ACS Publications. Most Trusted. Most Cited. Most Read
Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection
My Activity

Figure 1Loading Img
    Quantum Electronic Structure

    Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection
    Click to copy article linkArticle link copied!

    • Pavel Beran
      Pavel Beran
      J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
      Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
      More by Pavel Beran
    • Mikuláš Matoušek
      Mikuláš Matoušek
      J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
      Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
    • Michał Hapka
      Michał Hapka
      Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
      Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
    • Katarzyna Pernal*
      Katarzyna Pernal
      Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
      *Email: [email protected]
    • Libor Veis*
      Libor Veis
      J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
      *Email: [email protected]
      More by Libor Veis
    Other Access Options

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2021, 17, 12, 7575–7585
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.1c00896
    Published November 11, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as one of the methods of choice for calculations of strongly correlated molecular systems. Despite its great ability to capture strong electronic correlation in large active spaces, it is not suitable for computations of dynamical electron correlation. In this work, we present a new approach to the electronic structure problem of strongly correlated molecules, in which DMRG is responsible for a proper description of the strong correlation, whereas dynamical correlation is computed via the recently developed adiabatic connection (AC) technique which requires only up to two-body active space reduced density matrices. We report the encouraging results of this approach on typical candidates for DMRG computations, namely, n-acenes (n = 2 → 7), Fe(II)–porphyrin, and the Fe3S4 cluster.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 33 publications.

    1. Demeter Tzeli, Pavlo Golub, Jiri Brabec, Mikuláš Matoušek, Katarzyna Pernal, Libor Veis, Simone Raugei, Sotiris S. Xantheas. Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe–2S] Systems: A Benchmark Study of the [Fe2S2(SCH3)4]2–,3–,4–, [Fe2S2(SCys)4]2–, [Fe2S2(S-p-tol)4]2–, and [Fe2S2(S-o-xyl)4]2– Complexes. Journal of Chemical Theory and Computation 2024, 20 (23) , 10406-10423. https://doi.org/10.1021/acs.jctc.4c00781
    2. Aleksandra Tucholska, Yang Guo, Katarzyna Pernal. Duality of Particle–Hole and Particle–Particle Theories for Strongly Correlated Electronic Systems. The Journal of Physical Chemistry Letters 2024, 15 (48) , 12001-12009. https://doi.org/10.1021/acs.jpclett.4c02788
    3. Mikuláš Matoušek, Nam Vu, Niranjan Govind, Jonathan J. Foley, IV, Libor Veis. Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. Journal of Chemical Theory and Computation 2024, 20 (21) , 9424-9434. https://doi.org/10.1021/acs.jctc.4c00986
    4. Jakub Višňák, Jan Brandejs, Mihály Máté, Lucas Visscher, Örs Legeza, Jiří Pittner. DMRG-Tailored Coupled Cluster Method in the 4c-Relativistic Domain: General Implementation and Application to the NUHFI and NUF3 Molecules. Journal of Chemical Theory and Computation 2024, 20 (20) , 8862-8875. https://doi.org/10.1021/acs.jctc.4c00641
    5. Michał Hapka, Ewa Pastorczak, Katarzyna Pernal. Self-Adapting Short-Range Correlation Functional for Complete Active Space-Based Approximations. The Journal of Physical Chemistry A 2024, 128 (33) , 7013-7022. https://doi.org/10.1021/acs.jpca.4c03299
    6. Yifan Cheng, Haibo Ma. Renormalized-Residue-Based Multireference Configuration Interaction Method for Strongly Correlated Systems. Journal of Chemical Theory and Computation 2024, 20 (5) , 1988-2009. https://doi.org/10.1021/acs.jctc.3c01247
    7. Mikuláš Matoušek, Katarzyna Pernal, Fabijan Pavošević, Libor Veis. Variational Quantum Eigensolver Boosted by Adiabatic Connection. The Journal of Physical Chemistry A 2024, 128 (3) , 687-698. https://doi.org/10.1021/acs.jpca.3c07590
    8. Daniel S. King, Donald G. Truhlar, Laura Gagliardi. Variational Active Space Selection with Multiconfiguration Pair-Density Functional Theory. Journal of Chemical Theory and Computation 2023, 19 (22) , 8118-8128. https://doi.org/10.1021/acs.jctc.3c00792
    9. Daria Drwal, Mikulas Matousek, Pavlo Golub, Aleksandra Tucholska, Michał Hapka, Jiri Brabec, Libor Veis, Katarzyna Pernal. Role of Spin Polarization and Dynamic Correlation in Singlet–Triplet Gap Inversion of Heptazine Derivatives. Journal of Chemical Theory and Computation 2023, 19 (21) , 7606-7616. https://doi.org/10.1021/acs.jctc.3c00781
    10. Quan Manh Phung, Ho Ngoc Nam, Masaaki Saitow. Unraveling the Spin-State Energetics of FeN4 Complexes with Ab Initio Methods. The Journal of Physical Chemistry A 2023, 127 (36) , 7544-7556. https://doi.org/10.1021/acs.jpca.3c04254
    11. Sara Giarrusso, Aurora Pribram-Jones. Møller–Plesset and Density-Fixed Adiabatic Connections for a Model Diatomic System at Different Correlation Regimes. Journal of Chemical Theory and Computation 2023, 19 (17) , 5835-5850. https://doi.org/10.1021/acs.jctc.3c00529
    12. Yihe Xu, Yifan Cheng, Yinxuan Song, Haibo Ma. New Density Matrix Renormalization Group Approaches for Strongly Correlated Systems Coupled with Large Environments. Journal of Chemical Theory and Computation 2023, 19 (15) , 4781-4795. https://doi.org/10.1021/acs.jctc.2c01316
    13. Ke Liao, Huanchen Zhai, Evelin Martine Corvid Christlmaier, Thomas Schraivogel, Pablo López Ríos, Daniel Kats, Ali Alavi. Density Matrix Renormalization Group for Transcorrelated Hamiltonians: Ground and Excited States in Molecules. Journal of Chemical Theory and Computation 2023, 19 (6) , 1734-1743. https://doi.org/10.1021/acs.jctc.2c01207
    14. Pavel Beran, Katarzyna Pernal, Fabijan Pavošević, Libor Veis. Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding. The Journal of Physical Chemistry Letters 2023, 14 (3) , 716-722. https://doi.org/10.1021/acs.jpclett.2c03298
    15. Juan Felipe Huan Lew-Yee, Jorge M. del Campo, Mario Piris. Electron Correlation in the Iron(II) Porphyrin by Natural Orbital Functional Approximations. Journal of Chemical Theory and Computation 2023, 19 (1) , 211-220. https://doi.org/10.1021/acs.jctc.2c01093
    16. Daniel S. King, Matthew R. Hermes, Donald G. Truhlar, Laura Gagliardi. Large-Scale Benchmarking of Multireference Vertical-Excitation Calculations via Automated Active-Space Selection. Journal of Chemical Theory and Computation 2022, 18 (10) , 6065-6076. https://doi.org/10.1021/acs.jctc.2c00630
    17. Vibin Abraham, Nicholas J. Mayhall. Coupled Electron Pair-Type Approximations for Tensor Product State Wave Functions. Journal of Chemical Theory and Computation 2022, 18 (8) , 4856-4864. https://doi.org/10.1021/acs.jctc.2c00589
    18. Gautam D. Stroscio, Chen Zhou, Donald G. Truhlar, Laura Gagliardi. Multiconfiguration Pair-Density Functional Theory Calculations of Iron(II) Porphyrin: Effects of Hybrid Pair-Density Functionals and Expanded RAS and DMRG Active Spaces on Spin-State Orderings. The Journal of Physical Chemistry A 2022, 126 (24) , 3957-3963. https://doi.org/10.1021/acs.jpca.2c02347
    19. Mohammad Reza Jangrouei, Agnieszka Krzemińska, Michał Hapka, Ewa Pastorczak, Katarzyna Pernal. Dispersion Interactions in Exciton-Localized States. Theory and Applications to π–π* and n−π* Excited States. Journal of Chemical Theory and Computation 2022, 18 (6) , 3497-3511. https://doi.org/10.1021/acs.jctc.2c00221
    20. Daria Drwal, Pavel Beran, Michał Hapka, Marcin Modrzejewski, Adam Sokół, Libor Veis, Katarzyna Pernal. Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals. The Journal of Physical Chemistry Letters 2022, 13 (20) , 4570-4578. https://doi.org/10.1021/acs.jpclett.2c00993
    21. Yifan Cheng, Zhaoxuan Xie, Haibo Ma. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. The Journal of Physical Chemistry Letters 2022, 13 (3) , 904-915. https://doi.org/10.1021/acs.jpclett.1c04078
    22. Yang Guo, Katarzyna Pernal. Spinless formulation of linearized adiabatic connection approximation and its comparison with the second order N-electron valence state perturbation theory. Faraday Discussions 2024, 254 , 332-358. https://doi.org/10.1039/D4FD00054D
    23. Chenyang Li, Ganglong Cui, Xiangjian Shen. Challenges and opportunities in electronic structure theory. SCIENTIA SINICA Chimica 2024, 13 https://doi.org/10.1360/SSC-2024-0222
    24. Ning Li, Lina Xu, Guoyong Fang, Yingjin Ma. Fault-tolerant Coded Quantum Chemical Distributed Calculation. Acta Chimica Sinica 2024, 82 (2) , 138. https://doi.org/10.6023/A23110496
    25. Huanchen Zhai, Henrik R. Larsson, Seunghoon Lee, Zhi-Hao Cui, Tianyu Zhu, Chong Sun, Linqing Peng, Ruojing Peng, Ke Liao, Johannes Tölle, Junjie Yang, Shuoxue Li, Garnet Kin-Lic Chan. Block2 : A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. The Journal of Chemical Physics 2023, 159 (23) https://doi.org/10.1063/5.0180424
    26. Ondřej Demel, Jan Brandejs, Jakub Lang, Jiří Brabec, Libor Veis, Örs Legeza, Jiří Pittner. Hilbert space multireference coupled cluster tailored by matrix product states. The Journal of Chemical Physics 2023, 159 (22) https://doi.org/10.1063/5.0174461
    27. Mihkel Ugandi, Michael Roemelt. A configuration‐based heatbath‐CI for spin‐adapted multireference electronic structure calculations with large active spaces. Journal of Computational Chemistry 2023, 44 (31) , 2374-2390. https://doi.org/10.1002/jcc.27203
    28. Yana S. Lyakhova, Grigory V. Astretsov, Alexei N. Rubtsov. Mean-field concept and post-DMFT methods in the modern theory of correlated systems. Physics-Uspekhi 2023, 66 (08) , 775-793. https://doi.org/10.3367/UFNe.2022.09.039231
    29. Yana S. Lyakhova, Grigory V. Astretsov, Alexei N. Rubtsov. Mean-field concept and post-DMFT methods in the modern theory of correlated systems. Uspekhi Fizicheskih Nauk 2023, 12 , 825-844. https://doi.org/10.3367/UFNr.2022.09.039231
    30. Mikuláš Matoušek, Michał Hapka, Libor Veis, Katarzyna Pernal. Toward more accurate adiabatic connection approach for multireference wavefunctions. The Journal of Chemical Physics 2023, 158 (5) https://doi.org/10.1063/5.0131448
    31. Pavlo Golub, Andrej Antalik, Pavel Beran, Jiri Brabec. Mutual information prediction for strongly correlated systems. Chemical Physics Letters 2023, 813 , 140297. https://doi.org/10.1016/j.cplett.2023.140297
    32. A. E. Rask, P. M. Zimmerman. The many-body electronic interactions of Fe(II)–porphyrin. The Journal of Chemical Physics 2022, 156 (9) https://doi.org/10.1063/5.0079310
    33. Haibo Ma, Ulrich Schollwöck, Zhigang Shuai. Post-density matrix renormalization group. 2022, 189-246. https://doi.org/10.1016/B978-0-323-85694-2.00009-7

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2021, 17, 12, 7575–7585
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.1c00896
    Published November 11, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    1114

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.