ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

QM/MM Nonadiabatic Dynamics: the SHARC/COBRAMM Approach

  • Davide Avagliano
    Davide Avagliano
    Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
  • Matteo Bonfanti
    Matteo Bonfanti
    Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, Viale Del Risorgimento, 4, I-40136 Bologna, Italy
  • Marco Garavelli*
    Marco Garavelli
    Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, Viale Del Risorgimento, 4, I-40136 Bologna, Italy
    *Email: [email protected]
  • , and 
  • Leticia González*
    Leticia González
    Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
    Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
    *Email: [email protected]
Cite this: J. Chem. Theory Comput. 2021, 17, 8, 4639–4647
Publication Date (Web):June 11, 2021
https://doi.org/10.1021/acs.jctc.1c00318
Copyright © 2021 American Chemical Society

    Article Views

    2208

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We present the SHARC/COBRAMM approach to enable easy and efficient excited-state dynamics simulations at different levels of electronic structure theory in the presence of complex environments using a quantum mechanics/molecular mechanics (QM/MM) setup. SHARC is a trajectory surface-hoping method that can incorporate the simultaneous effects of nonadiabatic and spin–orbit couplings in the excited-state dynamics of molecular systems. COBRAMM allows ground- and excited-state QM/MM calculations using a subtractive scheme, with electrostatic embedding and a hydrogen link-atom approach. The combination of both free and open-source program packages provides a modular and extensive framework to model nonadiabatic processes after light irradiation from the atomistic scale to the nano-scale. As an example, the relaxation of acrolein from S1 to T1 in solution is provided.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jctc.1c00318.

    • Protocol for the excited-state simulation of acrolein and details on the codes (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 22 publications.

    1. Severin Polonius, Oleksandra Zhuravel, Brigitta Bachmair, Sebastian Mai. LVC/MM: A Hybrid Linear Vibronic Coupling/Molecular Mechanics Model with Distributed Multipole-Based Electrostatic Embedding for Highly Efficient Surface Hopping Dynamics in Solution. Journal of Chemical Theory and Computation 2023, 19 (20) , 7171-7186. https://doi.org/10.1021/acs.jctc.3c00805
    2. Giovanni Li Manni, Ignacio Fdez. Galván, Ali Alavi, Flavia Aleotti, Francesco Aquilante, Jochen Autschbach, Davide Avagliano, Alberto Baiardi, Jie J. Bao, Stefano Battaglia, Letitia Birnoschi, Alejandro Blanco-González, Sergey I. Bokarev, Ria Broer, Roberto Cacciari, Paul B. Calio, Rebecca K. Carlson, Rafael Carvalho Couto, Luis Cerdán, Liviu F. Chibotaru, Nicholas F. Chilton, Jonathan Richard Church, Irene Conti, Sonia Coriani, Juliana Cuéllar-Zuquin, Razan E. Daoud, Nike Dattani, Piero Decleva, Coen de Graaf, Mickaël G. Delcey, Luca De Vico, Werner Dobrautz, Sijia S. Dong, Rulin Feng, Nicolas Ferré, Michael Filatov(Gulak), Laura Gagliardi, Marco Garavelli, Leticia González, Yafu Guan, Meiyuan Guo, Matthew R. Hennefarth, Matthew R. Hermes, Chad E. Hoyer, Miquel Huix-Rotllant, Vishal Kumar Jaiswal, Andy Kaiser, Danil S. Kaliakin, Marjan Khamesian, Daniel S. King, Vladislav Kochetov, Marek Krośnicki, Arpit Arun Kumaar, Ernst D. Larsson, Susi Lehtola, Marie-Bernadette Lepetit, Hans Lischka, Pablo López Ríos, Marcus Lundberg, Dongxia Ma, Sebastian Mai, Philipp Marquetand, Isabella C. D. Merritt, Francesco Montorsi, Maximilian Mörchen, Artur Nenov, Vu Ha Anh Nguyen, Yoshio Nishimoto, Meagan S. Oakley, Massimo Olivucci, Markus Oppel, Daniele Padula, Riddhish Pandharkar, Quan Manh Phung, Felix Plasser, Gerardo Raggi, Elisa Rebolini, Markus Reiher, Ivan Rivalta, Daniel Roca-Sanjuán, Thies Romig, Arta Anushirwan Safari, Aitor Sánchez-Mansilla, Andrew M. Sand, Igor Schapiro, Thais R. Scott, Javier Segarra-Martí, Francesco Segatta, Dumitru-Claudiu Sergentu, Prachi Sharma, Ron Shepard, Yinan Shu, Jakob K. Staab, Tjerk P. Straatsma, Lasse Kragh Sørensen, Bruno Nunes Cabral Tenorio, Donald G. Truhlar, Liviu Ungur, Morgane Vacher, Valera Veryazov, Torben Arne Voß, Oskar Weser, Dihua Wu, Xuchun Yang, David Yarkony, Chen Zhou, J. Patrick Zobel, Roland Lindh. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. Journal of Chemical Theory and Computation 2023, 19 (20) , 6933-6991. https://doi.org/10.1021/acs.jctc.3c00182
    3. Maximilian F. S. J. Menger, Qi Ou, Yihan Shao, Shirin Faraji, Joseph E. Subotnik, D. Vale Cofer-Shabica. Nature of Hops, Coordinates, and Detailed Balance for Nonadiabatic Simulations in the Condensed Phase. The Journal of Physical Chemistry A 2023, 127 (40) , 8427-8436. https://doi.org/10.1021/acs.jpca.3c03546
    4. Victor M. Freixas, Walter Malone, Xinyang Li, Huajing Song, Hassiel Negrin-Yuvero, Royle Pérez-Castillo, Alexander White, Tammie R. Gibson, Dmitry V. Makhov, Dmitrii V. Shalashilin, Yu Zhang, Nikita Fedik, Maksim Kulichenko, Richard Messerly, Luke Nambi Mohanam, Sahar Sharifzadeh, Adolfo Bastida, Shaul Mukamel, Sebastian Fernandez-Alberti, Sergei Tretiak. NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2023, 19 (16) , 5356-5368. https://doi.org/10.1021/acs.jctc.3c00583
    5. Pratip Chakraborty, Rafael C. Couto, Nanna H. List. Deciphering Methylation Effects on S2(ππ*) Internal Conversion in the Simplest Linear α,β-Unsaturated Carbonyl. The Journal of Physical Chemistry A 2023, 127 (25) , 5360-5373. https://doi.org/10.1021/acs.jpca.3c02582
    6. Abed Mohamadzade, Artur Nenov, Marco Garavelli, Irene Conti, Susanne Ullrich. Double Thionated Pyrimidine Nucleobases: Molecular Tools with Tunable Photoproperties. Journal of the American Chemical Society 2023, 145 (22) , 11945-11958. https://doi.org/10.1021/jacs.2c12061
    7. Shota Tsuru, Bikramjit Sharma, Dominik Marx, Christof Hättig. Structural Sampling and Solvation Models for the Simulation of Electronic Spectra: Pyrazine as a Case Study. Journal of Chemical Theory and Computation 2023, 19 (8) , 2291-2303. https://doi.org/10.1021/acs.jctc.2c01129
    8. Marco Reidelbach, Mei Bai, Michaela Schneeberger, Martin Sebastian Zöllner, Katharina Kubicek, Henning Kirchberg, Christian Bressler, Michael Thorwart, Carmen Herrmann. Solvent Dynamics of Aqueous Halides before and after Photoionization. The Journal of Physical Chemistry B 2023, 127 (6) , 1399-1413. https://doi.org/10.1021/acs.jpcb.2c07992
    9. Victor Manuel Freixas, Sergei Tretiak, Sebastian Fernandez-Alberti. Infinitene: Computational Insights from Nonadiabatic Excited State Dynamics. The Journal of Physical Chemistry Letters 2022, 13 (36) , 8495-8501. https://doi.org/10.1021/acs.jpclett.2c02296
    10. Dustin A. Tracy, Sebastian Fernandez-Alberti, Sergei Tretiak, Adrian E. Roitberg. Adiabatic Excited-State Molecular Dynamics with an Explicit Solvent: NEXMD-SANDER Implementation. Journal of Chemical Theory and Computation 2022, 18 (9) , 5213-5220. https://doi.org/10.1021/acs.jctc.2c00561
    11. D. Vale Cofer-Shabica, Maximilian F. S. J. Menger, Qi Ou, Yihan Shao, Joseph E. Subotnik, Shirin Faraji. INAQS, a Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM simulations. Journal of Chemical Theory and Computation 2022, 18 (8) , 4601-4614. https://doi.org/10.1021/acs.jctc.2c00204
    12. Danillo Valverde, Sebastian Mai, Sylvio Canuto, Antonio Carlos Borin, Leticia González. Ultrafast Intersystem Crossing Dynamics of 6-Selenoguanine in Water. JACS Au 2022, 2 (7) , 1699-1711. https://doi.org/10.1021/jacsau.2c00250
    13. Yinan Shu, Linyao Zhang, Xiye Chen, Shaozeng Sun, Yudong Huang, Donald G. Truhlar. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. Journal of Chemical Theory and Computation 2022, 18 (3) , 1320-1328. https://doi.org/10.1021/acs.jctc.1c01080
    14. Hiroki Uratani, Hiromi Nakai. Scalable Ehrenfest Molecular Dynamics Exploiting the Locality of Density-Functional Tight-Binding Hamiltonian. Journal of Chemical Theory and Computation 2021, 17 (12) , 7384-7396. https://doi.org/10.1021/acs.jctc.1c00950
    15. Gustavo Cárdenas, Jesús Lucia‐Tamudo, Henar Mateo‐delaFuente, Vito F. Palmisano, Nuria Anguita‐Ortiz, Lorena Ruano, Álvaro Pérez‐Barcia, Sergio Díaz‐Tendero, Marcos Mandado, Juan J. Nogueira. MoBioTools : A toolkit to setup quantum mechanics/molecular mechanics calculations. Journal of Computational Chemistry 2023, 44 (4) , 516-533. https://doi.org/10.1002/jcc.27018
    16. Katja‐Sophia Csizi, Markus Reiher. Universal QM / MM approaches for general nanoscale applications. WIREs Computational Molecular Science 2023, 53 https://doi.org/10.1002/wcms.1656
    17. Chenchen Song. State averaged CASSCF in AMOEBA polarizable water model for simulating nonadiabatic molecular dynamics with nonequilibrium solvation effects. The Journal of Chemical Physics 2023, 158 (1) , 014101. https://doi.org/10.1063/5.0131689
    18. Davide Avagliano, Irene Conti, Mohsen M.T. El-Tahawy, Vishal K. Jaiswal, Artur Nenov, Marco Garavelli. Hybrid QM/MM Approach for the Calculation of Excited States in Complex Environments. 2023https://doi.org/10.1016/B978-0-12-821978-2.00059-3
    19. Laura Alfonso Hernandez, Victor M. Freixas, Beatriz Rodriguez-Hernandez, Sergei Tretiak, Sebastian Fernandez-Alberti, Nicolas Oldani. Exciton-vibrational dynamics induces efficient self-trapping in a substituted nanoring. Physical Chemistry Chemical Physics 2022, 24 (39) , 24095-24104. https://doi.org/10.1039/D2CP03162K
    20. Davide Avagliano, Matteo Bonfanti, Artur Nenov, Marco Garavelli. Automatized protocol and interface to simulate QM / MM time‐resolved transient absorption at TD‐DFT level with COBRAMM. Journal of Computational Chemistry 2022, 43 (24) , 1641-1655. https://doi.org/10.1002/jcc.26966
    21. Davide Avagliano, Emilio Lorini, Leticia González. Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2022, 380 (2223) https://doi.org/10.1098/rsta.2020.0381
    22. Xiang­-Yang Liu, Wei-Hai Fang, Ganglong Cui. Photochemistry of Biological Systems: Excited-State Electronic Structure Calculations and Nonadiabatic Dynamics Simulations with QM/MM Methods. 2022https://doi.org/10.1016/B978-0-12-821978-2.00047-7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect