ACS Publications. Most Trusted. Most Cited. Most Read
Multiconfiguration Pair-Density Functional Theory Outperforms Kohn–Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer
My Activity

Figure 1Loading Img
    ADDITION/CORRECTION. This article has been corrected. View the notice.
    Article

    Multiconfiguration Pair-Density Functional Theory Outperforms Kohn–Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
    *E-mail: [email protected] (D. G. Truhlar).
    *E-mail: [email protected] (L. Gagliardi).
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2015, 11, 8, 3643–3649
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.5b00456
    Published July 9, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn–Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Dissocation energies of charge tranfer dimers calculated with the ANO-L-VTZP basis set. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.5b00456.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 43 publications.

    1. Erica C. Mitchell, Thais R. Scott, Jie J. Bao, Donald G. Truhlar. Application of Multiconfiguration Pair-Density Functional Theory to the Diels–Alder Reaction. The Journal of Physical Chemistry A 2022, 126 (47) , 8834-8843. https://doi.org/10.1021/acs.jpca.2c06433
    2. Jiachen Li, Zehua Chen, Weitao Yang. Multireference Density Functional Theory for Describing Ground and Excited States with Renormalized Singles. The Journal of Physical Chemistry Letters 2022, 13 (3) , 894-903. https://doi.org/10.1021/acs.jpclett.1c03913
    3. Pierre-François Loos, Massimiliano Comin, Xavier Blase, Denis Jacquemin. Reference Energies for Intramolecular Charge-Transfer Excitations. Journal of Chemical Theory and Computation 2021, 17 (6) , 3666-3686. https://doi.org/10.1021/acs.jctc.1c00226
    4. Junhan Chen, Zuxin Jin, Wenjie Dou, Joseph Subotnik. Electronic Structure for Multielectronic Molecules near a Metal Surface. The Journal of Physical Chemistry C 2021, 125 (5) , 2884-2899. https://doi.org/10.1021/acs.jpcc.0c08750
    5. Zexing Qu, Yingjin Ma. Variational Multistate Density Functional Theory for a Balanced Treatment of Static and Dynamic Correlations. Journal of Chemical Theory and Computation 2020, 16 (8) , 4912-4922. https://doi.org/10.1021/acs.jctc.0c00208
    6. Ignacio Fdez. Galván, Morgane Vacher, Ali Alavi, Celestino Angeli, Francesco Aquilante, Jochen Autschbach, Jie J. Bao, Sergey I. Bokarev, Nikolay A. Bogdanov, Rebecca K. Carlson, Liviu F. Chibotaru, Joel Creutzberg, Nike Dattani, Mickaël G. Delcey, Sijia S. Dong, Andreas Dreuw, Leon Freitag, Luis Manuel Frutos, Laura Gagliardi, Frédéric Gendron, Angelo Giussani, Leticia González, Gilbert Grell, Meiyuan Guo, Chad E. Hoyer, Marcus Johansson, Sebastian Keller, Stefan Knecht, Goran Kovačević, Erik Källman, Giovanni Li Manni, Marcus Lundberg, Yingjin Ma, Sebastian Mai, João Pedro Malhado, Per Åke Malmqvist, Philipp Marquetand, Stefanie A. Mewes, Jesper Norell, Massimo Olivucci, Markus Oppel, Quan Manh Phung, Kristine Pierloot, Felix Plasser, Markus Reiher, Andrew M. Sand, Igor Schapiro, Prachi Sharma, Christopher J. Stein, Lasse Kragh Sørensen, Donald G. Truhlar, Mihkel Ugandi, Liviu Ungur, Alessio Valentini, Steven Vancoillie, Valera Veryazov, Oskar Weser, Tomasz A. Wesołowski, Per-Olof Widmark, Sebastian Wouters, Alexander Zech, J. Patrick Zobel, Roland Lindh. OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation 2019, 15 (11) , 5925-5964. https://doi.org/10.1021/acs.jctc.9b00532
    7. Davide Presti, Samuel J. Stoneburner, Donald G. Truhlar, Laura Gagliardi. Full Correlation in a Multiconfigurational Study of Bimetallic Clusters: Restricted Active Space Pair-Density Functional Theory Study of [2Fe–2S] Systems. The Journal of Physical Chemistry C 2019, 123 (18) , 11899-11907. https://doi.org/10.1021/acs.jpcc.9b00222
    8. Pragya Verma, Ying Wang, Soumen Ghosh, Xiao He, Donald G. Truhlar. Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties. The Journal of Physical Chemistry A 2019, 123 (13) , 2966-2990. https://doi.org/10.1021/acs.jpca.8b11499
    9. Kamal Sharkas, Lin Li, Kai Trepte, Kushantha P. K. Withanage, Rajendra P. Joshi, Rajendra R. Zope, Tunna Baruah, J. Karl Johnson, Koblar A. Jackson, Juan E. Peralta. Shrinking Self-Interaction Errors with the Fermi–Löwdin Orbital Self-Interaction-Corrected Density Functional Approximation. The Journal of Physical Chemistry A 2018, 122 (48) , 9307-9315. https://doi.org/10.1021/acs.jpca.8b09940
    10. Soumen Ghosh, Pragya Verma, Christopher J. Cramer, Laura Gagliardi, Donald G. Truhlar. Combining Wave Function Methods with Density Functional Theory for Excited States. Chemical Reviews 2018, 118 (15) , 7249-7292. https://doi.org/10.1021/acs.chemrev.8b00193
    11. Giovanni Li Manni, Ali Alavi. Understanding the Mechanism Stabilizing Intermediate Spin States in Fe(II)-Porphyrin. The Journal of Physical Chemistry A 2018, 122 (22) , 4935-4947. https://doi.org/10.1021/acs.jpca.7b12710
    12. Davide Presti, Donald G. Truhlar, Laura Gagliardi. Intramolecular Charge Transfer and Local Excitation in Organic Fluorescent Photoredox Catalysts Explained by RASCI-PDFT. The Journal of Physical Chemistry C 2018, 122 (22) , 12061-12070. https://doi.org/10.1021/acs.jpcc.8b01844
    13. Prachi Sharma, Donald G. Truhlar, and Laura Gagliardi . Active Space Dependence in Multiconfiguration Pair-Density Functional Theory. Journal of Chemical Theory and Computation 2018, 14 (2) , 660-669. https://doi.org/10.1021/acs.jctc.7b01052
    14. Andrew M. Sand, Chad E. Hoyer, Kamal Sharkas, Katherine M. Kidder, Roland Lindh, Donald G. Truhlar, and Laura Gagliardi . Analytic Gradients for Complete Active Space Pair-Density Functional Theory. Journal of Chemical Theory and Computation 2018, 14 (1) , 126-138. https://doi.org/10.1021/acs.jctc.7b00967
    15. Yinan Shu, Kelsey A. Parker, and Donald G. Truhlar . Dual-Functional Tamm–Dancoff Approximation with Self-Interaction-Free Orbitals: Vertical Excitation Energies and Potential Energy Surfaces near an Intersection Seam. The Journal of Physical Chemistry A 2017, 121 (51) , 9728-9735. https://doi.org/10.1021/acs.jpca.7b11400
    16. Junwei Lucas Bao, Ying Wang, Xiao He, Laura Gagliardi, and Donald G. Truhlar . Multiconfiguration Pair-Density Functional Theory Is Free From Delocalization Error. The Journal of Physical Chemistry Letters 2017, 8 (22) , 5616-5620. https://doi.org/10.1021/acs.jpclett.7b02705
    17. Yuri A. Aoto, Ana Paula de Lima Batista, Andreas Köhn, and Antonio G. S. de Oliveira-Filho . How To Arrive at Accurate Benchmark Values for Transition Metal Compounds: Computation or Experiment?. Journal of Chemical Theory and Computation 2017, 13 (11) , 5291-5316. https://doi.org/10.1021/acs.jctc.7b00688
    18. Shiela Pijeau and Edward G. Hohenstein . Improved Complete Active Space Configuration Interaction Energies with a Simple Correction from Density Functional Theory. Journal of Chemical Theory and Computation 2017, 13 (3) , 1130-1146. https://doi.org/10.1021/acs.jctc.6b00893
    19. Laura Gagliardi, Donald G. Truhlar, Giovanni Li Manni, Rebecca K. Carlson, Chad E. Hoyer, and Junwei Lucas Bao . Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. Accounts of Chemical Research 2017, 50 (1) , 66-73. https://doi.org/10.1021/acs.accounts.6b00471
    20. Junwei Lucas Bao, Andrew Sand, Laura Gagliardi, and Donald G. Truhlar . Correlated-Participating-Orbitals Pair-Density Functional Method and Application to Multiplet Energy Splittings of Main-Group Divalent Radicals. Journal of Chemical Theory and Computation 2016, 12 (9) , 4274-4283. https://doi.org/10.1021/acs.jctc.6b00569
    21. Giovanni Li Manni, Simon D. Smart, and Ali Alavi . Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins. Journal of Chemical Theory and Computation 2016, 12 (3) , 1245-1258. https://doi.org/10.1021/acs.jctc.5b01190
    22. Chad E. Hoyer, Soumen Ghosh, Donald G. Truhlar, and Laura Gagliardi . Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation. The Journal of Physical Chemistry Letters 2016, 7 (3) , 586-591. https://doi.org/10.1021/acs.jpclett.5b02773
    23. Soumen Ghosh, Andrew L. Sonnenberger, Chad E. Hoyer, Donald G. Truhlar, and Laura Gagliardi . Correction to Multiconfiguration Pair-Density Functional Theory Outperforms Kohn–Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer. Journal of Chemical Theory and Computation 2016, 12 (1) , 455-455. https://doi.org/10.1021/acs.jctc.5b01116
    24. Chad E. Hoyer, Laura Gagliardi, and Donald G. Truhlar . Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions. The Journal of Physical Chemistry Letters 2015, 6 (21) , 4184-4188. https://doi.org/10.1021/acs.jpclett.5b01888
    25. Jie J. Bao, Dayou Zhang, Shaoting Zhang, Laura Gagliardi, Donald G. Truhlar. A hybrid meta on-top functional for multiconfiguration pair-density functional theory. Proceedings of the National Academy of Sciences 2025, 122 (1) https://doi.org/10.1073/pnas.2419413121
    26. Nicola Bogo, Christopher J. Stein. Benchmarking DFT-based excited-state methods for intermolecular charge-transfer excitations. Physical Chemistry Chemical Physics 2024, 26 (32) , 21575-21588. https://doi.org/10.1039/D4CP01866D
    27. Maru Song, Ali Alavi, Giovanni Li Manni. Permutation symmetry in spin-adapted many-body wave functions. Faraday Discussions 2024, 13 https://doi.org/10.1039/D4FD00061G
    28. Roderick M. Macrae. Mixed-valence realizations of quantum dot cellular automata. Journal of Physics and Chemistry of Solids 2023, 177 , 111303. https://doi.org/10.1016/j.jpcs.2023.111303
    29. Dan Deng, Bingbing Suo, Wenli Zou. New Light on an Old Story: Breaking Kasha’s Rule in Phosphorescence Mechanism of Organic Boron Compounds and Molecule Design. International Journal of Molecular Sciences 2022, 23 (2) , 876. https://doi.org/10.3390/ijms23020876
    30. Meagan S. Oakley, Laura Gagliardi, Donald G. Truhlar. Multiconfiguration Pair-Density Functional Theory for Transition Metal Silicide Bond Dissociation Energies, Bond Lengths, and State Orderings. Molecules 2021, 26 (10) , 2881. https://doi.org/10.3390/molecules26102881
    31. Prachi Sharma, Jie J. Bao, Donald G. Truhlar, Laura Gagliardi. Multiconfiguration Pair-Density Functional Theory. Annual Review of Physical Chemistry 2021, 72 (1) , 541-564. https://doi.org/10.1146/annurev-physchem-090419-043839
    32. Rodrigo A. Mendes, Roberto L. A. Haiduke, Rodney J. Bartlett. The Devil’s Triangle of Kohn–Sham density functional theory and excited states. The Journal of Chemical Physics 2021, 154 (7) https://doi.org/10.1063/5.0035446
    33. C. Daniel. Density Functional Theories and Coordination Chemistry. 2021, 256-275. https://doi.org/10.1016/B978-0-12-409547-2.14828-0
    34. Alberto Fabrizio, Ksenia R. Briling, David D. Girardier, Clemence Corminboeuf. Learning on-top: Regressing the on-top pair density for real-space visualization of electron correlation. The Journal of Chemical Physics 2020, 153 (20) https://doi.org/10.1063/5.0033326
    35. Hedegård Erik Donovan. Multi‐Configurational Density Functional Theory: Progress and Challenges. 2020, 47-75. https://doi.org/10.1002/9781119417774.ch3
    36. Pragya Verma, Donald G. Truhlar. Status and Challenges of Density Functional Theory. Trends in Chemistry 2020, 2 (4) , 302-318. https://doi.org/10.1016/j.trechm.2020.02.005
    37. Ying Wang, Pragya Verma, Lujia Zhang, Yaqi Li, Zhonghua Liu, Donald G. Truhlar, Xiao He. M06-SX screened-exchange density functional for chemistry and solid-state physics. Proceedings of the National Academy of Sciences 2020, 117 (5) , 2294-2301. https://doi.org/10.1073/pnas.1913699117
    38. Davide Presti, Jan Kadlec, Donald G. Truhlar, Laura Gagliardi. Scaling exchange and correlation in the on-top density functional of multiconfiguration pair-density functional theory: effect on electronic excitation energies and bond energies. Theoretical Chemistry Accounts 2020, 139 (2) https://doi.org/10.1007/s00214-019-2539-6
    39. Olajumoke Adeyiga, Olabisi Suleiman, Naveen K. Dandu, Samuel O. Odoh. Ground-state actinide chemistry with scalar-relativistic multiconfiguration pair-density functional theory. The Journal of Chemical Physics 2019, 151 (13) https://doi.org/10.1063/1.5099373
    40. Mauro Schilling, Sandra Luber. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00100
    41. Soumen Ghosh, Christopher J. Cramer, Donald G. Truhlar, Laura Gagliardi. Generalized-active-space pair-density functional theory: an efficient method to study large, strongly correlated, conjugated systems. Chemical Science 2017, 8 (4) , 2741-2750. https://doi.org/10.1039/C6SC05036K
    42. Jie J. Bao, Laura Gagliardi, Donald G. Truhlar. Multiconfiguration pair-density functional theory for doublet excitation energies and excited state geometries: the excited states of CN. Physical Chemistry Chemical Physics 2017, 19 (44) , 30089-30096. https://doi.org/10.1039/C7CP05156E
    43. Haoyu S. Yu, Shaohong L. Li, Donald G. Truhlar. Perspective: Kohn-Sham density functional theory descending a staircase. The Journal of Chemical Physics 2016, 145 (13) https://doi.org/10.1063/1.4963168

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2015, 11, 8, 3643–3649
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.5b00456
    Published July 9, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    1723

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.