ACS Publications. Most Trusted. Most Cited. Most Read
conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure
My Activity

Figure 1Loading Img
    Application Note

    conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ Artie McFerrin Department of Chemical Engineering and Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843, United States
    § Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2016, 56, 3, 455–461
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jcim.5b00566
    Published February 29, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Accurate prediction of protein secondary structure remains a crucial step in most approaches to the protein-folding problem, yet the prediction of ordered secondary structure, specifically beta-strands, remains a challenge. We developed a consensus secondary structure prediction method, conSSert, which is based on support vector machines (SVM) and provides exceptional accuracy for the prediction of beta-strands with QE accuracy of over 0.82 and a Q2-EH of 0.86. conSSert uses as input probabilities for the three types of secondary structure (helix, strand, and coil) that are predicted by four top performing methods: PSSpred, PSIPRED, SPINE-X, and RAPTOR. conSSert was trained/tested using 4261 protein chains from PDBSelect25, and 8632 chains from PISCES. Further validation was performed using targets from CASP9, CASP10, and CASP11. Our data suggest that poor performance in strand prediction is likely a result of training bias and not solely due to the nonlocal nature of beta-sheet contacts. conSSert is freely available for noncommercial use as a webservice: http://ares.tamu.edu/conSSert/.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jcim.5b00566.

    • The Supporting Information file includes tables describing the compositions of training and testing sets, as well as the full cross validation results from which means and standard deviations were derived. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 30 publications.

    1. Asuka A. Orr, Meichen Wang, Burcu Beykal, Hari S. Ganesh, Sara E. Hearon, Efstratios N. Pistikopoulos, Timothy D. Phillips, Phanourios Tamamis. Combining Experimental Isotherms, Minimalistic Simulations, and a Model to Understand and Predict Chemical Adsorption onto Montmorillonite Clays. ACS Omega 2021, 6 (22) , 14090-14103. https://doi.org/10.1021/acsomega.1c00481
    2. Mark A. Olson. Disorder–Order Transitions in Conformational Selection of a Peptide by Ebola Virus Nucleoprotein. ACS Omega 2020, 5 (11) , 5691-5697. https://doi.org/10.1021/acsomega.9b03581
    3. Mark A. Olson . Parallel Tempering of Dark Matter from the Ebola Virus Proteome: Comparison of CHARMM36m and CHARMM22 Force Fields with Implicit Solvent. Journal of Chemical Information and Modeling 2018, 58 (1) , 111-118. https://doi.org/10.1021/acs.jcim.7b00517
    4. Jian Zhang, Jingjing Qian, Quan Zou, Feng Zhou, Lukasz Kurgan. Recent Advances in Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences. 2025, 1-19. https://doi.org/10.1007/978-1-0716-4213-9_1
    5. Sotiris Chatzimiltis, Michalis Agathocleous, Vasilis J. Promponas, Chris Christodoulou. Post-processing enhances protein secondary structure prediction with second order deep learning and embeddings. Computational and Structural Biotechnology Journal 2025, 27 , 243-251. https://doi.org/10.1016/j.csbj.2024.12.022
    6. João Fonseca-Gomes, Tiago Costa-Coelho, Mafalda Ferreira-Manso, Sara Inteiro-Oliveira, Sandra H. Vaz, Nuno Alemãn-Serrano, Henrique Atalaia-Barbacena, Leonor Ribeiro-Rodrigues, Rita M. Ramalho, Rui Pinto, Hugo Vicente Miranda, Sara R. Tanqueiro, Carolina de Almeida-Borlido, Maria João Ramalho, Catarina Miranda-Lourenço, Rita F. Belo, Catarina B. Ferreira, Vera Neves, Diogo M. Rombo, Ricardo Viais, Juzoh Umemori, Ivo C. Martins, André Jerónimo-Santos, António Caetano, Nuno Manso, Petra Mäkinen, Mikael Marttinen, Mari Takalo, Michael Bremang, Ian Pike, Annakaisa Haapasalo, Joana A. Loureiro, Maria Carmo Pereira, Nuno C. Santos, Tiago F. Outeiro, Miguel A.R.B. Castanho, Adelaide Fernandes, Mikko Hiltunen, Carlos B. Duarte, Eero Castrén, Alexandre de Mendonça, Ana M. Sebastião, Tiago M. Rodrigues, Maria José Diógenes. A small TAT-TrkB peptide prevents BDNF receptor cleavage and restores synaptic physiology in Alzheimer's disease. Molecular Therapy 2024, 32 (10) , 3372-3401. https://doi.org/10.1016/j.ymthe.2024.08.022
    7. Konstantinos Charalampous, Michalis Agathocleous, Chris Christodoulou, Vasilis Promponas. Solving the Protein Secondary Structure Prediction Problem With the Hessian Free Optimization Algorithm. IEEE Access 2022, 10 , 27759-27770. https://doi.org/10.1109/ACCESS.2022.3156888
    8. Asuka A. Orr, Shujun He, Meichen Wang, Alicia Goodall, Sara E. Hearon, Timothy D. Phillips, Phanourios Tamamis. Insights into the interactions of bisphenol and phthalate compounds with unamended and carnitine-amended montmorillonite clays. Computers & Chemical Engineering 2020, 143 , 107063. https://doi.org/10.1016/j.compchemeng.2020.107063
    9. Tomer Boldes, Keren Merenbakh-Lamin, Shani Journo, Eliya Shachar, Doron Lipson, Adva Yeheskel, Metsada Pasmanik-Chor, Tami Rubinek, Ido Wolf. R269C variant of ESR1: high prevalence and differential function in a subset of pancreatic cancers. BMC Cancer 2020, 20 (1) https://doi.org/10.1186/s12885-020-07005-x
    10. Dario Meluzzi, Gaurav Arya. Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data. Methods 2020, 181-182 , 24-34. https://doi.org/10.1016/j.ymeth.2019.08.008
    11. Kui Wang, Gang Hu, Zhonghua Wu, Hong Su, Jianyi Yang, Lukasz Kurgan. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. International Journal of Molecular Sciences 2020, 21 (18) , 6879. https://doi.org/10.3390/ijms21186879
    12. Emilia A. Lubecka, Agnieszka S. Karczyńska, Agnieszka G. Lipska, Adam K. Sieradzan, Karolina Ziȩba, Celina Sikorska, Urszula Uciechowska, Sergey A. Samsonov, Paweł Krupa, Magdalena A. Mozolewska, Łukasz Golon, Artur Giełdoń, Cezary Czaplewski, Rafał Ślusarz, Magdalena Ślusarz, Silvia N. Crivelli, Adam Liwo. Evaluation of the scale-consistent UNRES force field in template-free prediction of protein structures in the CASP13 experiment. Journal of Molecular Graphics and Modelling 2019, 92 , 154-166. https://doi.org/10.1016/j.jmgm.2019.07.013
    13. Emilia A. Lubecka, Adam Liwo. Introduction of a bounded penalty function in contact‐assisted simulations of protein structures to omit false restraints. Journal of Computational Chemistry 2019, 40 (25) , 2164-2178. https://doi.org/10.1002/jcc.25847
    14. Elaheh Kashani-Amin, Ozra Tabatabaei-Malazy, Amirhossein Sakhteman, Bagher Larijani, Azadeh Ebrahim-Habibi. A Systematic Review on Popularity, Application and Characteristics of Protein Secondary Structure Prediction Tools. Current Drug Discovery Technologies 2019, 16 (2) , 159-172. https://doi.org/10.2174/1570163815666180227162157
    15. Vinicius Gonçalves Maltarollo, Thales Kronenberger, Gabriel Zarzana Espinoza, Patricia Rufino Oliveira, Kathia Maria Honorio. Advances with support vector machines for novel drug discovery. Expert Opinion on Drug Discovery 2019, 14 (1) , 23-33. https://doi.org/10.1080/17460441.2019.1549033
    16. Chen Keasar, Liam J. McGuffin, Björn Wallner, Gaurav Chopra, Badri Adhikari, Debswapna Bhattacharya, Lauren Blake, Leandro Oliveira Bortot, Renzhi Cao, B. K. Dhanasekaran, Itzhel Dimas, Rodrigo Antonio Faccioli, Eshel Faraggi, Robert Ganzynkowicz, Sambit Ghosh, Soma Ghosh, Artur Giełdoń, Lukasz Golon, Yi He, Lim Heo, Jie Hou, Main Khan, Firas Khatib, George A. Khoury, Chris Kieslich, David E. Kim, Pawel Krupa, Gyu Rie Lee, Hongbo Li, Jilong Li, Agnieszka Lipska, Adam Liwo, Ali Hassan A. Maghrabi, Milot Mirdita, Shokoufeh Mirzaei, Magdalena A. Mozolewska, Melis Onel, Sergey Ovchinnikov, Anand Shah, Utkarsh Shah, Tomer Sidi, Adam K. Sieradzan, Magdalena Ślusarz, Rafal Ślusarz, James Smadbeck, Phanourios Tamamis, Nicholas Trieber, Tomasz Wirecki, Yanping Yin, Yang Zhang, Jaume Bacardit, Maciej Baranowski, Nicholas Chapman, Seth Cooper, Alexandre Defelicibus, Jeff Flatten, Brian Koepnick, Zoran Popović, Bartlomiej Zaborowski, David Baker, Jianlin Cheng, Cezary Czaplewski, Alexandre Cláudio Botazzo Delbem, Christodoulos Floudas, Andrzej Kloczkowski, Stanislaw Ołdziej, Michael Levitt, Harold Scheraga, Chaok Seok, Johannes Söding, Saraswathi Vishveshwara, Dong Xu, , Ahmet Caglar, Alan Coral, Alison MacMillan, Allen Lubow, Barbara Failer, Bruno Kestemont, Catherine R. Landers, Charles Robert Painter, Christophe Garnier, Claudine Sellin, Dietmar Janz, Douglas Craig Wheeler, Vera Simon, Dylan M. Flear, Emmanuel Croze, George Victor McIlvaine, Gil Beecher, Gordon Lawrie, Guy Ykman, Harald Feldmann, Heidemarie K. Fuentes, Hosokawa Terumasa, Istvan Kovanecz, James Absalom Longino, Jan Hendrik Nijland, Jasper A. Diderich, Jeffrey M. Canfield, Jesper Eriksson, Jesse David Slone, Joan Goldsworthy Appel, Joanne Mitchell, John Mitch, Jorn Loots-Boiy, June M. Brownlee, Karsten Wilson, Keith T. Clayton, Kenneth E. DeFord, Kirk J. Abbey, Larry Withers, Linda Wei, Lloyd Ives, Lori A. Miller, Lynn Carpenter, Manasa G. Sharma, Manuel Ricci, Mark Stewart Binfield, Matthew John Davids, Matthias Gaebel, Michael D. Cassidy, Michael Fagiola, Michael Pfützenreuter, Nova Barlow, Peter John Triggiani, Renton Braden Mathew Innes, Robert Leduc, Rodrigo Luccas Corrêa dos Santos Gomes, Rosemarie L. R. Morneau, Scott J. Zaccanelli, Susan C. Kleinfelter, T. J. A. van der Laan, Thomas Bausewein, Thomas J. George, Varichev Mikhail, Walter Barmettler, Silvia N. Crivelli. An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-26812-8
    17. Mark A. Olson. Conformational Selection of a Polyproline Peptide by Ebola Virus VP30. PROTEOMICS 2018, 18 (21-22) https://doi.org/10.1002/pmic.201800081
    18. Pham Luu Trung Duong, Le Quang Minh, Muhammad Abdul Qyyum, Moonyong Lee. Sparse Bayesian learning for data driven polynomial chaos expansion with application to chemical processes. Chemical Engineering Research and Design 2018, 137 , 553-565. https://doi.org/10.1016/j.cherd.2018.08.006
    19. Harwinder Singh Sidhu, Abhinav Narasingam, Joseph Sangil Kwon. Model order reduction of nonlinear parabolic PDE systems with moving boundaries using sparse proper orthogonal decomposition methodology. 2018, 6421-6426. https://doi.org/10.23919/ACC.2018.8430820
    20. Harwinder Singh Sidhu, Abhinav Narasingam, Prashanth Siddhamshetty, Joseph Sang-Il Kwon. Model order reduction of nonlinear parabolic PDE systems with moving boundaries using sparse proper orthogonal decomposition: Application to hydraulic fracturing. Computers & Chemical Engineering 2018, 112 , 92-100. https://doi.org/10.1016/j.compchemeng.2018.02.004
    21. Joerg Schaarschmidt, Bohdan Monastyrskyy, Andriy Kryshtafovych, Alexandre M.J.J. Bonvin. Assessment of contact predictions in CASP12: Co‐evolution and deep learning coming of age. Proteins: Structure, Function, and Bioinformatics 2018, 86 (S1) , 51-66. https://doi.org/10.1002/prot.25407
    22. Sheng-Hung Wang, John Yu. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials 2018, 156 , 1-15. https://doi.org/10.1016/j.biomaterials.2017.11.024
    23. Jing Lu, Dong Lu, Zunyun Fu, Mingyue Zheng, Xiaomin Luo. Machine Learning-Based Modeling of Drug Toxicity. 2018, 247-264. https://doi.org/10.1007/978-1-4939-7717-8_15
    24. David A. Armstrong, Quentin Kaas, K. Johan Rosengren. Prediction of disulfide dihedral angles using chemical shifts. Chemical Science 2018, 9 (31) , 6548-6556. https://doi.org/10.1039/C8SC01423J
    25. Yukun Wang, Xuebo Chen. On temperature soft sensor model of rotary kiln burning zone based on RS-LSSVM. 2017, 9643-9646. https://doi.org/10.23919/ChiCC.2017.8028894
    26. Mark A. Olson. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome. Frontiers in Molecular Biosciences 2017, 4 https://doi.org/10.3389/fmolb.2017.00003
    27. Robert Koprowski. Classification. 2017, 83-109. https://doi.org/10.1007/978-3-319-50490-2_5
    28. 鹏杰 周. A Predictor of Protein Secondary Structure Based on a Continuously Updated Templet Library. Hans Journal of Computational Biology 2017, 07 (02) , 13-22. https://doi.org/10.12677/HJCB.2017.72002
    29. Zhiyong Yang, Jingcheng Lu, Taohong Zhang. Extreme Large Margin Distribution Machine and its applications for biomedical datasets. 2016, 1549-1554. https://doi.org/10.1109/BIBM.2016.7822751
    30. Jing Lu, Dong Lu, Xiaochen Zhang, Yi Bi, Keguang Cheng, Mingyue Zheng, Xiaomin Luo. Estimation of elimination half-lives of organic chemicals in humans using gradient boosting machine. Biochimica et Biophysica Acta (BBA) - General Subjects 2016, 1860 (11) , 2664-2671. https://doi.org/10.1016/j.bbagen.2016.05.019

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2016, 56, 3, 455–461
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jcim.5b00566
    Published February 29, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    519

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.