ACS Publications. Most Trusted. Most Cited. Most Read
Impact of Phosphorylation on the Physiological Form of Human alpha-Synuclein in Aqueous Solution
My Activity

Figure 1Loading Img
  • Open Access
Computational Biochemistry

Impact of Phosphorylation on the Physiological Form of Human alpha-Synuclein in Aqueous Solution
Click to copy article linkArticle link copied!

  • Emile de Bruyn
    Emile de Bruyn
    Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
    Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
  • Anton Emil Dorn
    Anton Emil Dorn
    Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
    Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
  • Giulia Rossetti*
    Giulia Rossetti
    Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
    Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
    Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
    *E-mail: [email protected]
  • Claudio Fernandez
    Claudio Fernandez
    Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
    Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
  • Tiago F. Outeiro
    Tiago F. Outeiro
    Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
    Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
    Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
  • Jörg B. Schulz
    Jörg B. Schulz
    Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
    Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
    JARA Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, 52074 Aachen, Germany
  • Paolo Carloni
    Paolo Carloni
    Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
    Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Open PDFSupporting Information (2)

Journal of Chemical Information and Modeling

Cite this: J. Chem. Inf. Model. 2024, 64, 21, 8215–8226
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jcim.4c01172
Published October 27, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Serine 129 can be phosphorylated in pathological inclusions formed by the intrinsically disordered protein human α-synuclein (AS), a key player in Parkinson’s disease and other synucleinopathies. Here, molecular simulations provide insight into the structural ensemble of phosphorylated AS. The simulations allow us to suggest that phosphorylation significantly impacts the structural content of the physiological AS conformational ensemble in aqueous solution, as the phosphate group is mostly solvated. The hydrophobic region of AS contains β-hairpin structures, which may increase the propensity of the protein to undergo amyloid formation, as seen in the nonphysiological (nonacetylated) form of the protein in a recent molecular simulation study. Our findings are consistent with existing experimental data with the caveat of the observed limitations of the force field for the phosphorylated moiety.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease, (1) affecting several million people worldwide. (2,3) The typical pathological hallmark is the accumulation of fibrillar protein inclusions, know as Lewy bodies (LBs) and Lewy neurites (LNs) in the brain. (4,5) The major component of LBs and LNs is fibrillar forms of the human α-synuclein (AS) protein. (3,6) AS is a 140 amino acid disordered conformational ensemble both in aqueous solution and in vivo. AS acquires some degree of structure when bound to the membrane or to cellular partners. (7,8)
The primary sequence of AS can be divided in three domains: the positively charged N-terminus (residues 1–60), the overall neutral hydrophobic region (residues 61–95)[We choose to use the more accurate term “hydrophobic region” instead of the historical but inaccurate term “non-amyloid component (NAC)”. (9)], and the negatively charged C-terminal domain (residues 96–140, Figure 1). We choose to use the more accurate term “hydrophobic region” instead of the historical but inaccurate term “non-amyloid component (NAC)”. (9) Under physiological conditions, the protein is acetylated on the first residue. N-Terminal acetylation does not significantly change the fibrillization propensity in vitro. (10) In LBs, a significant fraction of AS is phosphorylated on S129. (11) Another phosphorylation site of α-synuclein at T64 has also been described. (10) S129 phosphorylation may be regulated by neuronal activity, suggesting that the process may be part of the normal physiology of AS. (12,13) This post-translational modification (PTM) might play also a pathological role. (14−17) S129 phosphorylation may be regulated by neuronal activity, suggesting that the process may be part of the normal physiology of AS. (12,13)

Figure 1

Figure 1. Sequence of amino acid residues in AS; positively charged residues are highlighted in blue, and negatively charged ones are highlighted in red. Three domains can be identified: the positively charged N-terminus (residues 1–60), the overall neutral hydrophobic region (residues 61–95), and the negatively charged C-terminal domain (residues 96–104). In physiological conditions, the protein is acetylated on the first residue, although this post-translational modification does not significantly affect the fibrillization propensity in vitro. (18) In LBs, a significant fraction of AS is phosphorylated on S129. (11) A novel phosphorylation site at T64 has also been recently described. (10)

The formation of the S129–O–PO32– group at the C-terminus of phosphorylated α synuclein (pAS) instead of one of the other two domains is intriguing, because it introduces as many as two negative charges at physiological pH (the pKa1 and pKa2 of phosphoserine are <2 and 5.6 (19)). The phosphate group is likely partially monoprotonated under physiological conditions. The effect of protonation is discussed in the Supporting Information.
The impact of phosphorylation on the structural ensemble and aggregation propensity of physiological AS is not known. Thus, far, Circular Dichroisim (CD) studies on the non-N-term acetylated form of the protein in solution show that the conformational ensemble does not change significantly upon S129 phosphorylation. (20,21) This contrasts with findings by CD studies for phosphorylation on protein variants. (20−22) These point to significant changes in the structural ensemble upon phosphorylation. On the detailed molecular level, replica exchange simulations based on the CHARMM36m force field (23) point to an increase of looped secondary structure close to a β -hairpin spread throughout the hydrophobic region upon phosphorylation. (24) However, the structure of the physiological form differs from that of the nonacetylated one (which does not exist in human cells), (25−27) so firm conclusions on the effect of phosphorylation on endogenous AS cannot be made from these studies.
Here we investigate the impact of phosphorylation on the physiological form of AS by molecular simulation. For this study, one may face several challenges. First, the force field must be adequate to describe IDPs such as AS. The DES-Amber ff99SB, (28) the Amber a99SB-disp, (29) and CHARMM36m (23) force fields have been tailored for IDPs; (29−31) the last two have been successfully used for the nonacetylated form of the proteins. (29,31,32) All of these force fields appear therefore to be well suited to study AS. Second, accurately describing a doubly charged group such as phosphate in pAS is nontrivial. Indeed, Amber (33−35) and CHARMM (36,37) based simulations of phosphorylated protein have at times shown artifacts. (38−41) Therefore, we have adapted phosphate parameters from the DES-AMBER DNA force field, (42) recently calibrated on osmotic coefficient calculations. Finally, the conformational space of the protein structural ensemble needs to be efficiently explored. Among the many methodologies used to investigate IDPs successfully, (43−52) our predictions based on Replica Exchange with Solute Tempering 2 (REST2) (53) enhanced sampling predictions of wild-type (54,55) and mutants of AS (55,56) and turned out to reproduce a variety of biophysical properties of the protein; and hence, they appear well suitable to study this problem.
Here, we present 600 ns REST2 simulations of AS and pAS based on the DES-Amber (42) and a99SB-disp force-fields. (29) We use TIP4P-D for DES-Amber, and the accompanying modified TIP4P-D water model was used for a99SB-disp. To the best of the authors’ knowledge, these simulations are the only ones so far (i) reporting on the physiological form of AS in explicit solvent and (ii) describing in detail the hydration properties of the phosphate, which has never been reported in previous simulation studies. (38−41,81−85) Many molecular simulation studies, besides those in refs (29) and, (32) focus on the nonacetylated protein. (31,57−80) Calculations of the protein in an implicit solvent are not reported here.

Methods

Click to copy section linkSection link copied!

Molecular Simulations

System

The structure of the acetylated protein (AS) which best reproduced the chemical shifts in ref (86) was selected from the conformational ensemble previously reported in ref (54). The phosphorylated protein (pAS) was built by adding a phosphate group to S129 using PyMOL. (87)
AS and pAS were inserted in a water-filled dodecahedral simulation box with periodic boundary conditions and a minimum distance of 35 Å between the protein and the box edges. Na+ and Cl ions were added to neutralize the system and achieve a concentration of 150 mmol L–1. Table 1 shows the composition of the systems.
Table 1. Number of Atoms in the Systems Simulated Here
 ProteinWaterSodiumChlorine
AS2,020190,533186176
pAS2,023172,359171159

Force Fields

The simulations were based on (i) the DES-Amber force field (28) and the standard TIP4P-D water model (88) (see Table S1 for a full list of the parameters used) and (ii) the a99SB-disp force field (29) and its accompanying modified TIP4P-D water model. (29)

Molecular Simulation Setup

Long range electrostatics were evaluated using the Particle-Mesh Ewald (PME) method, (89) using a cutoff distance of 12 Å in real space. The van der Waals interactions featured the same cutoff. Constant temperature conditions were achieved by coupling the systems with a Nosé–Hoover thermostat (90) at 300 K, with a time constant of 0.5 ps. Constant pressure was achieved with a Parrinello–Rahman barostat (91) at 1 bar, with a time constant of 2 ps (Table S1). The LINCS algorithm was used for all bonds involving hydrogen atoms. (92) The equations of motions were integrated using the md leapfrog algorithm, with a time step of 2 fs.

MD and REST Simulations

The proteins underwent energy minimization (Table S2) and subsequently 100 ps of MD in the NVT ensemble (Table S3). Then, they were heated up in 25 ps-long steps of 5 K in the same ensemble up to 300 K using simulated annealing (Tables S4 and S5). The systems were further equilibrated for 1 ns in the NPT ensemble (Table S6). Finally, they underwent 600 ns REST2 simulations (53) in the NPT ensemble, with a total of 32 replicas between 300 and 500 K exchanging every 1,000 simulation steps. The proteins were not found to be near their periodic images at distances of less than 12 Å during any of these simulations. The simulations converged after 100 ns (see the Results section).
Structurally similar conformational clusters were obtained following the method for clustering IDPs described in ref (93). For both AS and pAS, a total of 5,000 frames from the last 500 ns were clustered (Figures S7 and S8).

Calculated Properties

Based on the last 500 ns REST simulations, we obtained representative structures (using the method for clustering IDPs in ref (93), Figures S7 and S8), and we calculated the following properties: (i) The radius of gyration Rg, calculated using the MDTraj Python code. (94) (ii) The hydrodynamic radius, calculated from the radii of gyration using the linear fit of ref (67). (iii) The protein end-to-end distance between the N- and C-termini, using the MDTraj Python code. (94) (iv) The NMR chemical shifts of backbone nitrogen, hydrogen, Cα, Cβ, and backbone carbonyl carbon atoms, using the SPARTA+ code. (95) (v) The CD spectra of representative cluster structures, using the SESCA code. (96−98) (vi) The solvent accessible surface area (SASA) using the MDTraj code. (94) (vii) The contact map of protein residues using minimum pairwise distances between residues using the MDTraj code. (94) (viii) Radial distribution functions (RDFs) and time-resolved radial distribution functions (TRRDFs) using the SPEADI (99,100) code developed by the authors.
(ix) Hydrogen bonds were defined according to the scheme in ref (101). (x) Salt bridges were defined using a distance between two charged atoms in the protein at a distance below 3.25 Å as in ref (102). (xi) Secondary structure elements were identified using MDTraj (94) and DSSP. (103) (xii) Free energy profiles (or potentials of mean force, PMFs) were calculated according to ref (104) by constructing a 2-dimensional histogram of the radius of gyration and end-to-end distance of the protein along the converged part of the simulation and subsequently performing a Boltzmann inversion of the histogram
ΔGi=kBTln(ρiρmin)
(1)
where ΔGi is the free energy at a point relative to the least dense part of the surface, and ρi is the density at that point.

Validation of the REST2 Setup

To investigate the impact of our REST2 setup parameters on our results, we performed additional 60 ns simulations with higher replicas (64) and temperatures ranging between 300 and 600 K. Comparison with 60 ns with our setup (32 replicas and temperatures ranging from 300 and 500 K) shows that these new simulations explore less efficiently the protein conformational space. Thus, increasing the number of replicas and the maximum temperature does not lead to an improvement of the results. A rationale for this result is provided in the SI on p 8 and with Figures S1 and S2.

Results and Discussion

Click to copy section linkSection link copied!

We performed REST2 simulations (53) for 600 ns, using 32 replicas, for both AS and pAS in aqueous solution. Figures S3 and S4 provide details of the exchange between replicas. The root mean-square deviation (RMSD) of the simulations demonstrates that the lowest temperature replica was not trapped in local minima (Figure S5). The calculations were based on the DES-Amber (42) and the a99SB-disp force fields; (29) both were already used for IDPs. We report results at length for calculations using the former, while we provide a summary for the latter here and details in the Supporting Information.

Convergence

We calculated two quantities as a function of simulated time to investigate the convergence of the systems (Figure S6): (i) the running averages of the percentage of secondary structures. In particular, helix structures reached a plateau after 100 ns; (ii) the running averages of the Cα chemical shifts which converge closely to the experimental values within 100 ns. Because of the limitations of the standard usage of RMSD with IDPs such as AS, (105) the running RMSD of atomic positions was not taken into account beyond monitoring the simulations. Based on this analysis, we calculated all properties in the interval 100–600 ns.

Comparison with Experiment

Experimental data was compared to properties calculated from the trajectories after the determined convergence of 100 ns.
For each residue in the protein, the chemical shifts of backbone nitrogen, hydrogen, Cα, Cβ, and backbone carbonyl carbon atoms were calculated where present in the structure. Comparison was made with the experimental values published in ref (86) (Figure 2).

Figure 2

Figure 2. Calculated chemical shifts of (a) N, (b) Cα, (c) Cβ, (d) C, and (e) H atoms and in AS and pAS against the experimental data from Roche et al. (86) Correlation coefficients are given for AS (blue) and pAS (orange), respectively.

The calculated chemical shifts of 15N, as well as the 13C NMR chemical shifts of Cα and Cβ are in excellent agreement with the experimental values, both for AS and pAS. The calculated shifts for the backbone carbonyl carbon atoms correlate less well with those obtained through experiment yet are still broadly comparable. The calculated shifts for heavy atoms overall are in better agreement than those reported previously by some of the authors in ref (54), possibly because a much longer exploration of the conformational ensemble has been covered here (a total of 90 ns of REST2 simulations in ref (54) and 500 ns REST2 simulations here). The predicted shifts for 1H NMR are generally less accurate, a well-known weakness of current chemical shift prediction methods, (106) and was previously observed in calculated values from MD simulations of AS in ref (54).
The calculated CD spectra of AS and pAS are in fair accord with experimentally measured spectra (27) (Figure 3). The minima of the calculated spectra are shifted 6 nm higher than the experimentally obtained values (204 and 198 nm, respectively), similar to what was found in ref (54).

Figure 3

Figure 3. Circular Dichroism spectra of the AS and pAS cluster midpoint structures obtained during the converged part of the simulations. Shading indicates the standard error.

The minima of the calculated spectra range up to −15 × 10–3° cm2 dmol–1 for specific conformations, similar to what was found by the authors previously. As to be expected given the improvement in force fields, these minima average to −14 × 10–3°cm2 dmol–1 for both AS and pAS, in much better agreement with the experimental results compared to previous results using the Amber ff99SB-ildn force field and TIP3P water model. (54) The minima in the experimental spectra of Maltsev et al. are found at −19 × 10–3°cm2 dmol–1.

Effect of Phosphorylation on the Protein

The AS ensemble, on average, is less compact than the pAS ensemble (Figure 4). In AS, the C-terminal domain is further from the N-terminal domain, with the hydrophobic region situated between them. Phosphorylation increases the number of contacts between the C- and N-terminal domains, causing the hydrophobic region to shift to the side of the protein.

Figure 4

Figure 4. Structures of cluster midpoints representing the structural ensembles of AS (a-c) and pAS (d-f), from (a) 6.80% to (b) 48.85%, (c) 100%, (d) 5.80%, (e) 49.63%, and (f) 100%. See Table S7 for details.

The ten largest conformational clusters of AS and pAS (from I to X in Figure 4) represent a total of 48.85% and 49.63% of the converged simulation trajectories, respectively (Table S7). The single conformational clusters are displayed in Figures S9 and S10.
The calculated mean hydrodynamic radius (RH) and the mean radii of gyration (Rg) decrease significantly upon phosphorylation. The distribution of Rg of AS is broader than that of pAS (Figure 5(a)). The first properties (within the standard deviation) agree with experiment (28.2 and 35.3 Å for AS and pAS, (22) respectively, Table 2).
Table 2. Calculated Properties of AS and pAS with Standard Deviation: (i) Hydrodynamic RH and Gyration (Rg) Radii of the Protein, (ii) Average Number of Hydrogen Bonds, and (iii) Average Number of Salt Bridges
ProteinRH [Å]Rg [Å]NSBNHB
AS43.9  ± 21.261.3 ± 15.23.13 ± 2.2319.52 ± 4.28
pAS34.0 ± 19.033.5 ± 12.83.78 ± 2.6420.67 ± 4.32
Mean change–9.9–27.80.651.15

Figure 5

Figure 5. AS (blue) and pAS (orange) Rg distributions (a) and corresponding approximate free energy landscapes over the distance between the protein termini and radii of gyration (b-c).

An approximate estimate of the potential of mean force (PMF, see Methods), as a function of the radius of gyration and end-to-end distance of the protein, provides qualitative insights into the change in the free energy landscape of the protein upon phosphorylation. Figure 5(b-c) shows that the system passes from the shallow multibasin landscape of AS (Figure 5(b)), to the bivariate-like basin distribution for pAS (Figure 5(c)). This qualitative comparison suggests that phosphorylation induces a clear-cut separation between extended and compact ensembles of conformations for AS.
The intramolecular interactions between the hydrophobic region and the C-terminus decrease upon phosphorylation; the C-terminus instead interacts with the N-terminal domain (Figure 6). The first dozen residues interact with the hydrophobic region in AS, while they interact with the N-terminal region in pAS (Figure 6(b)).

Figure 6

Figure 6. (a) Contact maps of AS (triangle above) and pAS (triangle below) and (b) their differences. Brighter values correspond to closer distances in the corresponding triangle compared to the opposite triangle.

The number of hydrogen bonds and salt bridges within their standard deviations does not change significantly upon phosphorylation (Figure 7, Table 2). While the first are almost exclusively formed within every single domain (Figure 7(a-b)), persistent salt bridges are formed for both proteins between the N-term and hydrophobic regions (K23–E20 and K58-E61, respectively; Figure 7(c)). Few salt bridges are formed between the C-terminal domain and one of the two other domains, such as E130–K80 in AS. The absence of the E130–K80 salt bridge in pAS might be caused by the presence of sodium counterions close to the pS129 residue (Figures 8 and 9).

Figure 7

Figure 7. Distribution of the total number of salt bridges (a) and hydrogen bonds (b) in AS (blue) and pAS (orange). Frequency with which intradomain (black labels) and interdomain (red labels) salt bridges (c) and hydrogen bonds (d) are found in AS and pAS. Salt bridges and hydrogen bonds are displayed that occur during at least 2 and 25% of the converged trajectory, respectively, in either the AS or pAS simulation.

Figure 8

Figure 8. RDFs (g(r)) of (a-e) water oxygen atoms surrounding (a-b) backbone carbon atoms, (c) side-chain carbon, and (d-e) side-chain oxygen atoms. (f-g) RDFs of sodium ions surrounding side-chain oxygen atoms. (h) Integral of the TRRDF (n(r,t)) of sodium ions over 1 ns time windows. Insets show the integral of g(r) up to 5 Å.

Figure 9

Figure 9. Number of water molecules (left column), sodium ions (middle column), and chloride ions (right column) in the first hydration shell surrounding the (a-c) N-terminal, (d-f) hydrophobic, and (g-i) C-terminal domains of the protein, as well as around (j-l) the S129 residue. Inset numbers indicate the mean and standard deviation of the distributions.

The Average Solvent Accessible Surface Area (SASA) decreases upon phosphorylation (Table 3). However, the decline is rather small (within the standard deviation) at the N-term and in the hydrophobic region.
Table 3. Calculated SASA in the Three Domains of AS and pAS
ProteinSASAN-term2]SASAHydrophR2]SASAC-term2]
AS6112.4 ± 603.13478.1 ± 585.66952.6 ± 762.4
pAS5732.3 ± 726.33104.0 ± 472.06035.0 ± 955.3
Mean change–380.1– 374.1–917.6

Phosphate Interactions

The phosphate group is fully solvent-exposed and associated with sodium counterions without interactions with pAS residues (Figures 8 and 9). Thus, its electrostatic field is strongly reduced, and its long-range electrostatic interactions with the C-terminus and N-terminus are expected to be strongly screened (Figure 7).
The S129 side-chain in AS is less hydrated than that in pAS: while the Oγ atom is surrounded on average by two water molecules in the first hydration shell in both AS and pAS, the second and third hydration shells contain many more water molecules in pAS (Figure 8). The serine oxidril group in AS instead forms a variety of intramolecular H-bonds (with K80, K96, K97, K102, E126, E130 and E131; Figure S19). S129 backbone units are observed to interact with both the solvent and nearby protein hydrogens in both AS and pAS. Thus, S129 in AS forms many more intramolecular contacts than the corresponding phosphorylated residue in pAS.
The hydration of AS N-terminal and hydrophobic domains is comparable to that of pAS (Figure 9(a-b)). The hydration of the C-terminal domain instead increases upon phosphorylation, possibly because of the presence of the highly charged group (from 12.3(3.3) water molecules surrounding S129 to 19.5(2.7) around pSer129).

Additional Simulations

The simulations of AS and pAS with the Amber a99SB-disp force field (29) show very similar results as those presented here, except for the phosphate hydration properties, which turn out to be less accurate than those of the DES-Amber force field (See Supporting Information, Sections 4, 5).
The simulations of the protein with monoprotonated phosphate (based on the a99SB-disp force field) turn out to be rather similar to those of pAS (see Supporting Information, Section 6). Thus, we conclude that if such species exist in equilibrium with pAS, they contribute to the protein structural ensemble similarly to pAS.

Role of Phosphorylation for AS Fibril Formation

Our study in line with experimental studies shows that phosphorylation and dephosphorylation of AS are likely normal physiological processes fine-tuning binding to lipids, (107,108) and they are not a clear marker of pathology. (12,13) These findings, however, do strengthen the prevailing view that phosphorylation of the monomer is also implicated in fibril formation, due to the change in the structural ensemble and relative positioning of the domains. In addition, the content of the β-hairpin-like structure in the hydrophobic region (calculated as in ref (24)) turns out to increase upon phosphorylation (Figure S23). This content is however smaller than that observed for the nonphysiological form, see details in the Supporting Information. As discussed in ref (24), these types of structures may be associated with amyloid-forming conformations, and hence, this finding does suggest that phosphorylation increases fibril formation starting from conformations similar to those found in the fibrils. (109,110) This might be consistent with the fact that almost all the proteins in the fibrils are phosphorylated in vivo. (11)

Conclusions

Click to copy section linkSection link copied!

Because of the presence in vivo of phosphorylated AS, a detailed understanding of the impact of phosphorylation on this protein is important for informing therapeutic strategies aimed at targeting AS in synucleinopathies. Here, we investigated the effects of phosphorylation on the structural ensemble of AS in solution by 600 ns REST2 simulations based on apt force fields such as DES-Amber and Amber a99SB-disp. Our REST2 simulations of AS, much longer than the previously reported ones, (54) are consistent with a plethora of experimental data.The physiological form of pAS turns out to be more compact than the unmodified protein. The phosphate moiety is solvent exposed without forming specific intramolecular interactions. The phosphorylation of the protein turns out to induce β-hairpin-like, amyloid-forming conformations. The increased propensity toward fibril formation might be consistent with the fact that about 90% AS in the LBs is phosphorylated. (11)

Data Availability

Click to copy section linkSection link copied!

GROMACS 2022.6 patched with PLUMED 2.9.0 was used to perform all MD simulations (https://www.gromacs.org/ and https://www.plumed.org/). All analysis employing third-party software are described and referenced in the Methods section. RDFs were obtained using the authors’ open-source Python package SPEADI (https://github.com/FZJ-JSC/speadi and https://pypi.org/project/SPEADI/). Charts and plots were made using the open-source Python package ProPlot (https://github.com/proplot-dev/proplot). Molecular structures were visualized using Open-Source PyMOL (https://github.com/schrodinger/pymol-open-source). Primary data available to reproduce the study (parametrized GROMACS topologies, input files, and trajectories) are deposited in Zenodo: https://zenodo.org/records/12605636.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.4c01172.

  • Detailed experimental setup (including all GROMACS parameters), analysis and comparison with results obtained with other force fields (PDF)

  • Structures of the 25 cluster midpoints are included for both AS and pAS (ZIP)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Giulia Rossetti - Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, GermanyComputational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52425 Jülich, GermanyDepartment of Neurology, RWTH Aachen University, 52074 Aachen, GermanyOrcidhttps://orcid.org/0000-0002-2032-4630 Email: [email protected]
  • Authors
    • Emile de Bruyn - Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, GermanyDepartment of Physics, RWTH Aachen University, 52062 Aachen, GermanyOrcidhttps://orcid.org/0000-0002-8748-2553
    • Anton Emil Dorn - Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, GermanyFaculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
    • Claudio Fernandez - Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, S2002LRK Rosario, ArgentinaDepartment of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, GermanyOrcidhttps://orcid.org/0000-0003-0454-7735
    • Tiago F. Outeiro - Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, GermanyMax Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, GermanyTranslational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
    • Jörg B. Schulz - Department of Physics, RWTH Aachen University, 52062 Aachen, GermanyDepartment of Neurology, RWTH Aachen University, 52074 Aachen, GermanyJARA Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, 52074 Aachen, Germany
    • Paolo Carloni - Department of Physics, RWTH Aachen University, 52062 Aachen, GermanyComputational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
  • Author Contributions

    E.d.B. and A.E.D. equally contributed to this work.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

TFO is supported by DFG (SFB1286-B8) and under Germany’s Excellence Strategy - EXC 2067/1- 390729940. This work was partially performed as part of the Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE) and received funding from the Helmholtz Association of German Research Centers. Open Access publication funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 491111487. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC). (111−114) The authors gratefully acknowledge computing time on the supercomputer JURECA (115) at Forschungszentrum Jülich under grant no. 30260. The authors gratefully acknowledge insightful discussions with Stefano Piana-Agostinetti regarding the choice of force field parameters, in particular with respect to the hydration of the phosphate group.

References

Click to copy section linkSection link copied!

This article references 115 other publications.

  1. 1
    Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S. G.; Croteau, D. L.; Bohr, V. A. Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology 2019, 15, 565581,  DOI: 10.1038/s41582-019-0244-7
  2. 2
    Rocca, W. A. The burden of Parkinson’s disease: a worldwide perspective. Lancet 2018, 17, 928929,  DOI: 10.1016/S1474-4422(18)30355-7
  3. 3
    Lücking, C. B.; Brice, A. Alpha-synuclein and Parkinson’s disease. Cellular and Molecular Life Sciences CMLS 2000, 57, 18941908,  DOI: 10.1007/PL00000671
  4. 4
    Baba, M.; Nakajo, S.; Tu, P.-H.; Tomita, T.; Nakaya, K.; Lee, V.; Trojanowski, J. Q.; Iwatsubo, T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. American journal of pathology 1998, 152, 879884
  5. 5
    Gibb, W.; Lees, A. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry 1988, 51, 745752,  DOI: 10.1136/jnnp.51.6.745
  6. 6
    Nguyen, P. H.; Ramamoorthy, A.; Sahoo, B. R.; Zheng, J.; Faller, P.; Straub, J. E.; Dominguez, L.; Shea, J.-E.; Dokholyan, N. V.; De Simone, A. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 2021, 121, 25452647,  DOI: 10.1021/acs.chemrev.0c01122
  7. 7
    Snead, D.; Eliezer, D. Alpha-synuclein function and dysfunction on cellular membranes. Experimental neurobiology 2014, 23, 292,  DOI: 10.5607/en.2014.23.4.292
  8. 8
    Waudby, C. A.; Camilloni, C.; Fitzpatrick, A. W.; Cabrita, L. D.; Dobson, C. M.; Vendruscolo, M.; Christodoulou, J. In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-synuclein within E. coli cells. PloS one 2013, 8, e72286,  DOI: 10.1371/journal.pone.0072286
  9. 9
    Goedert, M.; Griesinger, C.; Outeiro, T. F.; Riek, R.; Schröder, G. F.; Spillantini, M. G. Abandon the Nac in α-synuclein. Lancet Neurology 2024, 23, 669,  DOI: 10.1016/S1474-4422(24)00176-5
  10. 10
    Matsui, H.; Ito, S.; Matsui, H.; Ito, J.; Gabdulkhaev, R.; Hirose, M.; Yamanaka, T.; Koyama, A.; Kato, T.; Tanaka, M. Phosphorylation of α-synuclein at T64 results in distinct oligomers and exerts toxicity in models of Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2214652120  DOI: 10.1073/pnas.2214652120
  11. 11
    Fujiwara, H.; Hasegawa, M.; Dohmae, N.; Kawashima, A.; Masliah, E.; Goldberg, M. S.; Shen, J.; Takio, K.; Iwatsubo, T. α-Synuclein Is Phosphorylated in Synucleinopathy Lesions. Nat. Cell Biol. 2002, 4, 160164,  DOI: 10.1038/ncb748
  12. 12
    Ramalingam, N.; Jin, S.-X.; Moors, T. E.; Fonseca-Ornelas, L.; Shimanaka, K.; Lei, S.; Cam, H. P.; Watson, A. H.; Brontesi, L.; Ding, L. Dynamic Physiological α-synuclein S129 Phosphorylation Is Driven By Neuronal Activity. npj Parkinson’s Disease 2023, 9, 4,  DOI: 10.1038/s41531-023-00444-w
  13. 13
    Ramalingam, N.; Haass, C.; Dettmer, U. Physiological Roles of α-synuclein Serine-129 Phosphorylation - Not an Oxymoron. Trends in Neurosciences 2024, 47, 480,  DOI: 10.1016/j.tins.2024.05.005
  14. 14
    Ghanem, S. S.; Majbour, N. K.; Vaikath, N. N.; Ardah, M. T.; Erskine, D.; Jensen, N. M.; Fayyad, M.; Sudhakaran, I. P.; Vasili, E.; Melachroinou, K. α-Synuclein phosphorylation at serine 129 occurs after initial protein deposition and inhibits seeded fibril formation and toxicity. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2109617119,  DOI: 10.1073/pnas.2109617119
  15. 15
    Wang, Y.; Shi, M.; Chung, K. A.; Zabetian, C. P.; Leverenz, J. B.; Berg, D.; Srulijes, K.; Trojanowski, J. Q.; Lee, V. M.-Y.; Siderowf, A. D. Phosphorylated α-synuclein in Parkinson’s disease. Science translational medicine 2012, 4, 121ra20,  DOI: 10.1126/scitranslmed.3002566
  16. 16
    Kawahata, I.; Finkelstein, D. I.; Fukunaga, K. Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. International Journal of Molecular Sciences 2022, 23, 6216,  DOI: 10.3390/ijms23116216
  17. 17
    Oueslati, A.; Fournier, M.; Lashuel, H. A. Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Progress in brain research 2010, 183, 115145,  DOI: 10.1016/S0079-6123(10)83007-9
  18. 18
    Fauvet, B.; Fares, M.-B.; Samuel, F.; Dikiy, I.; Tandon, A.; Eliezer, D.; Lashuel, H. A. Characterization of Semisynthetic and Naturally Nα-Acetylated α-Synuclein in Vitro and in Intact Cells. J. Biol. Chem. 2012, 287, 2824328262,  DOI: 10.1074/jbc.M112.383711
  19. 19
    Xie, Y.; Jiang, Y.; Ben-Amotz, D. Detection of amino acid and peptide phosphate protonation using Raman spectroscopy. Analytical biochemistry 2005, 343, 223230,  DOI: 10.1016/j.ab.2005.05.038
  20. 20
    Schreurs, S.; Gerard, M.; Derua, R.; Waelkens, E.; Taymans, J.-M.; Baekelandt, V.; Engelborghs, Y. In vitro phosphorylation does not influence the aggregation kinetics of WT α-synuclein in contrast to its phosphorylation mutants. International journal of molecular sciences 2014, 15, 10401067,  DOI: 10.3390/ijms15011040
  21. 21
    Samuel, F.; Flavin, W. P.; Iqbal, S.; Pacelli, C.; Renganathan, S. D. S.; Trudeau, L.-E.; Campbell, E. M.; Fraser, P. E.; Tandon, A. Effects of serine 129 phosphorylation on α-synuclein aggregation, membrane association, and internalization. J. Biol. Chem. 2016, 291, 43744385,  DOI: 10.1074/jbc.M115.705095
  22. 22
    Paleologou, K. E.; Schmid, A. W.; Rospigliosi, C. C.; Kim, H.-Y.; Lamberto, G. R.; Fredenburg, R. A.; Lansbury, P. T.; Fernandez, C. O.; Eliezer, D.; Zweckstetter, M. Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of α-synuclein. J. Biol. Chem. 2008, 283, 1689516905,  DOI: 10.1074/jbc.M800747200
  23. 23
    Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B. L.; Grubmüller, H.; MacKerell, A. D. Charmm36m: an Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 7173,  DOI: 10.1038/nmeth.4067
  24. 24
    Semenyuk, P. I. Alpha-Synuclein Phosphorylation Induces Amyloid Conversion Via Enhanced Electrostatic Bridging: Insights From Molecular Modeling of the Full-Length Protein. Biophys. Chem. 2024, 307, 107196,  DOI: 10.1016/j.bpc.2024.107196
  25. 25
    Kang, L.; Moriarty, G. M.; Woods, L. A.; Ashcroft, A. E.; Radford, S. E.; Baum, J. N-Terminal Acetylation of α-synuclein Induces Increased Transient Helical Propensity and Decreased Aggregation Rates in the Intrinsically Disordered Monomer. Protein Sci. 2012, 21, 911917,  DOI: 10.1002/pro.2088
  26. 26
    Trexler, A. J.; Rhoades, E. N-terminal Acetylation Is Critical for Forming α-helical Oligomer of α-synuclein. Protein Sci. 2012, 21, 601605,  DOI: 10.1002/pro.2056
  27. 27
    Maltsev, A. S.; Ying, J.; Bax, A. Impact of N-terminal acetylation of α-synuclein on its random coil and lipid binding properties. Biochemistry 2012, 51, 50045013,  DOI: 10.1021/bi300642h
  28. 28
    Piana, S.; Robustelli, P.; Tan, D.; Chen, S.; Shaw, D. E. Development of a force field for the simulation of single-chain proteins and protein-protein complexes. J. Chem. Theory Comput. 2020, 16, 24942507,  DOI: 10.1021/acs.jctc.9b00251
  29. 29
    Robustelli, P.; Piana, S.; Shaw, D. E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E4758E4766,  DOI: 10.1073/pnas.1800690115
  30. 30
    Wang, W. Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Phys. Chem. Chem. Phys. 2021, 23, 777784,  DOI: 10.1039/D0CP05818A
  31. 31
    Pedersen, K. B.; Flores-Canales, J. C.; Schiøtt, B. Predicting molecular properties of α-synuclein using force fields for intrinsically disordered proteins. Proteins: Struct., Funct., Bioinf. 2023, 91, 4761,  DOI: 10.1002/prot.26409
  32. 32
    Robustelli, P.; de Opakua, A. I.; Campbell-Bezat, C.; Giordanetto, F.; Becker, S.; Zweckstetter, M.; Pan, A. C.; Shaw, D. E. Molecular Basis of Small-Molecule Binding To α-Synuclein. J. Am. Chem. Soc. 2022, 144, 25012510,  DOI: 10.1021/jacs.1c07591
  33. 33
    Homeyer, N.; Horn, A. H.; Lanig, H.; Sticht, H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model. 2006, 12, 281289,  DOI: 10.1007/s00894-005-0028-4
  34. 34
    Steinbrecher, T.; Latzer, J.; Case, D. Revised AMBER parameters for bioorganic phosphates. J. Chem. Theory Comput. 2012, 8, 44054412,  DOI: 10.1021/ct300613v
  35. 35
    Khoury, G. A.; Thompson, J. P.; Smadbeck, J.; Kieslich, C. A.; Floudas, C. A. Forcefield_PTM: Ab initio charge and AMBER forcefield parameters for frequently occurring post-translational modifications. J. Chem. Theory Comput. 2013, 9, 56535674,  DOI: 10.1021/ct400556v
  36. 36
    Petrov, D.; Margreitter, C.; Grandits, M.; Oostenbrink, C.; Zagrovic, B. A systematic framework for molecular dynamics simulations of protein post-translational modifications. PLoS computational biology 2013, 9, e1003154,  DOI: 10.1371/journal.pcbi.1003154
  37. 37
    Zhong, B.; Song, G.; Chen, H.-F. Balanced Force Field ff03CMAP Improving the Dynamics Conformation Sampling of Phosphorylation Site. International Journal of Molecular Sciences 2022, 23, 11285,  DOI: 10.3390/ijms231911285
  38. 38
    Vymětal, J.; Jurásková, V.; Vondrášek, J. AMBER and CHARMM force fields inconsistently portray the microscopic details of phosphorylation. J. Chem. Theory Comput. 2019, 15, 665679,  DOI: 10.1021/acs.jctc.8b00715
  39. 39
    Rieloff, E.; Skepö, M. Phosphorylation of a disordered peptide─Structural effects and force field inconsistencies. J. Chem. Theory Comput. 2020, 16, 19241935,  DOI: 10.1021/acs.jctc.9b01190
  40. 40
    Rieloff, E.; Skepö, M. Molecular Dynamics Simulations of Phosphorylated Intrinsically Disordered Proteins: a Force Field Comparison. International Journal of Molecular Sciences 2021, 22, 10174,  DOI: 10.3390/ijms221810174
  41. 41
    Man, V. H.; He, X.; Gao, J.; Wang, J. Phosphorylation of Tau R2 Repeat Destabilizes Its Binding to Microtubules: A Molecular Dynamics Simulation Study. ACS Chem. Neurosci. 2023, 14, 458,  DOI: 10.1021/acschemneuro.2c00611
  42. 42
    Tucker, M. R.; Piana, S.; Tan, D.; LeVine, M. V.; Shaw, D. E. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded Dna Molecules and Dna-Protein Complexes. J. Phys. Chem. B 2022, 126, 44424457,  DOI: 10.1021/acs.jpcb.1c10971
  43. 43
    Irbäck, A.; Mohanty, S. Profasi: a Monte Carlo Simulation Package for Protein Folding and Aggregation. J. Comput. Chem. 2006, 27, 15481555,  DOI: 10.1002/jcc.20452
  44. 44
    D’Urzo, A.; Konijnenberg, A.; Rossetti, G.; Habchi, J.; Li, J.; Carloni, P.; Sobott, F.; Longhi, S.; Grandori, R. Molecular Basis for Structural Heterogeneity of an Intrinsically Disordered Protein Bound To a Partner By Combined Esi-Im-Ms and Modeling. Journal of The American Society for Mass Spectrometry 2015, 26, 472481,  DOI: 10.1007/s13361-014-1048-z
  45. 45
    Cragnell, C.; Rieloff, E.; Skepö, M. Utilizing Coarse-Grained Modeling and Monte Carlo Simulations To Evaluate the Conformational Ensemble of Intrinsically Disordered Proteins and Regions. J. Mol. Biol. 2018, 430, 24782492,  DOI: 10.1016/j.jmb.2018.03.006
  46. 46
    Rieloff, E.; Tully, M. D.; Skepö, M. Assessing the Intricate Balance of Intermolecular Interactions Upon Self-Association of Intrinsically Disordered Proteins. J. Mol. Biol. 2019, 431, 511523,  DOI: 10.1016/j.jmb.2018.11.027
  47. 47
    Shrestha, U. R.; Smith, J. C.; Petridis, L. Full Structural Ensembles of Intrinsically Disordered Proteins From Unbiased Molecular Dynamics Simulations. Communications Biology 2021, 4, 243,  DOI: 10.1038/s42003-021-01759-1
  48. 48
    Gupta, A.; Dey, S.; Hicks, A.; Zhou, H.-X. Artificial Intelligence Guided Conformational Mining of Intrinsically Disordered Proteins. Communications Biology 2022, 5, 610,  DOI: 10.1038/s42003-022-03562-y
  49. 49
    Yu, H.; Han, W.; Ma, W.; Schulten, K. Transient β-hairpin Formation in α-synuclein Monomer Revealed By Coarse-Grained Molecular Dynamics Simulation. J. Chem. Phys. 2015, 143, 243142,  DOI: 10.1063/1.4936910
  50. 50
    Cragnell, C.; Durand, D.; Cabane, B.; Skepö, M. Coarse-Grained Modeling of the Intrinsically Disordered Protein Histatin 5 in Solution: Monte Carlo Simulations in Combination With Saxs. Proteins: Struct., Funct., Bioinf. 2016, 84, 777791,  DOI: 10.1002/prot.25025
  51. 51
    Hyltegren, K.; Polimeni, M.; Skepö, M.; Lund, M. Integrating All-Atom and Coarse-Grained Simulations-Toward Understanding of Idps At Surfaces. J. Chem. Theory Comput. 2020, 16, 18431853,  DOI: 10.1021/acs.jctc.9b01041
  52. 52
    Garaizar, A.; Espinosa, J. R. Salt Dependent Phase Behavior of Intrinsically Disordered Proteins From a Coarse-Grained Model With Explicit Water and Ions. J. Chem. Phys. 2021, 155, 125103,  DOI: 10.1063/5.0062687
  53. 53
    Wang, L.; Friesner, R. A.; Berne, B. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B 2011, 115, 94319438,  DOI: 10.1021/jp204407d
  54. 54
    Rossetti, G.; Musiani, F.; Abad, E.; Dibenedetto, D.; Mouhib, H.; Fernandez, C. O.; Carloni, P. Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations. Phys. Chem. Chem. Phys. 2016, 18, 57025706,  DOI: 10.1039/C5CP04549E
  55. 55
    Palomino-Hernandez, O.; Buratti, F. A.; Sacco, P. S.; Rossetti, G.; Carloni, P.; Fernandez, C. O. Role of Tyr-39 for the Structural Features of α-Synuclein and for the Interaction with a Strong Modulator of Its Amyloid Assembly. International journal of molecular sciences 2020, 21, 5061,  DOI: 10.3390/ijms21145061
  56. 56
    Theillet, F.-X.; Binolfi, A.; Bekei, B.; Martorana, A.; Rose, H. M.; Stuiver, M.; Verzini, S.; Lorenz, D.; Van Rossum, M.; Goldfarb, D. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 2016, 530, 4550,  DOI: 10.1038/nature16531
  57. 57
    Uluca, B.; Viennet, T.; Petrović, D.; Shaykhalishahi, H.; Weirich, F.; Gönülalan, A.; Strodel, B.; Etzkorn, M.; Hoyer, W.; Heise, H. DNP-enhanced MAS NMR: a tool to snapshot conformational ensembles of α-synuclein in different states. Biophysical journal 2018, 114, 16141623,  DOI: 10.1016/j.bpj.2018.02.011
  58. 58
    Jain, K.; Ghribi, O.; Delhommelle, J. Folding free-energy landscape of α-synuclein (35–97) via replica exchange molecular dynamics. J. Chem. Inf. Model. 2021, 61, 432443,  DOI: 10.1021/acs.jcim.0c01278
  59. 59
    Ilie, I. M.; Nayar, D.; Den Otter, W. K.; Van Der Vegt, N. F.; Briels, W. J. Intrinsic conformational preferences and interactions in α-synuclein fibrils: insights from molecular dynamics simulations. J. Chem. Theory Comput. 2018, 14, 32983310,  DOI: 10.1021/acs.jctc.8b00183
  60. 60
    Chwastyk, M.; Cieplak, M. Conformational biases of α-synuclein and formation of transient knots. J. Phys. Chem. B 2020, 124, 1119,  DOI: 10.1021/acs.jpcb.9b08481
  61. 61
    Perlmutter, J. D.; Braun, A. R.; Sachs, J. N. Curvature dynamics of α-synuclein familial parkinson disease mutants. J. Biol. Chem. 2009, 284, 71777189,  DOI: 10.1074/jbc.M808895200
  62. 62
    Allison, J. R.; Varnai, P.; Dobson, C. M.; Vendruscolo, M. Determination of the free energy landscape of α-synuclein using spin label nuclear magnetic resonance measurements. J. Am. Chem. Soc. 2009, 131, 1831418326,  DOI: 10.1021/ja904716h
  63. 63
    Amos, S.-B. T.; Schwarz, T. C.; Shi, J.; Cossins, B. P.; Baker, T. S.; Taylor, R. J.; Konrat, R.; Sansom, M. S. Membrane Interactions of α-Synuclein Revealed by Multiscale Molecular Dynamics Simulations, Markov State Models, and NMR. J. Phys. Chem. B 2021, 125, 29292941,  DOI: 10.1021/acs.jpcb.1c01281
  64. 64
    Herrera, F. E.; Chesi, A.; Paleologou, K. E.; Schmid, A.; Munoz, A.; Vendruscolo, M.; Gustincich, S.; Lashuel, H. A.; Carloni, P. Inhibition of α-synuclein fibrillization by dopamine is mediated by interactions with five C-terminal residues and with E83 in the NAC region. PloS one 2008, 3, e3394,  DOI: 10.1371/journal.pone.0003394
  65. 65
    Robustelli, P.; Ibanez-de Opakua, A.; Campbell-Bezat, C.; Giordanetto, F.; Becker, S.; Zweckstetter, M.; Pan, A. C.; Shaw, D. E. Molecular basis of small-molecule binding to α-synuclein. J. Am. Chem. Soc. 2022, 144, 25012510,  DOI: 10.1021/jacs.1c07591
  66. 66
    Balesh, D.; Ramjan, Z. Unfolded annealing molecular dynamics conformers for wild-type and disease-associated variants of alpha-synuclein show no propensity for beta-sheetformation. Journal of Biophysical Chemistry 2011, 2, 124,  DOI: 10.4236/jbpc.2011.22015
  67. 67
    Allison, J. R.; Rivers, R. C.; Christodoulou, J. C.; Vendruscolo, M.; Dobson, C. M. A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein. Biochemistry 2014, 53, 71707183,  DOI: 10.1021/bi5009326
  68. 68
    Dedmon, M. M.; Lindorff-Larsen, K.; Christodoulou, J.; Vendruscolo, M.; Dobson, C. M. Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem. Soc. 2005, 127, 476477,  DOI: 10.1021/ja044834j
  69. 69
    Park, S.; Yoon, J.; Jang, S.; Lee, K.; Shin, S. The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study. J. Biomol. Struct. Dyn. 2016, 34, 376383,  DOI: 10.1080/07391102.2015.1033016
  70. 70
    Brodie, N. I.; Popov, K. I.; Petrotchenko, E. V.; Dokholyan, N. V.; Borchers, C. H. Conformational ensemble of native α-synuclein in solution as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. PLoS computational biology 2019, 15, e1006859,  DOI: 10.1371/journal.pcbi.1006859
  71. 71
    Tsigelny, I. F.; Bar-On, P.; Sharikov, Y.; Crews, L.; Hashimoto, M.; Miller, M. A.; Keller, S. H.; Platoshyn, O.; Yuan, J. X.-J.; Masliah, E. Dynamics of α-synuclein aggregation and inhibition of pore-like oligomer development by β-synuclein. FEBS journal 2007, 274, 18621877,  DOI: 10.1111/j.1742-4658.2007.05733.x
  72. 72
    Ramis, R.; Ortega-Castro, J.; Casasnovas, R.; Mariño, L.; Vilanova, B.; Adrover, M.; Frau, J. A coarse-grained molecular dynamics approach to the study of the intrinsically disordered protein α-synuclein. J. Chem. Inf. Model. 2019, 59, 14581471,  DOI: 10.1021/acs.jcim.8b00921
  73. 73
    Yu, H.; Han, W.; Ma, W.; Schulten, K. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation. J. Chem. Phys. 2015, 143, 243142,  DOI: 10.1063/1.4936910
  74. 74
    Narayanan, C.; Weinstock, D. S.; Wu, K.-P.; Baum, J.; Levy, R. M. Investigation of the polymeric properties of α-synuclein and comparison with NMR experiments: a replica exchange molecular dynamics study. J. Chem. Theory Comput. 2012, 8, 39293942,  DOI: 10.1021/ct300241t
  75. 75
    Dibenedetto, D.; Rossetti, G.; Caliandro, R.; Carloni, P. A molecular dynamics simulation-based interpretation of nuclear magnetic resonance multidimensional heteronuclear spectra of α-synuclein·dopamine adducts. Biochemistry 2013, 52, 66726683,  DOI: 10.1021/bi400367r
  76. 76
    Tsigelny, I. F.; Sharikov, Y.; Miller, M. A.; Masliah, E. Mechanism of alpha-synuclein oligomerization and membrane interaction: theoretical approach to unstructured proteins studies. Nanomedicine: Nanotechnology, Biology and Medicine 2008, 4, 350357,  DOI: 10.1016/j.nano.2008.05.005
  77. 77
    Zhang, T.; Tian, Y.; Li, Z.; Liu, S.; Hu, X.; Yang, Z.; Ling, X.; Liu, S.; Zhang, J. Molecular dynamics study to investigate the dimeric structure of the full-length α-synuclein in aqueous solution. J. Chem. Inf. Model. 2017, 57, 22812293,  DOI: 10.1021/acs.jcim.7b00210
  78. 78
    Savva, L.; Platts, J. A. How Cu (II) binding affects structure and dynamics of α-synuclein revealed by molecular dynamics simulations. Journal of Inorganic Biochemistry 2023, 239, 112068,  DOI: 10.1016/j.jinorgbio.2022.112068
  79. 79
    Razzokov, J.; Fazliev, S.; Makhkamov, M.; Marimuthu, P.; Baev, A.; Kurganov, E. Effect of Electric Field on α-Synuclein Fibrils: Revealed by Molecular Dynamics Simulations. International Journal of Molecular Sciences 2023, 24, 6312,  DOI: 10.3390/ijms24076312
  80. 80
    Savva, L.; Platts, J. A. Exploring the Impact of Mutation and Post-Translational Modification on α-Synuclein: Insights From Molecular Dynamics Simulations With and Without Copper. Journal of Inorganic Biochemistry 2023, 249, 112395,  DOI: 10.1016/j.jinorgbio.2023.112395
  81. 81
    Jin, F.; Gräter, F. How Multisite Phosphorylation Impacts the Conformations of Intrinsically Disordered Proteins. PLOS Computational Biology 2021, 17, e1008939,  DOI: 10.1371/journal.pcbi.1008939
  82. 82
    Rieloff, E.; Skepö, M. The Effect of Multisite Phosphorylation on the Conformational Properties of Intrinsically Disordered Proteins. International Journal of Molecular Sciences 2021, 22, 11058,  DOI: 10.3390/ijms222011058
  83. 83
    Martin, I. M.; Aponte-Santamaría, C.; Schmidt, L.; Hedtfeld, M.; Iusupov, A.; Musacchio, A.; Gräter, F. Phosphorylation Tunes Elongation Propensity and Cohesiveness of Incenp’s Intrinsically Disordered Region. J. Mol. Biol. 2022, 434, 167387,  DOI: 10.1016/j.jmb.2021.167387
  84. 84
    Adhikari, S.; Mondal, J. Machine Learning Subtle Conformational Change Due To Phosphorylation in Intrinsically Disordered Proteins. J. Phys. Chem. B 2023, 127, 94339449,  DOI: 10.1021/acs.jpcb.3c05136
  85. 85
    Amith, W. D.; Dutagaci, B. Complex Conformational Space of the Rna Polymerase Ii C-Terminal Domain Upon Phosphorylation. J. Phys. Chem. B 2023, 127, 92239235,  DOI: 10.1021/acs.jpcb.3c02655
  86. 86
    Roche, J.; Ying, J.; Maltsev, A. S.; Bax, A. Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of α-Synuclein. ChemBioChem. 2013, 14, 17541761,  DOI: 10.1002/cbic.201300244
  87. 87
    DeLano, W. L. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 2002, 40, 8292
  88. 88
    Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States. J. Phys. Chem. B 2015, 119, 51135123,  DOI: 10.1021/jp508971m
  89. 89
    Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 1008910092,  DOI: 10.1063/1.464397
  90. 90
    Evans, D. J.; Holian, B. L. The nose-hoover thermostat. J. Chem. Phys. 1985, 83, 40694074,  DOI: 10.1063/1.449071
  91. 91
    Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 23842393,  DOI: 10.1063/1.439486
  92. 92
    Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. LINCS: a linear constraint solver for molecular simulations. Journal of computational chemistry 1997, 18, 14631472,  DOI: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  93. 93
    Appadurai, R.; Koneru, J. K.; Bonomi, M.; Robustelli, P.; Srivastava, A. Clustering Heterogeneous Conformational Ensembles of Intrinsically Disordered Proteins With T-Distributed Stochastic Neighbor Embedding. J. Chem. Theory Comput. 2023, 19, 47114727,  DOI: 10.1021/acs.jctc.3c00224
  94. 94
    McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.; Hernández, C. X.; Schwantes, C. R.; Wang, L.-P.; Lane, T. J.; Pande, V. S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 15281532,  DOI: 10.1016/j.bpj.2015.08.015
  95. 95
    Shen, Y.; Bax, A. Sparta+: a Modest Improvement in Empirical Nmr Chemical Shift Prediction By Means of an Artificial Neural Network. Journal of Biomolecular NMR 2010, 48, 1322,  DOI: 10.1007/s10858-010-9433-9
  96. 96
    Nagy, G.; Igaev, M.; Jones, N. C.; Hoffmann, S. V.; Grubmüller, H. Sesca: Predicting Circular Dichroism Spectra From Protein Molecular Structures. J. Chem. Theory Comput. 2019, 15, 50875102,  DOI: 10.1021/acs.jctc.9b00203
  97. 97
    Nagy, G.; Grubmüller, H. How Accurate Is Circular Dichroism-Based Model Validation?. Eur. Biophys. J. 2020, 49, 497510,  DOI: 10.1007/s00249-020-01457-6
  98. 98
    Nagy, G.; Grubmuller, H. Implementation of a Bayesian Secondary Structure Estimation Method for the Sesca Circular Dichroism Analysis Package. Comput. Phys. Commun. 2021, 266, 108022,  DOI: 10.1016/j.cpc.2021.108022
  99. 99
    de Bruyn, E. SPEADI: Scalable Protein Environment Analysis for Dynamics and Ions (v1.0.0) . 2022;https://zenodo.org/records/7436713.
  100. 100
    de Bruyn, E.; Dorn, A. E.; Zimmermann, O.; Rossetti, G. Speadi: Accelerated Analysis of Idp-Ion Interactions From MD-Trajectories. Biology 2023, 12, 581,  DOI: 10.3390/biology12040581
  101. 101
    Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. A.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P. The Structure of the First Coordination Shell in Liquid Water. Science 2004, 304, 995999,  DOI: 10.1126/science.1096205
  102. 102
    Donald, J. E.; Kulp, D. W.; DeGrado, W. F. Salt Bridges: Geometrically Specific, Designable Interactions. Proteins: Struct., Funct., Bioinf. 2011, 79, 898915,  DOI: 10.1002/prot.22927
  103. 103
    Kabsch, W.; Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on Biomolecules 1983, 22, 25772637,  DOI: 10.1002/bip.360221211
  104. 104
    Tavernelli, I.; Cotesta, S.; Iorio, E. E. D. Protein Dynamics, Thermal Stability, and Free-Energy Landscapes: a Molecular Dynamics Investigation. Biophys. J. 2003, 85, 26412649,  DOI: 10.1016/S0006-3495(03)74687-6
  105. 105
    Lazar, T.; Guharoy, M.; Vranken, W.; Rauscher, S.; Wodak, S. J.; Tompa, P. Distance-Based metrics for comparing conformational ensembles of intrinsically disordered proteins. Biophys. J. 2020, 118, 29522965,  DOI: 10.1016/j.bpj.2020.05.015
  106. 106
    Li, J.; Bennett, K. C.; Liu, Y.; Martin, M. V.; Head-Gordon, T. Accurate Prediction of Chemical Shifts for Aqueous Protein Structure on ”Real World” Data. Chemical Science 2020, 11, 31803191,  DOI: 10.1039/C9SC06561J
  107. 107
    Bell, R.; Vendruscolo, M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes By Post-Translational Modifications. Frontiers in Neurology 2021, 12, 661117,  DOI: 10.3389/fneur.2021.661117
  108. 108
    Killinger, B. A.; Mercado, G.; Choi, S.; Tittle, T.; Chu, Y.; Brundin, P.; Kordower, J. H. Distribution of Phosphorylated Alpha-Synuclein in Non-Diseased Brain Implicates Olfactory Bulb Mitral Cells in Synucleinopathy Pathogenesis. npj Parkinson’s Disease 2023, 9, 43,  DOI: 10.1038/s41531-023-00491-3
  109. 109
    Guerrero-Ferreira, R.; Taylor, N. M.; Mona, D.; Ringler, P.; Lauer, M. E.; Riek, R.; Britschgi, M.; Stahlberg, H. Cryo-Em Structure of Alpha-Synuclein Fibrils. eLife 2018, 7, e36402,  DOI: 10.7554/eLife.36402
  110. 110
    Guerrero-Ferreira, R.; Taylor, N. M.; Arteni, A.-A.; Kumari, P.; Mona, D.; Ringler, P.; Britschgi, M.; Lauer, M. E.; Makky, A.; Verasdonck, J. Two New Polymorphic Structures of Human Full-Length Alpha-Synuclein Fibrils Solved By Cryo-Electron Microscopy. eLife 2019, 8, e48907,  DOI: 10.7554/eLife.48907
  111. 111
    Krause, D. Juwels: Modular Tier-0/1 Supercomputer At Jülich Supercomputing Centre. Journal of large-scale research facilities JLSRF 2019, 5, A135,  DOI: 10.17815/jlsrf-5-171
  112. 112
    Alvarez, D. Juwels Cluster and Booster: Exascale Pathfinder With Modular Supercomputing Architecture At Juelich Supercomputing Centre. Journal of large-scale research facilities JLSRF 2021, 7, A183,  DOI: 10.17815/jlsrf-7-183
  113. 113
    Herten, A. JUWELS Booster - Early User Experiences. Proceedings of the 2021 on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn STrategy 2021, 1
  114. 114
    Kesselheim, S.; Herten, A.; Krajsek, K.; Ebert, J.; Jitsev, J.; Cherti, M.; Langguth, M.; Gong, B.; Stadtler, S.; Mozaffari, A. Lecture Notes in Computer Science; Lecture Notes in Computer Science; Springer International Publishing; 2021; pp 453468.
  115. 115
    Thörnig, P. Jureca: Data Centric and Booster Modules Implementing the Modular Supercomputing Architecture At Jülich Supercomputing Centre. Journal of large-scale research facilities JLSRF 2021, 7, A182,  DOI: 10.17815/jlsrf-7-182

Cited By

Click to copy section linkSection link copied!

This article has not yet been cited by other publications.

Journal of Chemical Information and Modeling

Cite this: J. Chem. Inf. Model. 2024, 64, 21, 8215–8226
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jcim.4c01172
Published October 27, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

1482

Altmetric

-

Citations

-
Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Sequence of amino acid residues in AS; positively charged residues are highlighted in blue, and negatively charged ones are highlighted in red. Three domains can be identified: the positively charged N-terminus (residues 1–60), the overall neutral hydrophobic region (residues 61–95), and the negatively charged C-terminal domain (residues 96–104). In physiological conditions, the protein is acetylated on the first residue, although this post-translational modification does not significantly affect the fibrillization propensity in vitro. (18) In LBs, a significant fraction of AS is phosphorylated on S129. (11) A novel phosphorylation site at T64 has also been recently described. (10)

    Figure 2

    Figure 2. Calculated chemical shifts of (a) N, (b) Cα, (c) Cβ, (d) C, and (e) H atoms and in AS and pAS against the experimental data from Roche et al. (86) Correlation coefficients are given for AS (blue) and pAS (orange), respectively.

    Figure 3

    Figure 3. Circular Dichroism spectra of the AS and pAS cluster midpoint structures obtained during the converged part of the simulations. Shading indicates the standard error.

    Figure 4

    Figure 4. Structures of cluster midpoints representing the structural ensembles of AS (a-c) and pAS (d-f), from (a) 6.80% to (b) 48.85%, (c) 100%, (d) 5.80%, (e) 49.63%, and (f) 100%. See Table S7 for details.

    Figure 5

    Figure 5. AS (blue) and pAS (orange) Rg distributions (a) and corresponding approximate free energy landscapes over the distance between the protein termini and radii of gyration (b-c).

    Figure 6

    Figure 6. (a) Contact maps of AS (triangle above) and pAS (triangle below) and (b) their differences. Brighter values correspond to closer distances in the corresponding triangle compared to the opposite triangle.

    Figure 7

    Figure 7. Distribution of the total number of salt bridges (a) and hydrogen bonds (b) in AS (blue) and pAS (orange). Frequency with which intradomain (black labels) and interdomain (red labels) salt bridges (c) and hydrogen bonds (d) are found in AS and pAS. Salt bridges and hydrogen bonds are displayed that occur during at least 2 and 25% of the converged trajectory, respectively, in either the AS or pAS simulation.

    Figure 8

    Figure 8. RDFs (g(r)) of (a-e) water oxygen atoms surrounding (a-b) backbone carbon atoms, (c) side-chain carbon, and (d-e) side-chain oxygen atoms. (f-g) RDFs of sodium ions surrounding side-chain oxygen atoms. (h) Integral of the TRRDF (n(r,t)) of sodium ions over 1 ns time windows. Insets show the integral of g(r) up to 5 Å.

    Figure 9

    Figure 9. Number of water molecules (left column), sodium ions (middle column), and chloride ions (right column) in the first hydration shell surrounding the (a-c) N-terminal, (d-f) hydrophobic, and (g-i) C-terminal domains of the protein, as well as around (j-l) the S129 residue. Inset numbers indicate the mean and standard deviation of the distributions.

  • References


    This article references 115 other publications.

    1. 1
      Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S. G.; Croteau, D. L.; Bohr, V. A. Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology 2019, 15, 565581,  DOI: 10.1038/s41582-019-0244-7
    2. 2
      Rocca, W. A. The burden of Parkinson’s disease: a worldwide perspective. Lancet 2018, 17, 928929,  DOI: 10.1016/S1474-4422(18)30355-7
    3. 3
      Lücking, C. B.; Brice, A. Alpha-synuclein and Parkinson’s disease. Cellular and Molecular Life Sciences CMLS 2000, 57, 18941908,  DOI: 10.1007/PL00000671
    4. 4
      Baba, M.; Nakajo, S.; Tu, P.-H.; Tomita, T.; Nakaya, K.; Lee, V.; Trojanowski, J. Q.; Iwatsubo, T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. American journal of pathology 1998, 152, 879884
    5. 5
      Gibb, W.; Lees, A. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry 1988, 51, 745752,  DOI: 10.1136/jnnp.51.6.745
    6. 6
      Nguyen, P. H.; Ramamoorthy, A.; Sahoo, B. R.; Zheng, J.; Faller, P.; Straub, J. E.; Dominguez, L.; Shea, J.-E.; Dokholyan, N. V.; De Simone, A. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 2021, 121, 25452647,  DOI: 10.1021/acs.chemrev.0c01122
    7. 7
      Snead, D.; Eliezer, D. Alpha-synuclein function and dysfunction on cellular membranes. Experimental neurobiology 2014, 23, 292,  DOI: 10.5607/en.2014.23.4.292
    8. 8
      Waudby, C. A.; Camilloni, C.; Fitzpatrick, A. W.; Cabrita, L. D.; Dobson, C. M.; Vendruscolo, M.; Christodoulou, J. In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-synuclein within E. coli cells. PloS one 2013, 8, e72286,  DOI: 10.1371/journal.pone.0072286
    9. 9
      Goedert, M.; Griesinger, C.; Outeiro, T. F.; Riek, R.; Schröder, G. F.; Spillantini, M. G. Abandon the Nac in α-synuclein. Lancet Neurology 2024, 23, 669,  DOI: 10.1016/S1474-4422(24)00176-5
    10. 10
      Matsui, H.; Ito, S.; Matsui, H.; Ito, J.; Gabdulkhaev, R.; Hirose, M.; Yamanaka, T.; Koyama, A.; Kato, T.; Tanaka, M. Phosphorylation of α-synuclein at T64 results in distinct oligomers and exerts toxicity in models of Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2214652120  DOI: 10.1073/pnas.2214652120
    11. 11
      Fujiwara, H.; Hasegawa, M.; Dohmae, N.; Kawashima, A.; Masliah, E.; Goldberg, M. S.; Shen, J.; Takio, K.; Iwatsubo, T. α-Synuclein Is Phosphorylated in Synucleinopathy Lesions. Nat. Cell Biol. 2002, 4, 160164,  DOI: 10.1038/ncb748
    12. 12
      Ramalingam, N.; Jin, S.-X.; Moors, T. E.; Fonseca-Ornelas, L.; Shimanaka, K.; Lei, S.; Cam, H. P.; Watson, A. H.; Brontesi, L.; Ding, L. Dynamic Physiological α-synuclein S129 Phosphorylation Is Driven By Neuronal Activity. npj Parkinson’s Disease 2023, 9, 4,  DOI: 10.1038/s41531-023-00444-w
    13. 13
      Ramalingam, N.; Haass, C.; Dettmer, U. Physiological Roles of α-synuclein Serine-129 Phosphorylation - Not an Oxymoron. Trends in Neurosciences 2024, 47, 480,  DOI: 10.1016/j.tins.2024.05.005
    14. 14
      Ghanem, S. S.; Majbour, N. K.; Vaikath, N. N.; Ardah, M. T.; Erskine, D.; Jensen, N. M.; Fayyad, M.; Sudhakaran, I. P.; Vasili, E.; Melachroinou, K. α-Synuclein phosphorylation at serine 129 occurs after initial protein deposition and inhibits seeded fibril formation and toxicity. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2109617119,  DOI: 10.1073/pnas.2109617119
    15. 15
      Wang, Y.; Shi, M.; Chung, K. A.; Zabetian, C. P.; Leverenz, J. B.; Berg, D.; Srulijes, K.; Trojanowski, J. Q.; Lee, V. M.-Y.; Siderowf, A. D. Phosphorylated α-synuclein in Parkinson’s disease. Science translational medicine 2012, 4, 121ra20,  DOI: 10.1126/scitranslmed.3002566
    16. 16
      Kawahata, I.; Finkelstein, D. I.; Fukunaga, K. Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. International Journal of Molecular Sciences 2022, 23, 6216,  DOI: 10.3390/ijms23116216
    17. 17
      Oueslati, A.; Fournier, M.; Lashuel, H. A. Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Progress in brain research 2010, 183, 115145,  DOI: 10.1016/S0079-6123(10)83007-9
    18. 18
      Fauvet, B.; Fares, M.-B.; Samuel, F.; Dikiy, I.; Tandon, A.; Eliezer, D.; Lashuel, H. A. Characterization of Semisynthetic and Naturally Nα-Acetylated α-Synuclein in Vitro and in Intact Cells. J. Biol. Chem. 2012, 287, 2824328262,  DOI: 10.1074/jbc.M112.383711
    19. 19
      Xie, Y.; Jiang, Y.; Ben-Amotz, D. Detection of amino acid and peptide phosphate protonation using Raman spectroscopy. Analytical biochemistry 2005, 343, 223230,  DOI: 10.1016/j.ab.2005.05.038
    20. 20
      Schreurs, S.; Gerard, M.; Derua, R.; Waelkens, E.; Taymans, J.-M.; Baekelandt, V.; Engelborghs, Y. In vitro phosphorylation does not influence the aggregation kinetics of WT α-synuclein in contrast to its phosphorylation mutants. International journal of molecular sciences 2014, 15, 10401067,  DOI: 10.3390/ijms15011040
    21. 21
      Samuel, F.; Flavin, W. P.; Iqbal, S.; Pacelli, C.; Renganathan, S. D. S.; Trudeau, L.-E.; Campbell, E. M.; Fraser, P. E.; Tandon, A. Effects of serine 129 phosphorylation on α-synuclein aggregation, membrane association, and internalization. J. Biol. Chem. 2016, 291, 43744385,  DOI: 10.1074/jbc.M115.705095
    22. 22
      Paleologou, K. E.; Schmid, A. W.; Rospigliosi, C. C.; Kim, H.-Y.; Lamberto, G. R.; Fredenburg, R. A.; Lansbury, P. T.; Fernandez, C. O.; Eliezer, D.; Zweckstetter, M. Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of α-synuclein. J. Biol. Chem. 2008, 283, 1689516905,  DOI: 10.1074/jbc.M800747200
    23. 23
      Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B. L.; Grubmüller, H.; MacKerell, A. D. Charmm36m: an Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 7173,  DOI: 10.1038/nmeth.4067
    24. 24
      Semenyuk, P. I. Alpha-Synuclein Phosphorylation Induces Amyloid Conversion Via Enhanced Electrostatic Bridging: Insights From Molecular Modeling of the Full-Length Protein. Biophys. Chem. 2024, 307, 107196,  DOI: 10.1016/j.bpc.2024.107196
    25. 25
      Kang, L.; Moriarty, G. M.; Woods, L. A.; Ashcroft, A. E.; Radford, S. E.; Baum, J. N-Terminal Acetylation of α-synuclein Induces Increased Transient Helical Propensity and Decreased Aggregation Rates in the Intrinsically Disordered Monomer. Protein Sci. 2012, 21, 911917,  DOI: 10.1002/pro.2088
    26. 26
      Trexler, A. J.; Rhoades, E. N-terminal Acetylation Is Critical for Forming α-helical Oligomer of α-synuclein. Protein Sci. 2012, 21, 601605,  DOI: 10.1002/pro.2056
    27. 27
      Maltsev, A. S.; Ying, J.; Bax, A. Impact of N-terminal acetylation of α-synuclein on its random coil and lipid binding properties. Biochemistry 2012, 51, 50045013,  DOI: 10.1021/bi300642h
    28. 28
      Piana, S.; Robustelli, P.; Tan, D.; Chen, S.; Shaw, D. E. Development of a force field for the simulation of single-chain proteins and protein-protein complexes. J. Chem. Theory Comput. 2020, 16, 24942507,  DOI: 10.1021/acs.jctc.9b00251
    29. 29
      Robustelli, P.; Piana, S.; Shaw, D. E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E4758E4766,  DOI: 10.1073/pnas.1800690115
    30. 30
      Wang, W. Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Phys. Chem. Chem. Phys. 2021, 23, 777784,  DOI: 10.1039/D0CP05818A
    31. 31
      Pedersen, K. B.; Flores-Canales, J. C.; Schiøtt, B. Predicting molecular properties of α-synuclein using force fields for intrinsically disordered proteins. Proteins: Struct., Funct., Bioinf. 2023, 91, 4761,  DOI: 10.1002/prot.26409
    32. 32
      Robustelli, P.; de Opakua, A. I.; Campbell-Bezat, C.; Giordanetto, F.; Becker, S.; Zweckstetter, M.; Pan, A. C.; Shaw, D. E. Molecular Basis of Small-Molecule Binding To α-Synuclein. J. Am. Chem. Soc. 2022, 144, 25012510,  DOI: 10.1021/jacs.1c07591
    33. 33
      Homeyer, N.; Horn, A. H.; Lanig, H.; Sticht, H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model. 2006, 12, 281289,  DOI: 10.1007/s00894-005-0028-4
    34. 34
      Steinbrecher, T.; Latzer, J.; Case, D. Revised AMBER parameters for bioorganic phosphates. J. Chem. Theory Comput. 2012, 8, 44054412,  DOI: 10.1021/ct300613v
    35. 35
      Khoury, G. A.; Thompson, J. P.; Smadbeck, J.; Kieslich, C. A.; Floudas, C. A. Forcefield_PTM: Ab initio charge and AMBER forcefield parameters for frequently occurring post-translational modifications. J. Chem. Theory Comput. 2013, 9, 56535674,  DOI: 10.1021/ct400556v
    36. 36
      Petrov, D.; Margreitter, C.; Grandits, M.; Oostenbrink, C.; Zagrovic, B. A systematic framework for molecular dynamics simulations of protein post-translational modifications. PLoS computational biology 2013, 9, e1003154,  DOI: 10.1371/journal.pcbi.1003154
    37. 37
      Zhong, B.; Song, G.; Chen, H.-F. Balanced Force Field ff03CMAP Improving the Dynamics Conformation Sampling of Phosphorylation Site. International Journal of Molecular Sciences 2022, 23, 11285,  DOI: 10.3390/ijms231911285
    38. 38
      Vymětal, J.; Jurásková, V.; Vondrášek, J. AMBER and CHARMM force fields inconsistently portray the microscopic details of phosphorylation. J. Chem. Theory Comput. 2019, 15, 665679,  DOI: 10.1021/acs.jctc.8b00715
    39. 39
      Rieloff, E.; Skepö, M. Phosphorylation of a disordered peptide─Structural effects and force field inconsistencies. J. Chem. Theory Comput. 2020, 16, 19241935,  DOI: 10.1021/acs.jctc.9b01190
    40. 40
      Rieloff, E.; Skepö, M. Molecular Dynamics Simulations of Phosphorylated Intrinsically Disordered Proteins: a Force Field Comparison. International Journal of Molecular Sciences 2021, 22, 10174,  DOI: 10.3390/ijms221810174
    41. 41
      Man, V. H.; He, X.; Gao, J.; Wang, J. Phosphorylation of Tau R2 Repeat Destabilizes Its Binding to Microtubules: A Molecular Dynamics Simulation Study. ACS Chem. Neurosci. 2023, 14, 458,  DOI: 10.1021/acschemneuro.2c00611
    42. 42
      Tucker, M. R.; Piana, S.; Tan, D.; LeVine, M. V.; Shaw, D. E. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded Dna Molecules and Dna-Protein Complexes. J. Phys. Chem. B 2022, 126, 44424457,  DOI: 10.1021/acs.jpcb.1c10971
    43. 43
      Irbäck, A.; Mohanty, S. Profasi: a Monte Carlo Simulation Package for Protein Folding and Aggregation. J. Comput. Chem. 2006, 27, 15481555,  DOI: 10.1002/jcc.20452
    44. 44
      D’Urzo, A.; Konijnenberg, A.; Rossetti, G.; Habchi, J.; Li, J.; Carloni, P.; Sobott, F.; Longhi, S.; Grandori, R. Molecular Basis for Structural Heterogeneity of an Intrinsically Disordered Protein Bound To a Partner By Combined Esi-Im-Ms and Modeling. Journal of The American Society for Mass Spectrometry 2015, 26, 472481,  DOI: 10.1007/s13361-014-1048-z
    45. 45
      Cragnell, C.; Rieloff, E.; Skepö, M. Utilizing Coarse-Grained Modeling and Monte Carlo Simulations To Evaluate the Conformational Ensemble of Intrinsically Disordered Proteins and Regions. J. Mol. Biol. 2018, 430, 24782492,  DOI: 10.1016/j.jmb.2018.03.006
    46. 46
      Rieloff, E.; Tully, M. D.; Skepö, M. Assessing the Intricate Balance of Intermolecular Interactions Upon Self-Association of Intrinsically Disordered Proteins. J. Mol. Biol. 2019, 431, 511523,  DOI: 10.1016/j.jmb.2018.11.027
    47. 47
      Shrestha, U. R.; Smith, J. C.; Petridis, L. Full Structural Ensembles of Intrinsically Disordered Proteins From Unbiased Molecular Dynamics Simulations. Communications Biology 2021, 4, 243,  DOI: 10.1038/s42003-021-01759-1
    48. 48
      Gupta, A.; Dey, S.; Hicks, A.; Zhou, H.-X. Artificial Intelligence Guided Conformational Mining of Intrinsically Disordered Proteins. Communications Biology 2022, 5, 610,  DOI: 10.1038/s42003-022-03562-y
    49. 49
      Yu, H.; Han, W.; Ma, W.; Schulten, K. Transient β-hairpin Formation in α-synuclein Monomer Revealed By Coarse-Grained Molecular Dynamics Simulation. J. Chem. Phys. 2015, 143, 243142,  DOI: 10.1063/1.4936910
    50. 50
      Cragnell, C.; Durand, D.; Cabane, B.; Skepö, M. Coarse-Grained Modeling of the Intrinsically Disordered Protein Histatin 5 in Solution: Monte Carlo Simulations in Combination With Saxs. Proteins: Struct., Funct., Bioinf. 2016, 84, 777791,  DOI: 10.1002/prot.25025
    51. 51
      Hyltegren, K.; Polimeni, M.; Skepö, M.; Lund, M. Integrating All-Atom and Coarse-Grained Simulations-Toward Understanding of Idps At Surfaces. J. Chem. Theory Comput. 2020, 16, 18431853,  DOI: 10.1021/acs.jctc.9b01041
    52. 52
      Garaizar, A.; Espinosa, J. R. Salt Dependent Phase Behavior of Intrinsically Disordered Proteins From a Coarse-Grained Model With Explicit Water and Ions. J. Chem. Phys. 2021, 155, 125103,  DOI: 10.1063/5.0062687
    53. 53
      Wang, L.; Friesner, R. A.; Berne, B. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B 2011, 115, 94319438,  DOI: 10.1021/jp204407d
    54. 54
      Rossetti, G.; Musiani, F.; Abad, E.; Dibenedetto, D.; Mouhib, H.; Fernandez, C. O.; Carloni, P. Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations. Phys. Chem. Chem. Phys. 2016, 18, 57025706,  DOI: 10.1039/C5CP04549E
    55. 55
      Palomino-Hernandez, O.; Buratti, F. A.; Sacco, P. S.; Rossetti, G.; Carloni, P.; Fernandez, C. O. Role of Tyr-39 for the Structural Features of α-Synuclein and for the Interaction with a Strong Modulator of Its Amyloid Assembly. International journal of molecular sciences 2020, 21, 5061,  DOI: 10.3390/ijms21145061
    56. 56
      Theillet, F.-X.; Binolfi, A.; Bekei, B.; Martorana, A.; Rose, H. M.; Stuiver, M.; Verzini, S.; Lorenz, D.; Van Rossum, M.; Goldfarb, D. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 2016, 530, 4550,  DOI: 10.1038/nature16531
    57. 57
      Uluca, B.; Viennet, T.; Petrović, D.; Shaykhalishahi, H.; Weirich, F.; Gönülalan, A.; Strodel, B.; Etzkorn, M.; Hoyer, W.; Heise, H. DNP-enhanced MAS NMR: a tool to snapshot conformational ensembles of α-synuclein in different states. Biophysical journal 2018, 114, 16141623,  DOI: 10.1016/j.bpj.2018.02.011
    58. 58
      Jain, K.; Ghribi, O.; Delhommelle, J. Folding free-energy landscape of α-synuclein (35–97) via replica exchange molecular dynamics. J. Chem. Inf. Model. 2021, 61, 432443,  DOI: 10.1021/acs.jcim.0c01278
    59. 59
      Ilie, I. M.; Nayar, D.; Den Otter, W. K.; Van Der Vegt, N. F.; Briels, W. J. Intrinsic conformational preferences and interactions in α-synuclein fibrils: insights from molecular dynamics simulations. J. Chem. Theory Comput. 2018, 14, 32983310,  DOI: 10.1021/acs.jctc.8b00183
    60. 60
      Chwastyk, M.; Cieplak, M. Conformational biases of α-synuclein and formation of transient knots. J. Phys. Chem. B 2020, 124, 1119,  DOI: 10.1021/acs.jpcb.9b08481
    61. 61
      Perlmutter, J. D.; Braun, A. R.; Sachs, J. N. Curvature dynamics of α-synuclein familial parkinson disease mutants. J. Biol. Chem. 2009, 284, 71777189,  DOI: 10.1074/jbc.M808895200
    62. 62
      Allison, J. R.; Varnai, P.; Dobson, C. M.; Vendruscolo, M. Determination of the free energy landscape of α-synuclein using spin label nuclear magnetic resonance measurements. J. Am. Chem. Soc. 2009, 131, 1831418326,  DOI: 10.1021/ja904716h
    63. 63
      Amos, S.-B. T.; Schwarz, T. C.; Shi, J.; Cossins, B. P.; Baker, T. S.; Taylor, R. J.; Konrat, R.; Sansom, M. S. Membrane Interactions of α-Synuclein Revealed by Multiscale Molecular Dynamics Simulations, Markov State Models, and NMR. J. Phys. Chem. B 2021, 125, 29292941,  DOI: 10.1021/acs.jpcb.1c01281
    64. 64
      Herrera, F. E.; Chesi, A.; Paleologou, K. E.; Schmid, A.; Munoz, A.; Vendruscolo, M.; Gustincich, S.; Lashuel, H. A.; Carloni, P. Inhibition of α-synuclein fibrillization by dopamine is mediated by interactions with five C-terminal residues and with E83 in the NAC region. PloS one 2008, 3, e3394,  DOI: 10.1371/journal.pone.0003394
    65. 65
      Robustelli, P.; Ibanez-de Opakua, A.; Campbell-Bezat, C.; Giordanetto, F.; Becker, S.; Zweckstetter, M.; Pan, A. C.; Shaw, D. E. Molecular basis of small-molecule binding to α-synuclein. J. Am. Chem. Soc. 2022, 144, 25012510,  DOI: 10.1021/jacs.1c07591
    66. 66
      Balesh, D.; Ramjan, Z. Unfolded annealing molecular dynamics conformers for wild-type and disease-associated variants of alpha-synuclein show no propensity for beta-sheetformation. Journal of Biophysical Chemistry 2011, 2, 124,  DOI: 10.4236/jbpc.2011.22015
    67. 67
      Allison, J. R.; Rivers, R. C.; Christodoulou, J. C.; Vendruscolo, M.; Dobson, C. M. A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein. Biochemistry 2014, 53, 71707183,  DOI: 10.1021/bi5009326
    68. 68
      Dedmon, M. M.; Lindorff-Larsen, K.; Christodoulou, J.; Vendruscolo, M.; Dobson, C. M. Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem. Soc. 2005, 127, 476477,  DOI: 10.1021/ja044834j
    69. 69
      Park, S.; Yoon, J.; Jang, S.; Lee, K.; Shin, S. The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study. J. Biomol. Struct. Dyn. 2016, 34, 376383,  DOI: 10.1080/07391102.2015.1033016
    70. 70
      Brodie, N. I.; Popov, K. I.; Petrotchenko, E. V.; Dokholyan, N. V.; Borchers, C. H. Conformational ensemble of native α-synuclein in solution as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. PLoS computational biology 2019, 15, e1006859,  DOI: 10.1371/journal.pcbi.1006859
    71. 71
      Tsigelny, I. F.; Bar-On, P.; Sharikov, Y.; Crews, L.; Hashimoto, M.; Miller, M. A.; Keller, S. H.; Platoshyn, O.; Yuan, J. X.-J.; Masliah, E. Dynamics of α-synuclein aggregation and inhibition of pore-like oligomer development by β-synuclein. FEBS journal 2007, 274, 18621877,  DOI: 10.1111/j.1742-4658.2007.05733.x
    72. 72
      Ramis, R.; Ortega-Castro, J.; Casasnovas, R.; Mariño, L.; Vilanova, B.; Adrover, M.; Frau, J. A coarse-grained molecular dynamics approach to the study of the intrinsically disordered protein α-synuclein. J. Chem. Inf. Model. 2019, 59, 14581471,  DOI: 10.1021/acs.jcim.8b00921
    73. 73
      Yu, H.; Han, W.; Ma, W.; Schulten, K. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation. J. Chem. Phys. 2015, 143, 243142,  DOI: 10.1063/1.4936910
    74. 74
      Narayanan, C.; Weinstock, D. S.; Wu, K.-P.; Baum, J.; Levy, R. M. Investigation of the polymeric properties of α-synuclein and comparison with NMR experiments: a replica exchange molecular dynamics study. J. Chem. Theory Comput. 2012, 8, 39293942,  DOI: 10.1021/ct300241t
    75. 75
      Dibenedetto, D.; Rossetti, G.; Caliandro, R.; Carloni, P. A molecular dynamics simulation-based interpretation of nuclear magnetic resonance multidimensional heteronuclear spectra of α-synuclein·dopamine adducts. Biochemistry 2013, 52, 66726683,  DOI: 10.1021/bi400367r
    76. 76
      Tsigelny, I. F.; Sharikov, Y.; Miller, M. A.; Masliah, E. Mechanism of alpha-synuclein oligomerization and membrane interaction: theoretical approach to unstructured proteins studies. Nanomedicine: Nanotechnology, Biology and Medicine 2008, 4, 350357,  DOI: 10.1016/j.nano.2008.05.005
    77. 77
      Zhang, T.; Tian, Y.; Li, Z.; Liu, S.; Hu, X.; Yang, Z.; Ling, X.; Liu, S.; Zhang, J. Molecular dynamics study to investigate the dimeric structure of the full-length α-synuclein in aqueous solution. J. Chem. Inf. Model. 2017, 57, 22812293,  DOI: 10.1021/acs.jcim.7b00210
    78. 78
      Savva, L.; Platts, J. A. How Cu (II) binding affects structure and dynamics of α-synuclein revealed by molecular dynamics simulations. Journal of Inorganic Biochemistry 2023, 239, 112068,  DOI: 10.1016/j.jinorgbio.2022.112068
    79. 79
      Razzokov, J.; Fazliev, S.; Makhkamov, M.; Marimuthu, P.; Baev, A.; Kurganov, E. Effect of Electric Field on α-Synuclein Fibrils: Revealed by Molecular Dynamics Simulations. International Journal of Molecular Sciences 2023, 24, 6312,  DOI: 10.3390/ijms24076312
    80. 80
      Savva, L.; Platts, J. A. Exploring the Impact of Mutation and Post-Translational Modification on α-Synuclein: Insights From Molecular Dynamics Simulations With and Without Copper. Journal of Inorganic Biochemistry 2023, 249, 112395,  DOI: 10.1016/j.jinorgbio.2023.112395
    81. 81
      Jin, F.; Gräter, F. How Multisite Phosphorylation Impacts the Conformations of Intrinsically Disordered Proteins. PLOS Computational Biology 2021, 17, e1008939,  DOI: 10.1371/journal.pcbi.1008939
    82. 82
      Rieloff, E.; Skepö, M. The Effect of Multisite Phosphorylation on the Conformational Properties of Intrinsically Disordered Proteins. International Journal of Molecular Sciences 2021, 22, 11058,  DOI: 10.3390/ijms222011058
    83. 83
      Martin, I. M.; Aponte-Santamaría, C.; Schmidt, L.; Hedtfeld, M.; Iusupov, A.; Musacchio, A.; Gräter, F. Phosphorylation Tunes Elongation Propensity and Cohesiveness of Incenp’s Intrinsically Disordered Region. J. Mol. Biol. 2022, 434, 167387,  DOI: 10.1016/j.jmb.2021.167387
    84. 84
      Adhikari, S.; Mondal, J. Machine Learning Subtle Conformational Change Due To Phosphorylation in Intrinsically Disordered Proteins. J. Phys. Chem. B 2023, 127, 94339449,  DOI: 10.1021/acs.jpcb.3c05136
    85. 85
      Amith, W. D.; Dutagaci, B. Complex Conformational Space of the Rna Polymerase Ii C-Terminal Domain Upon Phosphorylation. J. Phys. Chem. B 2023, 127, 92239235,  DOI: 10.1021/acs.jpcb.3c02655
    86. 86
      Roche, J.; Ying, J.; Maltsev, A. S.; Bax, A. Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of α-Synuclein. ChemBioChem. 2013, 14, 17541761,  DOI: 10.1002/cbic.201300244
    87. 87
      DeLano, W. L. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 2002, 40, 8292
    88. 88
      Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States. J. Phys. Chem. B 2015, 119, 51135123,  DOI: 10.1021/jp508971m
    89. 89
      Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 1008910092,  DOI: 10.1063/1.464397
    90. 90
      Evans, D. J.; Holian, B. L. The nose-hoover thermostat. J. Chem. Phys. 1985, 83, 40694074,  DOI: 10.1063/1.449071
    91. 91
      Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 23842393,  DOI: 10.1063/1.439486
    92. 92
      Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. LINCS: a linear constraint solver for molecular simulations. Journal of computational chemistry 1997, 18, 14631472,  DOI: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
    93. 93
      Appadurai, R.; Koneru, J. K.; Bonomi, M.; Robustelli, P.; Srivastava, A. Clustering Heterogeneous Conformational Ensembles of Intrinsically Disordered Proteins With T-Distributed Stochastic Neighbor Embedding. J. Chem. Theory Comput. 2023, 19, 47114727,  DOI: 10.1021/acs.jctc.3c00224
    94. 94
      McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.; Hernández, C. X.; Schwantes, C. R.; Wang, L.-P.; Lane, T. J.; Pande, V. S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 15281532,  DOI: 10.1016/j.bpj.2015.08.015
    95. 95
      Shen, Y.; Bax, A. Sparta+: a Modest Improvement in Empirical Nmr Chemical Shift Prediction By Means of an Artificial Neural Network. Journal of Biomolecular NMR 2010, 48, 1322,  DOI: 10.1007/s10858-010-9433-9
    96. 96
      Nagy, G.; Igaev, M.; Jones, N. C.; Hoffmann, S. V.; Grubmüller, H. Sesca: Predicting Circular Dichroism Spectra From Protein Molecular Structures. J. Chem. Theory Comput. 2019, 15, 50875102,  DOI: 10.1021/acs.jctc.9b00203
    97. 97
      Nagy, G.; Grubmüller, H. How Accurate Is Circular Dichroism-Based Model Validation?. Eur. Biophys. J. 2020, 49, 497510,  DOI: 10.1007/s00249-020-01457-6
    98. 98
      Nagy, G.; Grubmuller, H. Implementation of a Bayesian Secondary Structure Estimation Method for the Sesca Circular Dichroism Analysis Package. Comput. Phys. Commun. 2021, 266, 108022,  DOI: 10.1016/j.cpc.2021.108022
    99. 99
      de Bruyn, E. SPEADI: Scalable Protein Environment Analysis for Dynamics and Ions (v1.0.0) . 2022;https://zenodo.org/records/7436713.
    100. 100
      de Bruyn, E.; Dorn, A. E.; Zimmermann, O.; Rossetti, G. Speadi: Accelerated Analysis of Idp-Ion Interactions From MD-Trajectories. Biology 2023, 12, 581,  DOI: 10.3390/biology12040581
    101. 101
      Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. A.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P. The Structure of the First Coordination Shell in Liquid Water. Science 2004, 304, 995999,  DOI: 10.1126/science.1096205
    102. 102
      Donald, J. E.; Kulp, D. W.; DeGrado, W. F. Salt Bridges: Geometrically Specific, Designable Interactions. Proteins: Struct., Funct., Bioinf. 2011, 79, 898915,  DOI: 10.1002/prot.22927
    103. 103
      Kabsch, W.; Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on Biomolecules 1983, 22, 25772637,  DOI: 10.1002/bip.360221211
    104. 104
      Tavernelli, I.; Cotesta, S.; Iorio, E. E. D. Protein Dynamics, Thermal Stability, and Free-Energy Landscapes: a Molecular Dynamics Investigation. Biophys. J. 2003, 85, 26412649,  DOI: 10.1016/S0006-3495(03)74687-6
    105. 105
      Lazar, T.; Guharoy, M.; Vranken, W.; Rauscher, S.; Wodak, S. J.; Tompa, P. Distance-Based metrics for comparing conformational ensembles of intrinsically disordered proteins. Biophys. J. 2020, 118, 29522965,  DOI: 10.1016/j.bpj.2020.05.015
    106. 106
      Li, J.; Bennett, K. C.; Liu, Y.; Martin, M. V.; Head-Gordon, T. Accurate Prediction of Chemical Shifts for Aqueous Protein Structure on ”Real World” Data. Chemical Science 2020, 11, 31803191,  DOI: 10.1039/C9SC06561J
    107. 107
      Bell, R.; Vendruscolo, M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes By Post-Translational Modifications. Frontiers in Neurology 2021, 12, 661117,  DOI: 10.3389/fneur.2021.661117
    108. 108
      Killinger, B. A.; Mercado, G.; Choi, S.; Tittle, T.; Chu, Y.; Brundin, P.; Kordower, J. H. Distribution of Phosphorylated Alpha-Synuclein in Non-Diseased Brain Implicates Olfactory Bulb Mitral Cells in Synucleinopathy Pathogenesis. npj Parkinson’s Disease 2023, 9, 43,  DOI: 10.1038/s41531-023-00491-3
    109. 109
      Guerrero-Ferreira, R.; Taylor, N. M.; Mona, D.; Ringler, P.; Lauer, M. E.; Riek, R.; Britschgi, M.; Stahlberg, H. Cryo-Em Structure of Alpha-Synuclein Fibrils. eLife 2018, 7, e36402,  DOI: 10.7554/eLife.36402
    110. 110
      Guerrero-Ferreira, R.; Taylor, N. M.; Arteni, A.-A.; Kumari, P.; Mona, D.; Ringler, P.; Britschgi, M.; Lauer, M. E.; Makky, A.; Verasdonck, J. Two New Polymorphic Structures of Human Full-Length Alpha-Synuclein Fibrils Solved By Cryo-Electron Microscopy. eLife 2019, 8, e48907,  DOI: 10.7554/eLife.48907
    111. 111
      Krause, D. Juwels: Modular Tier-0/1 Supercomputer At Jülich Supercomputing Centre. Journal of large-scale research facilities JLSRF 2019, 5, A135,  DOI: 10.17815/jlsrf-5-171
    112. 112
      Alvarez, D. Juwels Cluster and Booster: Exascale Pathfinder With Modular Supercomputing Architecture At Juelich Supercomputing Centre. Journal of large-scale research facilities JLSRF 2021, 7, A183,  DOI: 10.17815/jlsrf-7-183
    113. 113
      Herten, A. JUWELS Booster - Early User Experiences. Proceedings of the 2021 on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn STrategy 2021, 1
    114. 114
      Kesselheim, S.; Herten, A.; Krajsek, K.; Ebert, J.; Jitsev, J.; Cherti, M.; Langguth, M.; Gong, B.; Stadtler, S.; Mozaffari, A. Lecture Notes in Computer Science; Lecture Notes in Computer Science; Springer International Publishing; 2021; pp 453468.
    115. 115
      Thörnig, P. Jureca: Data Centric and Booster Modules Implementing the Modular Supercomputing Architecture At Jülich Supercomputing Centre. Journal of large-scale research facilities JLSRF 2021, 7, A182,  DOI: 10.17815/jlsrf-7-182
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.4c01172.

    • Detailed experimental setup (including all GROMACS parameters), analysis and comparison with results obtained with other force fields (PDF)

    • Structures of the 25 cluster midpoints are included for both AS and pAS (ZIP)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.