, S.-H.; Liao, H.-J.; Aliper, A.; Ivanenkov, Y. Potential non-covalent SARS-CoV-2 3C-like protease inhibitors designed using generative deep learning approaches and reviewed by human medicinal chemist in virtual reality. ChemRxiv , 2020.
  18. 18
    Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R. K. Artificial intelligence in drug discovery and development. Drug Discovery Today 2021, 26, 80,  DOI: 10.1016/j.drudis.2020.10.010
  19. 19
    Martinelli, D. Generative machine learning for de novo drug discovery: A systematic review. Comput. Biol. Med. 2022, 145, 105403,  DOI: 10.1016/j.compbiomed.2022.105403
  20. 20
    Gao, K.; Nguyen, D. D.; Tu, M.; Wei, G.-W. Generative Network Complex for the Automated Generation of Drug-like Molecules. J. Chem. Inf. Model. 2020, 60, 56825698,  DOI: 10.1021/acs.jcim.0c00599
  21. 21
    Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems 27 (NIPS 2014); Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N.; Weinberger, K. Q., Eds.; 2014.
  22. 22
    Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint , 2017, arXiv:1710.10196.
  23. 23
    Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A. A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2017; pp 11251134.
  24. 24
    Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision , 2017; pp 22232232.
  25. 25
    Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , 2019; pp 44014410.
  26. 26
    Jangid, D. K.; Brodnik, N. R.; Khan, A.; Goebel, M. G.; Echlin, M. P.; Pollock, T. M.; Daly, S. H.; Manjunath, B. 3D Grain Shape Generation in Polycrystals Using Generative Adversarial Networks. Integr. Mater. Manuf. Innov. 2022, 11, 7184,  DOI: 10.1007/s40192-021-00244-1
  27. 27
    Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharmaceutics 2017, 14, 30983104,  DOI: 10.1021/acs.molpharmaceut.7b00346
  28. 28
    Vanhaelen, Q.; Lin, Y.-C.; Zhavoronkov, A. The advent of generative chemistry. ACS Med. Chem. Lett. 2020, 11, 14961505,  DOI: 10.1021/acsmedchemlett.0c00088
  29. 29
    Xu, M.; Cheng, J.; Liu, Y.; Huang, W. DeepGAN: Generating Molecule for Drug Discovery Based on Generative Adversarial Network. In 2021 IEEE Symposium on Computers and Communications (ISCC) , 2021; pp 16.
  30. 30
    Guimaraes, G. L.; Sanchez-Lengeling, B.; Outeiral, C.; Farias, P. L. C.; Aspuru-Guzik, A. Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. arXiv preprint , arXiv:1705.10843, 2017.
  31. 31
    Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: sequence generative adversarial nets with policy gradient. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence , 2017; pp 28522858.
  32. 32
    Prykhodko, O.; Johansson, S. V.; Kotsias, P.-C.; Arús-Pous, J.; Bjerrum, E. J.; Engkvist, O.; Chen, H. A de novo molecular generation method using latent vector based generative adversarial network. J. Cheminf. 2019, 11, 113,  DOI: 10.1186/s13321-019-0397-9
  33. 33
    Kotsias, P.-C.; Arús-Pous, J.; Chen, H.; Engkvist, O.; Tyrchan, C.; Bjerrum, E. J. Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. Nat. Mach. Intell. 2020, 2, 254265,  DOI: 10.1038/s42256-020-0174-5
  34. 34
    De Cao, N.; Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 2018,.
  35. 35
    Neukart, F.; Compostella, G.; Seidel, C.; Von Dollen, D.; Yarkoni, S.; Parney, B. Traffic flow optimization using a quantum annealer. Front. ICT 2017, 4, 29,  DOI: 10.3389/fict.2017.00029
  36. 36
    Harwood, S.; Gambella, C.; Trenev, D.; Simonetto, A.; Bernal Neira, D.; Greenberg, D. Formulating and solving routing problems on quantum computers. IEEE Trans. Quantum Eng. 2021, 2, 117,  DOI: 10.1109/TQE.2021.3049230
  37. 37
    Orus, R.; Mugel, S.; Lizaso, E. Quantum computing for finance: Overview and prospects. Rev. Phys. 2019, 4, 100028,  DOI: 10.1016/j.revip.2019.100028
  38. 38
    Liu, G.; Ma, W. A quantum artificial neural network for stock closing price prediction. Inf. Sci. (N.Y.) 2022, 598, 7585,  DOI: 10.1016/j.ins.2022.03.064
  39. 39
    Du, Y.; Yang, Y.; Tao, D.; Hsieh, M.-H. Demystify Problem-Dependent Power of Quantum Neural Networks on Multi-Class Classification. arXiv preprint , arXiv:2301.01597, 2022.
  40. 40
    Yin, X.-F.; Du, Y.; Fei, Y.-Y.; Zhang, R.; Liu, L.-Z.; Mao, Y.; Liu, T.; Hsieh, M.-H.; Li, L.; Liu, N.-L.; Tao, D.; Chen, Y.-A.; Pan, J.-W. Efficient Bipartite Entanglement Detection Scheme with a Quantum Adversarial Solver. Phys. Rev. Lett. 2022, 128, 110501,  DOI: 10.1103/PhysRevLett.128.110501
  41. 41
    Rudolph, M. S.; Toussaint, N. B.; Katabarwa, A.; Johri, S.; Peropadre, B.; Perdomo-Ortiz, A. Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev. X 2022, 12, 031010,  DOI: 10.1103/PhysRevX.12.031010
  42. 42
    Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Simulated quantum computation of molecular energies. Science 2005, 309, 17041707,  DOI: 10.1126/science.1113479
  43. 43
    Lanyon, B. P.; Whitfield, J. D.; Gillett, G. G.; Goggin, M. E.; Almeida, M. P.; Kassal, I.; Biamonte, J. D.; Mohseni, M.; Powell, B. J.; Barbieri, M.; Aspuru-Guzik, A.; White, A. G. Towards quantum chemistry on a quantum computer. Nat. Chem. 2010, 2, 106111,  DOI: 10.1038/nchem.483
  44. 44
    Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-Guzik, A.; O’brien, J. L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 17,  DOI: 10.1038/ncomms5213
  45. 45
    O’Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Coveney, P. V.; Love, P. J.; Neven, H.; Aspuru-Guzik, A.; Martinis, J. M. Scalable quantum simulation of molecular energies. Phys. Rev. X 2016, 6, 031007,  DOI: 10.1103/PhysRevX.6.031007
  46. 46
    Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242246,  DOI: 10.1038/nature23879
  47. 47
    Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 1085610915,  DOI: 10.1021/acs.chemrev.8b00803
  48. 48
    Quantum, G. A.; Collaborators*†; Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.; Barends, R.; Boixo, S.; Broughton, M. Hartree-Fock on a superconducting qubit quantum computer. Science 2020, 369, 10841089,  DOI: 10.1126/science.abb9811
  49. 49
    Gao, Q.; Nakamura, H.; Gujarati, T. P.; Jones, G. O.; Rice, J. E.; Wood, S. P.; Pistoia, M.; Garcia, J. M.; Yamamoto, N. Computational investigations of the lithium superoxide dimer rearrangement on noisy quantum devices. J. Phys. Chem. A 2021, 125, 18271836,  DOI: 10.1021/acs.jpca.0c09530
  50. 50
    Shee, Y.; Yeh, T.-L.; Hsiao, J.-Y.; Yang, A.; Lin, Y.-C.; Hsieh, M.-H. Quantum Simulation of Preferred Tautomeric State Prediction. arXiv preprint , arXiv:2210.02977, 2022.
  51. 51
    Cao, Y.; Romero, J.; Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 2018, 62, 120,  DOI: 10.1147/JRD.2018.2888987
  52. 52
    Li, J.; Topaloglu, R. O.; Ghosh, S. Quantum generative models for small molecule drug discovery. IEEE Trans. Quantum Eng. 2021, 2, 18,  DOI: 10.1109/TQE.2021.3104804
  53. 53
    Bharti, K.; Cervera-Lierta, A.; Kyaw, T. H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J. S.; Menke, T.; Mok, W.-K.; Sim, S.; Kwek, L.-C.; Aspuru-Guzik, A. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004,  DOI: 10.1103/RevModPhys.94.015004
  54. 54
    Du, Y.; Hsieh, M.-H.; Liu, T.; Tao, D. Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2020, 2, 033125,  DOI: 10.1103/PhysRevResearch.2.033125
  55. 55
    Du, Y.; Hsieh, M.-H.; Liu, T.; You, S.; Tao, D. Learnability of quantum neural networks. PRX Quantum 2021, 2, 040337,  DOI: 10.1103/PRXQuantum.2.040337
  56. 56
    Du, Y.; Hsieh, M.-H.; Liu, T.; Tao, D.; Liu, N. Quantum noise protects quantum classifiers against adversaries. Phys. Rev. Res. 2021, 3, 023153,  DOI: 10.1103/PhysRevResearch.3.023153
  57. 57
    Lloyd, S.; Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett. 2018, 121, 040502,  DOI: 10.1103/PhysRevLett.121.040502
  58. 58
    Huang, H.-L.; Du, Y.; Gong, M.; Zhao, Y.; Wu, Y.; Wang, C.; Li, S.; Liang, F.; Lin, J.; Xu, Y.; Yang, R.; Liu, T.; Hsieh, M.-H.; Deng, H.; Rong, H.; Peng, C.-Z.; Lu, C.-Y.; Chen, Y.-A.; Tao, D.; Zhu, X.; Pan, J.-W. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 2021, 16, 024051,  DOI: 10.1103/PhysRevApplied.16.024051
  59. 59
    Dallaire-Demers, P.-L.; Killoran, N. Quantum generative adversarial networks. Phys. Rev. A 2018, 98, 012324,  DOI: 10.1103/PhysRevA.98.012324
  60. 60
    Romero, J.; Aspuru-Guzik, A. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Adv. Quantum Technol. 2021, 4, 2000003,  DOI: 10.1002/qute.202000003
  61. 61
    Li, J. Quantum GAN with Hybrid Generator. https://github.com/jundeli/quantum-gan, accessed Aug. 2, 2021.
  62. 62
    Ivanenkov, Y. A.; Polykovskiy, D.; Bezrukov, D.; Zagribelnyy, B.; Aladinskiy, V.; Kamya, P.; Aliper, A.; Ren, F.; Zhavoronkov, A. Chemistry42: An AI-Driven Platform for Molecular Design and Optimization. J. Chem. Inf. Model. 2023, 63, 695701,  DOI: 10.1021/acs.jcim.2c01191
  63. 63
    Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M. S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A.; Arrazola, J. M.; Azad, U.; Banning, S.; Blank, C.; Bromley, T. R.; Cordier, B. A.; Ceroni, J.; Delgado, A.; Di Matteo, O.; Dusko, A.; Garg, T.; Guala, D.; Hayes, A.; Hill, R.; Ijaz, A.; Isacsson, T.; Ittah, D.; Jahangiri, S.; Jain, P.; Jiang, E.; Khandelwal, A.; Kottmann, K.; Lang, R. A.; Lee, C.; Loke, T.; Lowe, A.; McKiernan, K.; Meyer, J. J.; Montañez-Barrera, J. A.; Moyard, R.; Niu, Z.; O’Riordan, L. J.; Oud, S.; Panigrahi, A.; Park, C.-Y.; Polatajko, D.; Quesada, N.; Roberts, C.; Sá, N.; Schoch, I.; Shi, B.; Shu, S.; Sim, S.; Singh, A.; Strandberg, I.; Soni, J.; Száva, A.; Thabet, S.; Vargas-Hernández, R. A.; Vincent, T.; Vitucci, N.; Weber, M.; Wierichs, D.; Wiersema, R.; Willmann, M.; Wong, V.; Zhang, S.; Killoran, N. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint , arXiv:1811.04968, 2018.
  64. 64
    Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in pytorch. Presented at the NIPS 2017 Autodiff Workshop , 2017.
  65. 65
    Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In International Conference on Machine Learning , 2017; pp 214 223.
  66. 66
    Brown, N.; Fiscato, M.; Segler, M. H.; Vaucher, A. C. GuacaMol: benchmarking models for de novo molecular design. J. Chem. Inf. Model. 2019, 59, 10961108,  DOI: 10.1021/acs.jcim.8b00839
  67. 67
    Kaelbling, L. P.; Littman, M. L.; Moore, A. W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237285,  DOI: 10.1613/jair.301
  68. 68
    Samanta, B.; De, A.; Ganguly, N.; Gomez-Rodriguez, M. Designing random graph models using variational autoencoders with applications to chemical design. arXiv preprint , arXiv:1802.05283, 2018.
  69. 69
    Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.; Golovanov, S.; Tatanov, O.; Belyaev, S.; Kurbanov, R.; Artamonov, A.; Aladinskiy, V.; Veselov, M.; Kadurin, A.; Johansson, S.; Chen, H.; Nikolenko, S.; Aspuru-Guzik, A.; Zhavoronkov, A. Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol. 2020, 11, 565644,  DOI: 10.3389/fphar.2020.565644
  70. 70
    Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 9098,  DOI: 10.1038/nchem.1243
  71. 71
    Wildman, S. A.; Crippen, G. M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Model. 1999, 39, 868873,  DOI: 10.1021/ci990307l
  72. 72
    Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminf. 2009, 1, 111,  DOI: 10.1186/1758-2946-1-8
  73. 73
    Landrum, G.; Tosco, P.; Kelley, B.; Sriniker, R.; Gedeck; ; Vianello, R.; Schneider, N.; Kawashima, E.; Dalke, A.; N, D.; Cosgrove, D.; Cole, B.; Swain, M.; Turk, S.; Savelyev, A.; Jones, G.; Vaucher, A.; Wójcikowski, M.; Take, I.; Probst, D.; Ujihara, K.; Scalfani, V. F.; godin, G.; Pahl, A.; Berenger, F.; Varjo, J. L.; Strets, J. P.; Doliath Gavid rdkit/rdkit: 2022_03_1 (Q1 2022) Release. 2022,  DOI: 10.5281/zenodo.6388425 .
  74. 74
    Kullback, S.; Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 7986,  DOI: 10.1214/aoms/1177729694
  75. 75
    Ramakrishnan, R.; Dral, P. O.; Rupp, M.; Von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 2014, 1, 17,  DOI: 10.1038/sdata.2014.22
  76. 76
    Ruddigkeit, L.; Van Deursen, R.; Blum, L. C.; Reymond, J.-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 2012, 52, 28642875,  DOI: 10.1021/ci300415d
  77. 77
    Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers, Vol. 17; Springer, 2018.
  78. 78
    Schuld, M.; Bocharov, A.; Svore, K. M.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308,  DOI: 10.1103/PhysRevA.101.032308

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 27 publications.

  1. Hongni Jin, Kenneth M. Merz, Jr. Integrating Machine Learning and Quantum Circuits for Proton Affinity Predictions. Journal of Chemical Theory and Computation 2025, 21 (5) , 2235-2243. https://doi.org/10.1021/acs.jctc.4c01609
  2. Hongfu Lu, Deheng Sun, Zhen Wang, Hui Cui, Lihua Min, Haoyu Zhang, Yihong Zhang, Jianping Wu, Xin Cai, Xiao Ding, Man Zhang, Alex Aliper, Feng Ren, Alex Zhavoronkov. Design, Synthesis, and Biological Evaluation of Novel Orally Available Covalent CDK12/13 Dual Inhibitors for the Treatment of Tumors. Journal of Medicinal Chemistry 2025, 68 (4) , 4148-4167. https://doi.org/10.1021/acs.jmedchem.4c01616
  3. Meng Zhang, Xiaoyu Ding, Zhongying Cao, Yilin Yang, Xiao Ding, Xin Cai, Man Zhang, Alex Aliper, Feng Ren, Hongfu Lu, Alex Zhavoronkov. Discovery of Potent, Highly Selective, and Orally Bioavailable MTA Cooperative PRMT5 Inhibitors with Robust In Vivo Antitumor Activity. Journal of Medicinal Chemistry 2025, 68 (2) , 1940-1955. https://doi.org/10.1021/acs.jmedchem.4c02732
  4. Hongfu Lu, Yihong Zhang, Jinxin Liu, Tao Jiang, Xiang Yu, Haoyu Zhang, Tao Liang, Jingjing Peng, Xin Cai, Xiaoling Lan, Jinmin Ren, Mei Ge, Jingyang Zhang, Jingjin Shang, Jiaojiao Yu, Hongcan Ren, Qiang Liu, Jinting Gao, Lili Tang, Xiao Ding, Man Zhang, Alex Aliper, Qiang Lu, Fusheng Zhou, Jiong Lan, Feng Ren, Alex Zhavoronkov. Discovery of a Novel Macrocyclic Noncovalent CDK7 Inhibitor for Cancer Therapy. Journal of Medicinal Chemistry 2024, 67 (22) , 20580-20594. https://doi.org/10.1021/acs.jmedchem.4c02098
  5. Matthew A. Dorsey, Kelvin Dsouza, Dhruv Ranganath, Joshua S. Harris, Thomas R. Lane, Fabio Urbina, Sean Ekins. Near-Term Quantum Classification Algorithms Applied to Antimalarial Drug Discovery. Journal of Chemical Information and Modeling 2024, 64 (15) , 5922-5930. https://doi.org/10.1021/acs.jcim.4c00953
  6. Anthony M. Smaldone, Victor S. Batista. Quantum-to-Classical Neural Network Transfer Learning Applied to Drug Toxicity Prediction. Journal of Chemical Theory and Computation 2024, 20 (11) , 4901-4908. https://doi.org/10.1021/acs.jctc.4c00432
  7. Yazhou Wang, Chao Wang, Tingting Liu, Hongyun Qi, Shan Chen, Xin Cai, Man Zhang, Alex Aliper, Feng Ren, Xiao Ding, Alex Zhavoronkov. Discovery of Tetrahydropyrazolopyrazine Derivatives as Potent and Selective MYT1 Inhibitors for the Treatment of Cancer. Journal of Medicinal Chemistry 2024, 67 (1) , 420-432. https://doi.org/10.1021/acs.jmedchem.3c01476
  8. Amandeep Singh Bhatia, Mandeep Kaur Saggi, Sabre Kais. Quantum Machine Learning Predicting ADME-Tox Properties in Drug Discovery. Journal of Chemical Information and Modeling 2023, 63 (21) , 6476-6486. https://doi.org/10.1021/acs.jcim.3c01079
  9. Alexander Hagg, Karl N. Kirschner. Open-Source Machine Learning in Computational Chemistry. Journal of Chemical Information and Modeling 2023, 63 (15) , 4505-4532. https://doi.org/10.1021/acs.jcim.3c00643
  10. Nikolay Shilov, Andrew Ponomarev, Dmitry Ryumin, Alexey Karpov. Generative Adversarial Framework with Composite Discriminator for Organization and Process Modelling—Smart City Cases. Smart Cities 2025, 8 (2) , 38. https://doi.org/10.3390/smartcities8020038
  11. Orkid Coskuner-Weber, Pier Luigi Gentili, Vladimir N. Uversky. Integrating chemical artificial intelligence and cognitive computing for predictive analysis of biological pathways: a case for intrinsically disordered proteins. Biophysical Reviews 2025, 122 https://doi.org/10.1007/s12551-025-01286-x
  12. Tigran Sedrakyan, Alexia Salavrakos. Photonic quantum generative adversarial networks for classical data. Optica Quantum 2024, 2 (6) , 458. https://doi.org/10.1364/OPTICAQ.530346
  13. Zhijiang Yang, Tengxin Huang, Li Pan, Jingjing Wang, Liangliang Wang, Junjie Ding, Junhua Xiao. QuanDB: a quantum chemical property database towards enhancing 3D molecular representation learning. Journal of Cheminformatics 2024, 16 (1) https://doi.org/10.1186/s13321-024-00843-y
  14. Jay Shree Mathivanan, Victor Violet Dhayabaran, Mary Rajathei David, Muthugobal Bagayalakshmi Karuna Nidhi, Karuppasamy Muthuvel Prasath, Suvaiyarasan Suvaithenamudhan. Application of Deep Learning Neural Networks in Computer-Aided Drug Discovery: A Review. Current Bioinformatics 2024, 19 (9) , 851-858. https://doi.org/10.2174/0115748936276510231123121404
  15. Edward Naveen V, Jenefa A, Thiyagu T.M, Lincy A, Antony Taurshia. DeepGAN: Utilizing generative adversarial networks for improved deep learning. International Journal of Knowledge-Based and Intelligent Engineering Systems 2024, 28 (4) , 732-748. https://doi.org/10.3233/KES-230326
  16. Haoran Ma, Liao Ye, Xiaoqing Guo, Fanjie Ruan, Zichao Zhao, Maohui Li, Yuehai Wang, Jianyi Yang. Quantum Generative Adversarial Networks in a Silicon Photonic Chip with Maximum Expressibility. Advanced Quantum Technologies 2024, 12 https://doi.org/10.1002/qute.202400171
  17. Yan Guo, Yongqiang Gao, Jiawei Song. MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning. Journal of Biomedical Informatics 2024, 157 , 104712. https://doi.org/10.1016/j.jbi.2024.104712
  18. Amit Gangwal, Azim Ansari, Iqrar Ahmad, Abul Kalam Azad, Wan Mohd Azizi Wan Sulaiman. Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review. Computers in Biology and Medicine 2024, 179 , 108734. https://doi.org/10.1016/j.compbiomed.2024.108734
  19. Zamara Mariam, Sarfaraz K. Niazi, Matthias Magoola. Unlocking the Future of Drug Development: Generative AI, Digital Twins, and Beyond. BioMedInformatics 2024, 4 (2) , 1441-1456. https://doi.org/10.3390/biomedinformatics4020079
  20. Mengxian Yu, Yin-Ning Zhou, Qiang Wang, Fangyou Yan. Extrapolation validation (EV): a universal validation method for mitigating machine learning extrapolation risk. Digital Discovery 2024, 3 (5) , 1058-1067. https://doi.org/10.1039/D3DD00256J
  21. Evan Xie, Karin Hasegawa, Georgios Kementzidis, Evangelos Papadopoulos, Bertal Huseyin Aktas, Yuefan Deng. An AI-Driven Framework for Discovery of BACE1 Inhibitors for Alzheimer’s Disease. 2024https://doi.org/10.1101/2024.05.15.594361
  22. Wenfeng Fan, Yue He, Fei Zhu. RM-GPT: Enhance the comprehensive generative ability of molecular GPT model via LocalRNN and RealFormer. Artificial Intelligence in Medicine 2024, 150 , 102827. https://doi.org/10.1016/j.artmed.2024.102827
  23. Alexey Pyrkov, Alex Aliper, Dmitry Bezrukov, Dmitriy Podolskiy, Feng Ren, Alex Zhavoronkov. Complexity of life sciences in quantum and AI era. WIREs Computational Molecular Science 2024, 14 (1) https://doi.org/10.1002/wcms.1701
  24. Kit-Kay Mak, Yi-Hang Wong, Mallikarjuna Rao Pichika. Artificial Intelligence in Drug Discovery and Development. 2024, 1461-1498. https://doi.org/10.1007/978-3-031-35529-5_92
  25. Matvei Anoshin, Asel Sagingalieva, Christopher Mansell, Dmitry Zhiganov, Vishal Shete, Markus Pflitsch, Alexey Melnikov. Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation. IEEE Transactions on Quantum Engineering 2024, 5 , 1-14. https://doi.org/10.1109/TQE.2024.3414264
  26. Fangyou Yan, Mengxian Yu, Yin-Ning Zhou, Qiang Wang. A Universal Validation Method for Mitigating Machine Learning Extrapolation Risk. 2023https://doi.org/10.21203/rs.3.rs-3758965/v1
  27. Minjae J. Kim, Cole A. Martin, Jinhwa Kim, Monica M. Jablonski. Computational methods in glaucoma research: Current status and future outlook. Molecular Aspects of Medicine 2023, 94 , 101222. https://doi.org/10.1016/j.mam.2023.101222
  28. Alexey Pyrkov, Alex Aliper, Dmitry Bezrukov, Yen-Chu Lin, Daniil Polykovskiy, Petrina Kamya, Feng Ren, Alex Zhavoronkov. Quantum computing for near-term applications in generative chemistry and drug discovery. Drug Discovery Today 2023, 28 (8) , 103675. https://doi.org/10.1016/j.drudis.2023.103675
  29. Kit-Kay Mak, Yi-Hang Wong, Mallikarjuna Rao Pichika. Artificial Intelligence in Drug Discovery and Development. 2023, 1-38. https://doi.org/10.1007/978-3-030-73317-9_92-1

Journal of Chemical Information and Modeling

Cite this: J. Chem. Inf. Model. 2023, 63, 11, 3307–3318
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jcim.3c00562
Published May 12, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Article Views

12k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Overall pipeline. (a) The overall pipeline of MolGAN with different combinations of classical/quantum components. The reward neural network branch is enabled in the goal-directed benchmark. The classical noise generator samples from the Gaussian distribution, and the quantum one uses the variational quantum circuit (VQC). The classical generator is built by neural networks, and the quantum one uses the patch-based VQC to generate the molecular graph. The molecular graph is represented by a bond matrix and atom vector. The classical discriminator is built by a graph-based neural network or multilayer perceptron (MLP), and the VQC is used in the quantum one. (b) The example of VQC in the noise generator. (c) The patch method uses multiple VQCs as subgenerators. Each subgenerator takes noise as input and outputs a partial part of the final molecular graph. The final molecular graph is constructed by concatenating all the partial patches together. (d) The example of VQC in the quantum generator. (e) The VQC of the quantum discriminator consists of the amplitude embedding circuit (Sx), the strong entanglement layers (Uθ), and the measurement. (f) The VQC of strongly entanglement layers contains multiple CNOT gates and parametrized rotational gates (R). (g) MLP-based discriminator architecture in MolGAN-CC.

    Figure 2

    Figure 2. Property distributions of molecules. (a) Drug properties distributions (left to right: QED, SA, and Solute) from valid and unique MolGAN-generated (in blue) and QuMolGAN-generated (in orange) molecules. (b) KL-divergence distributions (left to right: MolLogP, BertzCT, and MolWt) of valid and unique MolGAN-generated (blue), QuMolGAN-generated (orange), and QM9 (gray) molecules. (c) KL-divergence distributions (from left to right: MolLogP, BertzCT, and MolWt) of MolGAN-CC-ER-generated (orange), MolGAN-CQ-generated (yellow), MolGAN-generated (blue), and QM9 (gray) molecules.

    Figure 3

    Figure 3. Example molecules. (a) Example molecules of MolGAN with z_dim = 2. (b) Example molecules of QuMolGAN with z_dim = 2. (c) Example molecules of MolGAN-CQ.

  • References


    This article references 78 other publications.

    1. 1
      Hingorani, A. D.; Kuan, V.; Finan, C.; Kruger, F. A.; Gaulton, A.; Chopade, S.; Sofat, R.; MacAllister, R. J.; Overington, J. P.; Hemingway, H.; Denaxas, S.; Prieto, D.; Casas, J. P. Improving the odds of drug development success through human genomics: modelling study. Sci. Rep. 2019, 9, 125,  DOI: 10.1038/s41598-019-54849-w
    2. 2
      Abreu, J. L. Ivermectin for the Prevention of COVID-19 So...WHO is Telling the Truth. Revista Daena (Int. J. Good Conscience) 2020, 15 (2), 130
    3. 3
      Wouters, O. J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. Jama 2020, 323, 844853,  DOI: 10.1001/jama.2020.1166
    4. 4
      Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharmaceutics 2016, 13, 25242530,  DOI: 10.1021/acs.molpharmaceut.6b00248
    5. 5
      Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 2017, 8, 10883,  DOI: 10.18632/oncotarget.14073
    6. 6
      Zhavoronkov, A. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Mol. Pharmaceutics 2018, 15, 4311,  DOI: 10.1021/acs.molpharmaceut.8b00930
    7. 7
      Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F. J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021, 19, 45384558,  DOI: 10.1016/j.csbj.2021.08.011
    8. 8
      Kao, P.-Y.; Kao, S.-M.; Huang, N.-L.; Lin, Y.-C. Toward Drug-Target Interaction Prediction via Ensemble Modeling and Transfer Learning. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) , 2021; pp 23842391.
    9. 9
      Kolluri, S.; Lin, J.; Liu, R.; Zhang, Y.; Zhang, W. Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: a Review. AAPS J. 2022, 24, 110,  DOI: 10.1208/s12248-021-00644-3
    10. 10
      Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.; Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 10381040,  DOI: 10.1038/s41587-019-0224-x
    11. 11
      Chan, H. S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 2019, 40, 592604,  DOI: 10.1016/j.tips.2019.06.004
    12. 12
      Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discovery 2005, 4, 649663,  DOI: 10.1038/nrd1799
    13. 13
      Fischer, T.; Gazzola, S.; Riedl, R. Approaching target selectivity by de novo drug design. Expert Opin. Drug Discovery 2019, 14, 791803,  DOI: 10.1080/17460441.2019.1615435
    14. 14
      Mouchlis, V. D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A. G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci. 2021, 22, 1676,  DOI: 10.3390/ijms22041676
    15. 15
      Speck-Planche, A. Recent advances in fragment-based computational drug design: tackling simultaneous targets/biological effects. Future Med. Chem. 2018, 10, 20212024,  DOI: 10.4155/fmc-2018-0213
    16. 16
      Mamoshina, P.; Ojomoko, L.; Yanovich, Y.; Ostrovski, A.; Botezatu, A.; Prikhodko, P.; Izumchenko, E.; Aliper, A.; Romantsov, K.; Zhebrak, A.; Ogu, I. O.; Zhavoronkov, A. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018, 9, 5665,  DOI: 10.18632/oncotarget.22345
    17. 17
      Zhavoronkov, A.; Zagribelnyy, B.; Zhebrak, A.; Aladinskiy, V.; Terentiev, V.; Vanhaelen, Q.; Bezrukov, D. S.; Polykovskiy, D.; Shayakhmetov, R.; Filimonov, A.; Filimonov, A.; Bishop, M.; McCloskey, S.; Lejia, E.; Bright, D.; Funakawa, K.; Lin, Y.-C.; Huang, S.-H.; Liao, H.-J.; Aliper, A.; Ivanenkov, Y. Potential non-covalent SARS-CoV-2 3C-like protease inhibitors designed using generative deep learning approaches and reviewed by human medicinal chemist in virtual reality. ChemRxiv , 2020.
    18. 18
      Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R. K. Artificial intelligence in drug discovery and development. Drug Discovery Today 2021, 26, 80,  DOI: 10.1016/j.drudis.2020.10.010
    19. 19
      Martinelli, D. Generative machine learning for de novo drug discovery: A systematic review. Comput. Biol. Med. 2022, 145, 105403,  DOI: 10.1016/j.compbiomed.2022.105403
    20. 20
      Gao, K.; Nguyen, D. D.; Tu, M.; Wei, G.-W. Generative Network Complex for the Automated Generation of Drug-like Molecules. J. Chem. Inf. Model. 2020, 60, 56825698,  DOI: 10.1021/acs.jcim.0c00599
    21. 21
      Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems 27 (NIPS 2014); Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N.; Weinberger, K. Q., Eds.; 2014.
    22. 22
      Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint , 2017, arXiv:1710.10196.
    23. 23
      Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A. A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2017; pp 11251134.
    24. 24
      Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision , 2017; pp 22232232.
    25. 25
      Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , 2019; pp 44014410.
    26. 26
      Jangid, D. K.; Brodnik, N. R.; Khan, A.; Goebel, M. G.; Echlin, M. P.; Pollock, T. M.; Daly, S. H.; Manjunath, B. 3D Grain Shape Generation in Polycrystals Using Generative Adversarial Networks. Integr. Mater. Manuf. Innov. 2022, 11, 7184,  DOI: 10.1007/s40192-021-00244-1
    27. 27
      Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharmaceutics 2017, 14, 30983104,  DOI: 10.1021/acs.molpharmaceut.7b00346
    28. 28
      Vanhaelen, Q.; Lin, Y.-C.; Zhavoronkov, A. The advent of generative chemistry. ACS Med. Chem. Lett. 2020, 11, 14961505,  DOI: 10.1021/acsmedchemlett.0c00088
    29. 29
      Xu, M.; Cheng, J.; Liu, Y.; Huang, W. DeepGAN: Generating Molecule for Drug Discovery Based on Generative Adversarial Network. In 2021 IEEE Symposium on Computers and Communications (ISCC) , 2021; pp 16.
    30. 30
      Guimaraes, G. L.; Sanchez-Lengeling, B.; Outeiral, C.; Farias, P. L. C.; Aspuru-Guzik, A. Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. arXiv preprint , arXiv:1705.10843, 2017.
    31. 31
      Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: sequence generative adversarial nets with policy gradient. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence , 2017; pp 28522858.
    32. 32
      Prykhodko, O.; Johansson, S. V.; Kotsias, P.-C.; Arús-Pous, J.; Bjerrum, E. J.; Engkvist, O.; Chen, H. A de novo molecular generation method using latent vector based generative adversarial network. J. Cheminf. 2019, 11, 113,  DOI: 10.1186/s13321-019-0397-9
    33. 33
      Kotsias, P.-C.; Arús-Pous, J.; Chen, H.; Engkvist, O.; Tyrchan, C.; Bjerrum, E. J. Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. Nat. Mach. Intell. 2020, 2, 254265,  DOI: 10.1038/s42256-020-0174-5
    34. 34
      De Cao, N.; Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 2018,.
    35. 35
      Neukart, F.; Compostella, G.; Seidel, C.; Von Dollen, D.; Yarkoni, S.; Parney, B. Traffic flow optimization using a quantum annealer. Front. ICT 2017, 4, 29,  DOI: 10.3389/fict.2017.00029
    36. 36
      Harwood, S.; Gambella, C.; Trenev, D.; Simonetto, A.; Bernal Neira, D.; Greenberg, D. Formulating and solving routing problems on quantum computers. IEEE Trans. Quantum Eng. 2021, 2, 117,  DOI: 10.1109/TQE.2021.3049230
    37. 37
      Orus, R.; Mugel, S.; Lizaso, E. Quantum computing for finance: Overview and prospects. Rev. Phys. 2019, 4, 100028,  DOI: 10.1016/j.revip.2019.100028
    38. 38
      Liu, G.; Ma, W. A quantum artificial neural network for stock closing price prediction. Inf. Sci. (N.Y.) 2022, 598, 7585,  DOI: 10.1016/j.ins.2022.03.064
    39. 39
      Du, Y.; Yang, Y.; Tao, D.; Hsieh, M.-H. Demystify Problem-Dependent Power of Quantum Neural Networks on Multi-Class Classification. arXiv preprint , arXiv:2301.01597, 2022.
    40. 40
      Yin, X.-F.; Du, Y.; Fei, Y.-Y.; Zhang, R.; Liu, L.-Z.; Mao, Y.; Liu, T.; Hsieh, M.-H.; Li, L.; Liu, N.-L.; Tao, D.; Chen, Y.-A.; Pan, J.-W. Efficient Bipartite Entanglement Detection Scheme with a Quantum Adversarial Solver. Phys. Rev. Lett. 2022, 128, 110501,  DOI: 10.1103/PhysRevLett.128.110501
    41. 41
      Rudolph, M. S.; Toussaint, N. B.; Katabarwa, A.; Johri, S.; Peropadre, B.; Perdomo-Ortiz, A. Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev. X 2022, 12, 031010,  DOI: 10.1103/PhysRevX.12.031010
    42. 42
      Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Simulated quantum computation of molecular energies. Science 2005, 309, 17041707,  DOI: 10.1126/science.1113479
    43. 43
      Lanyon, B. P.; Whitfield, J. D.; Gillett, G. G.; Goggin, M. E.; Almeida, M. P.; Kassal, I.; Biamonte, J. D.; Mohseni, M.; Powell, B. J.; Barbieri, M.; Aspuru-Guzik, A.; White, A. G. Towards quantum chemistry on a quantum computer. Nat. Chem. 2010, 2, 106111,  DOI: 10.1038/nchem.483
    44. 44
      Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-Guzik, A.; O’brien, J. L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 17,  DOI: 10.1038/ncomms5213
    45. 45
      O’Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Coveney, P. V.; Love, P. J.; Neven, H.; Aspuru-Guzik, A.; Martinis, J. M. Scalable quantum simulation of molecular energies. Phys. Rev. X 2016, 6, 031007,  DOI: 10.1103/PhysRevX.6.031007
    46. 46
      Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242246,  DOI: 10.1038/nature23879
    47. 47
      Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 1085610915,  DOI: 10.1021/acs.chemrev.8b00803
    48. 48
      Quantum, G. A.; Collaborators*†; Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.; Barends, R.; Boixo, S.; Broughton, M. Hartree-Fock on a superconducting qubit quantum computer. Science 2020, 369, 10841089,  DOI: 10.1126/science.abb9811
    49. 49
      Gao, Q.; Nakamura, H.; Gujarati, T. P.; Jones, G. O.; Rice, J. E.; Wood, S. P.; Pistoia, M.; Garcia, J. M.; Yamamoto, N. Computational investigations of the lithium superoxide dimer rearrangement on noisy quantum devices. J. Phys. Chem. A 2021, 125, 18271836,  DOI: 10.1021/acs.jpca.0c09530
    50. 50
      Shee, Y.; Yeh, T.-L.; Hsiao, J.-Y.; Yang, A.; Lin, Y.-C.; Hsieh, M.-H. Quantum Simulation of Preferred Tautomeric State Prediction. arXiv preprint , arXiv:2210.02977, 2022.
    51. 51
      Cao, Y.; Romero, J.; Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 2018, 62, 120,  DOI: 10.1147/JRD.2018.2888987
    52. 52
      Li, J.; Topaloglu, R. O.; Ghosh, S. Quantum generative models for small molecule drug discovery. IEEE Trans. Quantum Eng. 2021, 2, 18,  DOI: 10.1109/TQE.2021.3104804
    53. 53
      Bharti, K.; Cervera-Lierta, A.; Kyaw, T. H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J. S.; Menke, T.; Mok, W.-K.; Sim, S.; Kwek, L.-C.; Aspuru-Guzik, A. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004,  DOI: 10.1103/RevModPhys.94.015004
    54. 54
      Du, Y.; Hsieh, M.-H.; Liu, T.; Tao, D. Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2020, 2, 033125,  DOI: 10.1103/PhysRevResearch.2.033125
    55. 55
      Du, Y.; Hsieh, M.-H.; Liu, T.; You, S.; Tao, D. Learnability of quantum neural networks. PRX Quantum 2021, 2, 040337,  DOI: 10.1103/PRXQuantum.2.040337
    56. 56
      Du, Y.; Hsieh, M.-H.; Liu, T.; Tao, D.; Liu, N. Quantum noise protects quantum classifiers against adversaries. Phys. Rev. Res. 2021, 3, 023153,  DOI: 10.1103/PhysRevResearch.3.023153
    57. 57
      Lloyd, S.; Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett. 2018, 121, 040502,  DOI: 10.1103/PhysRevLett.121.040502
    58. 58
      Huang, H.-L.; Du, Y.; Gong, M.; Zhao, Y.; Wu, Y.; Wang, C.; Li, S.; Liang, F.; Lin, J.; Xu, Y.; Yang, R.; Liu, T.; Hsieh, M.-H.; Deng, H.; Rong, H.; Peng, C.-Z.; Lu, C.-Y.; Chen, Y.-A.; Tao, D.; Zhu, X.; Pan, J.-W. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 2021, 16, 024051,  DOI: 10.1103/PhysRevApplied.16.024051
    59. 59
      Dallaire-Demers, P.-L.; Killoran, N. Quantum generative adversarial networks. Phys. Rev. A 2018, 98, 012324,  DOI: 10.1103/PhysRevA.98.012324
    60. 60
      Romero, J.; Aspuru-Guzik, A. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Adv. Quantum Technol. 2021, 4, 2000003,  DOI: 10.1002/qute.202000003
    61. 61
      Li, J. Quantum GAN with Hybrid Generator. https://github.com/jundeli/quantum-gan, accessed Aug. 2, 2021.
    62. 62
      Ivanenkov, Y. A.; Polykovskiy, D.; Bezrukov, D.; Zagribelnyy, B.; Aladinskiy, V.; Kamya, P.; Aliper, A.; Ren, F.; Zhavoronkov, A. Chemistry42: An AI-Driven Platform for Molecular Design and Optimization. J. Chem. Inf. Model. 2023, 63, 695701,  DOI: 10.1021/acs.jcim.2c01191
    63. 63
      Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M. S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A.; Arrazola, J. M.; Azad, U.; Banning, S.; Blank, C.; Bromley, T. R.; Cordier, B. A.; Ceroni, J.; Delgado, A.; Di Matteo, O.; Dusko, A.; Garg, T.; Guala, D.; Hayes, A.; Hill, R.; Ijaz, A.; Isacsson, T.; Ittah, D.; Jahangiri, S.; Jain, P.; Jiang, E.; Khandelwal, A.; Kottmann, K.; Lang, R. A.; Lee, C.; Loke, T.; Lowe, A.; McKiernan, K.; Meyer, J. J.; Montañez-Barrera, J. A.; Moyard, R.; Niu, Z.; O’Riordan, L. J.; Oud, S.; Panigrahi, A.; Park, C.-Y.; Polatajko, D.; Quesada, N.; Roberts, C.; Sá, N.; Schoch, I.; Shi, B.; Shu, S.; Sim, S.; Singh, A.; Strandberg, I.; Soni, J.; Száva, A.; Thabet, S.; Vargas-Hernández, R. A.; Vincent, T.; Vitucci, N.; Weber, M.; Wierichs, D.; Wiersema, R.; Willmann, M.; Wong, V.; Zhang, S.; Killoran, N. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint , arXiv:1811.04968, 2018.
    64. 64
      Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in pytorch. Presented at the NIPS 2017 Autodiff Workshop , 2017.
    65. 65
      Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In International Conference on Machine Learning , 2017; pp 214 223.
    66. 66
      Brown, N.; Fiscato, M.; Segler, M. H.; Vaucher, A. C. GuacaMol: benchmarking models for de novo molecular design. J. Chem. Inf. Model. 2019, 59, 10961108,  DOI: 10.1021/acs.jcim.8b00839
    67. 67
      Kaelbling, L. P.; Littman, M. L.; Moore, A. W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237285,  DOI: 10.1613/jair.301
    68. 68
      Samanta, B.; De, A.; Ganguly, N.; Gomez-Rodriguez, M. Designing random graph models using variational autoencoders with applications to chemical design. arXiv preprint , arXiv:1802.05283, 2018.
    69. 69
      Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.; Golovanov, S.; Tatanov, O.; Belyaev, S.; Kurbanov, R.; Artamonov, A.; Aladinskiy, V.; Veselov, M.; Kadurin, A.; Johansson, S.; Chen, H.; Nikolenko, S.; Aspuru-Guzik, A.; Zhavoronkov, A. Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol. 2020, 11, 565644,  DOI: 10.3389/fphar.2020.565644
    70. 70
      Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 9098,  DOI: 10.1038/nchem.1243
    71. 71
      Wildman, S. A.; Crippen, G. M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Model. 1999, 39, 868873,  DOI: 10.1021/ci990307l
    72. 72
      Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminf. 2009, 1, 111,  DOI: 10.1186/1758-2946-1-8
    73. 73
      Landrum, G.; Tosco, P.; Kelley, B.; Sriniker, R.; Gedeck; ; Vianello, R.; Schneider, N.; Kawashima, E.; Dalke, A.; N, D.; Cosgrove, D.; Cole, B.; Swain, M.; Turk, S.; Savelyev, A.; Jones, G.; Vaucher, A.; Wójcikowski, M.; Take, I.; Probst, D.; Ujihara, K.; Scalfani, V. F.; godin, G.; Pahl, A.; Berenger, F.; Varjo, J. L.; Strets, J. P.; Doliath Gavid rdkit/rdkit: 2022_03_1 (Q1 2022) Release. 2022,  DOI: 10.5281/zenodo.6388425 .
    74. 74
      Kullback, S.; Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 7986,  DOI: 10.1214/aoms/1177729694
    75. 75
      Ramakrishnan, R.; Dral, P. O.; Rupp, M.; Von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 2014, 1, 17,  DOI: 10.1038/sdata.2014.22
    76. 76
      Ruddigkeit, L.; Van Deursen, R.; Blum, L. C.; Reymond, J.-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 2012, 52, 28642875,  DOI: 10.1021/ci300415d
    77. 77
      Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers, Vol. 17; Springer, 2018.
    78. 78
      Schuld, M.; Bocharov, A.; Svore, K. M.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308,  DOI: 10.1103/PhysRevA.101.032308
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.3c00562.

    • Different complexities of generators in MolGAN; different input noise dimensions of the generator in MolGAN-HR; different parametrized layers of QuMolGAN-HR; all the combinations of the classical/quantum noise/generator/discriminator and their corresponding model name; different numbers of qubits in the quantum circuit of QuMolGAN-HR; the details of MolGAN-CC models with the varied size of discriminators; example molecules from the quantum generator; integration of proposed hybrid generative models with Insilico Medicine Chemistry42 (62) platform; example molecules of QM9 (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.