ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

PathwayMap: Molecular Pathway Association with Self-Normalizing Neural Networks

  • José Jiménez
    José Jiménez
    Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain
  • Davide Sabbadin
    Davide Sabbadin
    Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain
  • Alberto Cuzzolin
    Alberto Cuzzolin
    Acellera, Barcelona Biomedical Research Park (PRBB), Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain
  • Gerard Martínez-Rosell
    Gerard Martínez-Rosell
    Acellera, Barcelona Biomedical Research Park (PRBB), Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain
  • Jacob Gora
    Jacob Gora
    Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
    Department of Mathematics and Computer Science, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany
    More by Jacob Gora
  • John Manchester
    John Manchester
    Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
  • José Duca
    José Duca
    Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
    More by José Duca
  • , and 
  • Gianni De Fabritiis*
    Gianni De Fabritiis
    Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain
    Acellera, Barcelona Biomedical Research Park (PRBB), Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain
    Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
    *E-mail: [email protected]
Cite this: J. Chem. Inf. Model. 2019, 59, 3, 1172–1181
Publication Date (Web):December 26, 2018
https://doi.org/10.1021/acs.jcim.8b00711
Copyright © 2018 American Chemical Society

    Article Views

    1429

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Drug discovery suffers from high attrition because compounds initially deemed as promising can later show ineffectiveness or toxicity resulting from a poor understanding of their activity profile. In this work, we describe a deep self-normalizing neural network model for the prediction of molecular pathway association and evaluate its performance, showing an AUC ranging from 0.69 to 0.91 on a set of compounds extracted from ChEMBL and from 0.81 to 0.83 on an external data set provided by Novartis. We finally discuss the applicability of the proposed model in the domain of lead discovery. A usable application is available via PlayMolecule.org.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jcim.8b00711.

    • Multilabel classification metrics, descriptive information on the training sets, PyTorch network architecture, and query to extract all ChEMBL ligands used in this work (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 20 publications.

    1. Roberto Fino, Dominik Lenhart, Vishal C. Kalel, Charlotte A. Softley, Valeria Napolitano, Ryan Byrne, Wolfgang Schliebs, Maciej Dawidowski, Ralf Erdmann, Michael Sattler, Gisbert Schneider, Oliver Plettenburg, Grzegorz M. Popowicz. Computer-Aided Design and Synthesis of a New Class of PEX14 Inhibitors: Substituted 2,3,4,5-Tetrahydrobenzo[F][1,4]oxazepines as Potential New Trypanocidal Agents. Journal of Chemical Information and Modeling 2021, 61 (10) , 5256-5268. https://doi.org/10.1021/acs.jcim.1c00472
    2. José Jiménez-Luna, Miha Skalic, Nils Weskamp, Gisbert Schneider. Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment. Journal of Chemical Information and Modeling 2021, 61 (3) , 1083-1094. https://doi.org/10.1021/acs.jcim.0c01344
    3. Igor V. Tetko, Alexander Tropsha. Joint Virtual Special Issue on Computational Toxicology. Journal of Chemical Information and Modeling 2020, 60 (3) , 1069-1071. https://doi.org/10.1021/acs.jcim.0c00140
    4. Günter Klambauer, Sepp Hochreiter, Matthias Rarey. Machine Learning in Drug Discovery. Journal of Chemical Information and Modeling 2019, 59 (3) , 945-946. https://doi.org/10.1021/acs.jcim.9b00136
    5. K. M. Salim Andalib, Asif Ahmed, Ahsan Habib. Omics data analysis reveals common molecular basis of small cell lung cancer and COVID-19. Journal of Biomolecular Structure and Dynamics 2023, 51 , 1-16. https://doi.org/10.1080/07391102.2023.2257803
    6. K.L. Pomykala, B.A. Hadaschik, O. Sartor, S. Gillessen, C.J. Sweeney, T. Maughan, M.S. Hofman, K. Herrmann. Next generation radiotheranostics promoting precision medicine. Annals of Oncology 2023, 34 (6) , 507-519. https://doi.org/10.1016/j.annonc.2023.03.001
    7. Rahagir Salekeen, Michael S. Lustgarten, Umama Khan, Kazi Mohammed Didarul Islam. Model organism life extending therapeutics modulate diverse nodes in the drug-gene-microbe tripartite human longevity interactome. Journal of Biomolecular Structure and Dynamics 2023, 10 , 1-19. https://doi.org/10.1080/07391102.2023.2192823
    8. Ssemuyiga Charles, Mulumba Pius Edgar, Rajani Kanta Mahapatra. Artificial intelligence based virtual screening study for competitive and allosteric inhibitors of the SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics 2023, 1 , 1-19. https://doi.org/10.1080/07391102.2023.2188419
    9. Abdur Rauf, Umer Rashid, Zafar Ali Shah, Gauhar Rehman, Kashif Bashir, Johar Jamil, Iftikhar, Abdur Rahman, Abdulrahman Alsahammari, Metab Alharbi, Abdulmajeed Al-Shahrani, Giovanni Ribaudo. Anti-Inflammatory and Anti-Diabetic Activity of Ferruginan, a Natural Compound from Olea ferruginea. Processes 2023, 11 (2) , 545. https://doi.org/10.3390/pr11020545
    10. Pawan Kumar, Taushif Khan, Indira Ghosh. Mapping interaction between big spaces; active space from protein structure and available chemical space. 2023, 299-332. https://doi.org/10.1016/B978-0-323-85713-0.00029-3
    11. Monalisa Tiwari, Shruti Panwar, Vishvanath Tiwari. Assessment of potassium ion channel during electric signalling in biofilm formation of Acinetobacter baumannii for finding antibiofilm molecule. Heliyon 2023, 9 (1) , e12837. https://doi.org/10.1016/j.heliyon.2023.e12837
    12. Rahagir Salekeen, Joydip Barua, Punam Rani Shaha, Kazi Mohammed Didarul Islam, Md Emdadul Islam, Md Morsaline Billah, S. M. Mahbubur Rahman. Marine phycocompound screening reveals a potential source of novel senotherapeutics. Journal of Biomolecular Structure and Dynamics 2022, 40 (13) , 6071-6085. https://doi.org/10.1080/07391102.2021.1877822
    13. Vishvanath Tiwari. Pharmacophore screening, denovo designing, retrosynthetic analysis, and combinatorial synthesis of a novel lead VTRA1.1 against RecA protein of Acinetobacter baumannii. Chemical Biology & Drug Design 2022, 99 (6) , 839-856. https://doi.org/10.1111/cbdd.14037
    14. Tymofii Nikolaienko, Oleksandr Gurbych, Maksym Druchok. Complex machine learning model needs complex testing: Examining predictability of molecular binding affinity by a graph neural network. Journal of Computational Chemistry 2022, 43 (10) , 728-739. https://doi.org/10.1002/jcc.26831
    15. Ying Zhou, Yintao Zhang, Xichen Lian, Fengcheng Li, Chaoxin Wang, Feng Zhu, Yunqing Qiu, Yuzong Chen. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Research 2022, 50 (D1) , D1398-D1407. https://doi.org/10.1093/nar/gkab953
    16. Rahagir Salekeen, Md. Hasanul Banna Siam, Dilara Islam Sharif, Michael S. Lustgarten, Md Morsaline Billah, Kazi Mohammed Didarul Islam. In silico insights into potential gut microbial modulation of NAD+ metabolism and longevity. Journal of Biochemical and Molecular Toxicology 2021, 35 (12) https://doi.org/10.1002/jbt.22925
    17. Efrén Pérez Santín, Raquel Rodríguez Solana, Mariano González García, María Del Mar García Suárez, Gerardo David Blanco Díaz, María Dolores Cima Cabal, José Manuel Moreno Rojas, José Ignacio López Sánchez. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. WIREs Computational Molecular Science 2021, 11 (5) https://doi.org/10.1002/wcms.1516
    18. José Jiménez-Luna, Francesca Grisoni, Gisbert Schneider. Drug discovery with explainable artificial intelligence. Nature Machine Intelligence 2020, 2 (10) , 573-584. https://doi.org/10.1038/s42256-020-00236-4
    19. Vincent Blay, Mu-Chun Li, Sunita P. Ho, Mashall L. Stoller, Hsing-Pang Hsieh, Douglas R. Houston. Design of drug-like hepsin inhibitors against prostate cancer and kidney stones. Acta Pharmaceutica Sinica B 2020, 10 (7) , 1309-1320. https://doi.org/10.1016/j.apsb.2019.09.008
    20. José Jiménez-Luna, Alberto Cuzzolin, Giovanni Bolcato, Mattia Sturlese, Stefano Moro. A Deep-Learning Approach toward Rational Molecular Docking Protocol Selection. Molecules 2020, 25 (11) , 2487. https://doi.org/10.3390/molecules25112487

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect