ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method

View Author Information
Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
Department of Fundamental Technology Research, R&D Center Kagoshima, Kyocera Corporation, 1-4 Kokubu Yamashita-cho, Kirishima-shi, Kagoshima 899-4312, Japan
§ Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umenzono, Tsukuba, Ibaraki 305-8568, Japan
Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts 02747-2300, United States
Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
# Department of Chemistry and Ames Laboratory, Iowa State University, 201 Spedding Hall, Ames, Iowa 50011, United States
*(D.G.F.) E-mail: [email protected]
*(M.S.G.) E-mail: [email protected]
Cite this: J. Chem. Theory Comput. 2016, 12, 4, 1423–1435
Publication Date (Web):February 25, 2016
https://doi.org/10.1021/acs.jctc.5b01208
Copyright © 2016 American Chemical Society

    Article Views

    840

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The analytic first derivative with respect to nuclear coordinates is formulated and implemented in the framework of the three-body fragment molecular orbital (FMO) method. The gradient has been derived and implemented for restricted second-order Møller–Plesset perturbation theory, as well as for both restricted and unrestricted Hartree–Fock and density functional theory. The importance of the three-body fully analytic gradient is illustrated through the failure of the two-body FMO method during molecular dynamics simulations of a small water cluster. The parallel implementation of the fragment molecular orbital method, its parallel efficiency, and its scalability on the Blue Gene/Q architecture up to 262 144 CPU cores are also discussed.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.5b01208.

    • Derivations for the analytic gradient of FMO3-DFT and FMO3-MP2 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 37 publications.

    1. Hiroya Nakata, Dmitri G. Fedorov. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation 2023, 19 (4) , 1276-1285. https://doi.org/10.1021/acs.jctc.2c01177
    2. Qiujiang Liang, Jun Yang. Third-Order Many-Body Expansion of OSV-MP2 Wave Function for Low-Order Scaling Analytical Gradient Computation. Journal of Chemical Theory and Computation 2021, 17 (11) , 6841-6860. https://doi.org/10.1021/acs.jctc.1c00581
    3. Taylor Harville, Mark S. Gordon. Electronic Structure Theory Calculations Using Modern Architectures: KNL vs Haswell. Journal of Chemical Theory and Computation 2021, 17 (11) , 6910-6917. https://doi.org/10.1021/acs.jctc.1c00705
    4. Mark S. Gordon, Theresa L. Windus. Editorial: Modern Architectures and Their Impact on Electronic Structure Theory. Chemical Reviews 2020, 120 (17) , 9015-9020. https://doi.org/10.1021/acs.chemrev.0c00700
    5. Dmitri G. Fedorov. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2020, 124 (24) , 4956-4971. https://doi.org/10.1021/acs.jpca.0c03085
    6. Mark S. Gordon, Giuseppe Barca, Sarom S. Leang, David Poole, Alistair P. Rendell, Jorge L. Galvez Vallejo, Bryce Westheimer. Novel Computer Architectures and Quantum Chemistry. The Journal of Physical Chemistry A 2020, 124 (23) , 4557-4582. https://doi.org/10.1021/acs.jpca.0c02249
    7. Buu Q. Pham, Mark S. Gordon. Development of the FMO/RI-MP2 Fully Analytic Gradient Using a Hybrid-Distributed/Shared Memory Programming Model. Journal of Chemical Theory and Computation 2020, 16 (2) , 1039-1054. https://doi.org/10.1021/acs.jctc.9b01082
    8. Anup Kumar, Srinivasan S. Iyengar. Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies. Journal of Chemical Theory and Computation 2019, 15 (11) , 5769-5786. https://doi.org/10.1021/acs.jctc.9b00608
    9. Buu Q. Pham, Mark S. Gordon. Hybrid Distributed/Shared Memory Model for the RI-MP2 Method in the Fragment Molecular Orbital Framework. Journal of Chemical Theory and Computation 2019, 15 (10) , 5252-5258. https://doi.org/10.1021/acs.jctc.9b00409
    10. Timothy C. Ricard, Srinivasan S. Iyengar. Efficiently Capturing Weak Interactions in ab Initio Molecular Dynamics with on-the-Fly Basis Set Extrapolation. Journal of Chemical Theory and Computation 2018, 14 (11) , 5535-5552. https://doi.org/10.1021/acs.jctc.8b00803
    11. Yulun Han, Bakhtiyor Rasulev, and Dmitri S. Kilin . Photofragmentation of Tetranitromethane: Spin-Unrestricted Time-Dependent Excited-State Molecular Dynamics. The Journal of Physical Chemistry Letters 2017, 8 (14) , 3185-3192. https://doi.org/10.1021/acs.jpclett.7b01330
    12. Guo Dong Chen, Jingwei Weng, Guoliang Song, and Zhen Hua Li . Generalized Switch Functions in the Multilevel Many-Body Expansion Method and Its Application to Water Clusters. Journal of Chemical Theory and Computation 2017, 13 (5) , 2010-2020. https://doi.org/10.1021/acs.jctc.7b00144
    13. Jinfeng Liu, Lian-Wen Qi, John Z. H. Zhang, and Xiao He . Fragment Quantum Mechanical Method for Large-Sized Ion–Water Clusters. Journal of Chemical Theory and Computation 2017, 13 (5) , 2021-2034. https://doi.org/10.1021/acs.jctc.7b00149
    14. Spencer R. Pruitt and Casper Steinmann . Mapping Interaction Energies in Chorismate Mutase with the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2017, 121 (8) , 1797-1807. https://doi.org/10.1021/acs.jpca.6b12830
    15. Dmitri G. Fedorov, Buu Q. Pham. Multi-level parallelization of quantum-chemical calculations. The Journal of Chemical Physics 2023, 158 (16) https://doi.org/10.1063/5.0144917
    16. Dmitri G. Fedorov. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. The Journal of Chemical Physics 2022, 157 (23) https://doi.org/10.1063/5.0131256
    17. Giuseppe M. J. Barca, Calum Snowdon, Jorge L. Galvez Vallejo, Fazeleh Kazemian, Alistair P. Rendell, Mark S. Gordon. Scaling Correlated Fragment Molecular Orbital Calculations on Summit. 2022, 1-14. https://doi.org/10.1109/SC41404.2022.00012
    18. Wen‐Hao Liu, Zhi Wang, Zhang‐Hui Chen, Jun‐Wei Luo, Shu‐Shen Li, Lin‐Wang Wang. Algorithm advances and applications of time‐dependent first‐principles simulations for ultrafast dynamics. WIREs Computational Molecular Science 2022, 12 (3) https://doi.org/10.1002/wcms.1577
    19. Juan Carlos Fernández-Toledano. Molecular Dynamics Simulations for the Design of Engineering Processes. 2022, 291-316. https://doi.org/10.1007/978-3-030-82992-6_10
    20. Keisuke Hisama, Yuuichi Orimoto, Anna Pomogaeva, Kazuhiko Nakatani, Yuriko Aoki. Ab initio multi-level layered elongation method and its application to local interaction analysis between DNA bulge and ligand molecules. The Journal of Chemical Physics 2021, 155 (4) https://doi.org/10.1063/5.0050096
    21. Vladimir A. Mironov, Yuri Alexeev, Dmitri G. Fedorov, Hiroaki Umeda, Spencer Pruitt, Alexander Gaenko, Mark S. Gordon. Multi-Level Parallelization of the Fragment Molecular Orbital Method in GAMESS. 2021, 601-616. https://doi.org/10.1007/978-981-15-9235-5_30
    22. Kaori Fukuzawa, Chiduru Watanabe, Yoshio Okiyama, Tatsuya Nakano. How to Perform FMO Calculation in Drug Discovery. 2021, 93-125. https://doi.org/10.1007/978-981-15-9235-5_7
    23. Dmitri G. Fedorov. Recent Development of the Fragment Molecular Orbital Method in GAMESS. 2021, 31-51. https://doi.org/10.1007/978-981-15-9235-5_3
    24. Giuseppe M. J. Barca, Colleen Bertoni, Laura Carrington, Dipayan Datta, Nuwan De Silva, J. Emiliano Deustua, Dmitri G. Fedorov, Jeffrey R. Gour, Anastasia O. Gunina, Emilie Guidez, Taylor Harville, Stephan Irle, Joe Ivanic, Karol Kowalski, Sarom S. Leang, Hui Li, Wei Li, Jesse J. Lutz, Ilias Magoulas, Joani Mato, Vladimir Mironov, Hiroya Nakata, Buu Q. Pham, Piotr Piecuch, David Poole, Spencer R. Pruitt, Alistair P. Rendell, Luke B. Roskop, Klaus Ruedenberg, Tosaporn Sattasathuchana, Michael W. Schmidt, Jun Shen, Lyudmila Slipchenko, Masha Sosonkina, Vaibhav Sundriyal, Ananta Tiwari, Jorge L. Galvez Vallejo, Bryce Westheimer, Marta Włoch, Peng Xu, Federico Zahariev, Mark S. Gordon. Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics 2020, 152 (15) https://doi.org/10.1063/5.0005188
    25. Hiroya Nakata, Cheol Ho Choi. Low-dimensional projection approach for efficient sampling of molecular recognition and polymer aggregation. Physical Chemistry Chemical Physics 2020, 22 (13) , 6953-6963. https://doi.org/10.1039/C9CP06964J
    26. Francis Alexander, Ann Almgren, John Bell, Amitava Bhattacharjee, Jacqueline Chen, Phil Colella, David Daniel, Jack DeSlippe, Lori Diachin, Erik Draeger, Anshu Dubey, Thom Dunning, Thomas Evans, Ian Foster, Marianne Francois, Tim Germann, Mark Gordon, Salman Habib, Mahantesh Halappanavar, Steven Hamilton, William Hart, Zhenyu (Henry) Huang, Aimee Hungerford, Daniel Kasen, Paul R. C. Kent, Tzanio Kolev, Douglas B. Kothe, Andreas Kronfeld, Ye Luo, Paul Mackenzie, David McCallen, Bronson Messer, Sue Mniszewski, Chris Oehmen, Amedeo Perazzo, Danny Perez, David Richards, William J. Rider, Rob Rieben, Kenneth Roche, Andrew Siegel, Michael Sprague, Carl Steefel, Rick Stevens, Madhava Syamlal, Mark Taylor, John Turner, Jean-Luc Vay, Artur F. Voter, Theresa L. Windus, Katherine Yelick. Exascale applications: skin in the game. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2020, 378 (2166) , 20190056. https://doi.org/10.1098/rsta.2019.0056
    27. Hiroya Nakata, Shandan Bai. Development of a new parameter optimization scheme for a reactive force field based on a machine learning approach. Journal of Computational Chemistry 2019, 40 (23) , 2000-2012. https://doi.org/10.1002/jcc.25841
    28. Justin A. Conrad, Shinae Kim, Mark S. Gordon. Ionic liquids from a fragmented perspective. Physical Chemistry Chemical Physics 2019, 21 (31) , 16878-16888. https://doi.org/10.1039/C9CP02836F
    29. Vladimir Mironov, Yuri Alexeev, Dmitri G. Fedorov. Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method. International Journal of Quantum Chemistry 2019, 119 (12) https://doi.org/10.1002/qua.25937
    30. Marko Trajkovski, Tamaki Endoh, Hisae Tateishi-Karimata, Tatsuya Ohyama, Shigenori Tanaka, Janez Plavec, Naoki Sugimoto. Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations. Nucleic Acids Research 2018, 46 (8) , 4301-4315. https://doi.org/10.1093/nar/gky250
    31. Peng Xu, Emilie B. Guidez, Colleen Bertoni, Mark S. Gordon. Perspective: Ab initio force field methods derived from quantum mechanics. The Journal of Chemical Physics 2018, 148 (9) https://doi.org/10.1063/1.5009551
    32. Yoshio Nishimoto, Dmitri G. Fedorov. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. The Journal of Chemical Physics 2018, 148 (6) https://doi.org/10.1063/1.5012935
    33. Dmitri G. Fedorov. The fragment molecular orbital method: theoretical development, implementation in GAMESS , and applications. WIREs Computational Molecular Science 2017, 7 (6) https://doi.org/10.1002/wcms.1322
    34. Timothy J Giese, Darrin M York. Quantum mechanical force fields for condensed phase molecular simulations. Journal of Physics: Condensed Matter 2017, 29 (38) , 383002. https://doi.org/10.1088/1361-648X/aa7c5c
    35. Soohaeng Yoo Willow. Path integral molecular dynamics at zero thermal temperature. Chemical Physics Letters 2017, 674 , 33-37. https://doi.org/10.1016/j.cplett.2017.02.038
    36. Yoshio Nishimoto, Dmitri G. Fedorov. Three‐body expansion of the fragment molecular orbital method combined with density‐functional tight‐binding. Journal of Computational Chemistry 2017, 38 (7) , 406-418. https://doi.org/10.1002/jcc.24693
    37. Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, Luigi Genovese. Challenges in large scale quantum mechanical calculations. WIREs Computational Molecular Science 2017, 7 (1) https://doi.org/10.1002/wcms.1290

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect