Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method
- Spencer R. Pruitt
- ,
- Hiroya Nakata
- ,
- Takeshi Nagata
- ,
- Maricris Mayes
- ,
- Yuri Alexeev
- ,
- Graham Fletcher
- ,
- Dmitri G. Fedorov
- ,
- Kazuo Kitaura
- , and
- Mark S. Gordon
Abstract

The analytic first derivative with respect to nuclear coordinates is formulated and implemented in the framework of the three-body fragment molecular orbital (FMO) method. The gradient has been derived and implemented for restricted second-order Møller–Plesset perturbation theory, as well as for both restricted and unrestricted Hartree–Fock and density functional theory. The importance of the three-body fully analytic gradient is illustrated through the failure of the two-body FMO method during molecular dynamics simulations of a small water cluster. The parallel implementation of the fragment molecular orbital method, its parallel efficiency, and its scalability on the Blue Gene/Q architecture up to 262 144 CPU cores are also discussed.
Cited By
This article is cited by 37 publications.
- Hiroya Nakata, Dmitri G. Fedorov. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation 2023, 19 (4) , 1276-1285. https://doi.org/10.1021/acs.jctc.2c01177
- Qiujiang Liang, Jun Yang. Third-Order Many-Body Expansion of OSV-MP2 Wave Function for Low-Order Scaling Analytical Gradient Computation. Journal of Chemical Theory and Computation 2021, 17 (11) , 6841-6860. https://doi.org/10.1021/acs.jctc.1c00581
- Taylor Harville, Mark S. Gordon. Electronic Structure Theory Calculations Using Modern Architectures: KNL vs Haswell. Journal of Chemical Theory and Computation 2021, 17 (11) , 6910-6917. https://doi.org/10.1021/acs.jctc.1c00705
- Mark S. Gordon, Theresa L. Windus. Editorial: Modern Architectures and Their Impact on Electronic Structure Theory. Chemical Reviews 2020, 120 (17) , 9015-9020. https://doi.org/10.1021/acs.chemrev.0c00700
- Dmitri G. Fedorov. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2020, 124 (24) , 4956-4971. https://doi.org/10.1021/acs.jpca.0c03085
- Mark S. Gordon, Giuseppe Barca, Sarom S. Leang, David Poole, Alistair P. Rendell, Jorge L. Galvez Vallejo, Bryce Westheimer. Novel Computer Architectures and Quantum Chemistry. The Journal of Physical Chemistry A 2020, 124 (23) , 4557-4582. https://doi.org/10.1021/acs.jpca.0c02249
- Buu Q. Pham, Mark S. Gordon. Development of the FMO/RI-MP2 Fully Analytic Gradient Using a Hybrid-Distributed/Shared Memory Programming Model. Journal of Chemical Theory and Computation 2020, 16 (2) , 1039-1054. https://doi.org/10.1021/acs.jctc.9b01082
- Anup Kumar, Srinivasan S. Iyengar. Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies. Journal of Chemical Theory and Computation 2019, 15 (11) , 5769-5786. https://doi.org/10.1021/acs.jctc.9b00608
- Buu Q. Pham, Mark S. Gordon. Hybrid Distributed/Shared Memory Model for the RI-MP2 Method in the Fragment Molecular Orbital Framework. Journal of Chemical Theory and Computation 2019, 15 (10) , 5252-5258. https://doi.org/10.1021/acs.jctc.9b00409
- Timothy C. Ricard, Srinivasan S. Iyengar. Efficiently Capturing Weak Interactions in ab Initio Molecular Dynamics with on-the-Fly Basis Set Extrapolation. Journal of Chemical Theory and Computation 2018, 14 (11) , 5535-5552. https://doi.org/10.1021/acs.jctc.8b00803
- Yulun Han, Bakhtiyor Rasulev, and Dmitri S. Kilin . Photofragmentation of Tetranitromethane: Spin-Unrestricted Time-Dependent Excited-State Molecular Dynamics. The Journal of Physical Chemistry Letters 2017, 8 (14) , 3185-3192. https://doi.org/10.1021/acs.jpclett.7b01330
- Guo Dong Chen, Jingwei Weng, Guoliang Song, and Zhen Hua Li . Generalized Switch Functions in the Multilevel Many-Body Expansion Method and Its Application to Water Clusters. Journal of Chemical Theory and Computation 2017, 13 (5) , 2010-2020. https://doi.org/10.1021/acs.jctc.7b00144
- Jinfeng Liu, Lian-Wen Qi, John Z. H. Zhang, and Xiao He . Fragment Quantum Mechanical Method for Large-Sized Ion–Water Clusters. Journal of Chemical Theory and Computation 2017, 13 (5) , 2021-2034. https://doi.org/10.1021/acs.jctc.7b00149
- Spencer R. Pruitt and Casper Steinmann . Mapping Interaction Energies in Chorismate Mutase with the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2017, 121 (8) , 1797-1807. https://doi.org/10.1021/acs.jpca.6b12830
- Dmitri G. Fedorov, Buu Q. Pham. Multi-level parallelization of quantum-chemical calculations. The Journal of Chemical Physics 2023, 158 (16) https://doi.org/10.1063/5.0144917
- Dmitri G. Fedorov. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. The Journal of Chemical Physics 2022, 157 (23) https://doi.org/10.1063/5.0131256
- Giuseppe M. J. Barca, Calum Snowdon, Jorge L. Galvez Vallejo, Fazeleh Kazemian, Alistair P. Rendell, Mark S. Gordon. Scaling Correlated Fragment Molecular Orbital Calculations on Summit. 2022, 1-14. https://doi.org/10.1109/SC41404.2022.00012
- Wen‐Hao Liu, Zhi Wang, Zhang‐Hui Chen, Jun‐Wei Luo, Shu‐Shen Li, Lin‐Wang Wang. Algorithm advances and applications of time‐dependent first‐principles simulations for ultrafast dynamics. WIREs Computational Molecular Science 2022, 12 (3) https://doi.org/10.1002/wcms.1577
- Juan Carlos Fernández-Toledano. Molecular Dynamics Simulations for the Design of Engineering Processes. 2022, 291-316. https://doi.org/10.1007/978-3-030-82992-6_10
- Keisuke Hisama, Yuuichi Orimoto, Anna Pomogaeva, Kazuhiko Nakatani, Yuriko Aoki. Ab initio multi-level layered elongation method and its application to local interaction analysis between DNA bulge and ligand molecules. The Journal of Chemical Physics 2021, 155 (4) https://doi.org/10.1063/5.0050096
- Vladimir A. Mironov, Yuri Alexeev, Dmitri G. Fedorov, Hiroaki Umeda, Spencer Pruitt, Alexander Gaenko, Mark S. Gordon. Multi-Level Parallelization of the Fragment Molecular Orbital Method in GAMESS. 2021, 601-616. https://doi.org/10.1007/978-981-15-9235-5_30
- Kaori Fukuzawa, Chiduru Watanabe, Yoshio Okiyama, Tatsuya Nakano. How to Perform FMO Calculation in Drug Discovery. 2021, 93-125. https://doi.org/10.1007/978-981-15-9235-5_7
- Dmitri G. Fedorov. Recent Development of the Fragment Molecular Orbital Method in GAMESS. 2021, 31-51. https://doi.org/10.1007/978-981-15-9235-5_3
- Giuseppe M. J. Barca, Colleen Bertoni, Laura Carrington, Dipayan Datta, Nuwan De Silva, J. Emiliano Deustua, Dmitri G. Fedorov, Jeffrey R. Gour, Anastasia O. Gunina, Emilie Guidez, Taylor Harville, Stephan Irle, Joe Ivanic, Karol Kowalski, Sarom S. Leang, Hui Li, Wei Li, Jesse J. Lutz, Ilias Magoulas, Joani Mato, Vladimir Mironov, Hiroya Nakata, Buu Q. Pham, Piotr Piecuch, David Poole, Spencer R. Pruitt, Alistair P. Rendell, Luke B. Roskop, Klaus Ruedenberg, Tosaporn Sattasathuchana, Michael W. Schmidt, Jun Shen, Lyudmila Slipchenko, Masha Sosonkina, Vaibhav Sundriyal, Ananta Tiwari, Jorge L. Galvez Vallejo, Bryce Westheimer, Marta Włoch, Peng Xu, Federico Zahariev, Mark S. Gordon. Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics 2020, 152 (15) https://doi.org/10.1063/5.0005188
- Hiroya Nakata, Cheol Ho Choi. Low-dimensional projection approach for efficient sampling of molecular recognition and polymer aggregation. Physical Chemistry Chemical Physics 2020, 22 (13) , 6953-6963. https://doi.org/10.1039/C9CP06964J
- Francis Alexander, Ann Almgren, John Bell, Amitava Bhattacharjee, Jacqueline Chen, Phil Colella, David Daniel, Jack DeSlippe, Lori Diachin, Erik Draeger, Anshu Dubey, Thom Dunning, Thomas Evans, Ian Foster, Marianne Francois, Tim Germann, Mark Gordon, Salman Habib, Mahantesh Halappanavar, Steven Hamilton, William Hart, Zhenyu (Henry) Huang, Aimee Hungerford, Daniel Kasen, Paul R. C. Kent, Tzanio Kolev, Douglas B. Kothe, Andreas Kronfeld, Ye Luo, Paul Mackenzie, David McCallen, Bronson Messer, Sue Mniszewski, Chris Oehmen, Amedeo Perazzo, Danny Perez, David Richards, William J. Rider, Rob Rieben, Kenneth Roche, Andrew Siegel, Michael Sprague, Carl Steefel, Rick Stevens, Madhava Syamlal, Mark Taylor, John Turner, Jean-Luc Vay, Artur F. Voter, Theresa L. Windus, Katherine Yelick. Exascale applications: skin in the game. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2020, 378 (2166) , 20190056. https://doi.org/10.1098/rsta.2019.0056
- Hiroya Nakata, Shandan Bai. Development of a new parameter optimization scheme for a reactive force field based on a machine learning approach. Journal of Computational Chemistry 2019, 40 (23) , 2000-2012. https://doi.org/10.1002/jcc.25841
- Justin A. Conrad, Shinae Kim, Mark S. Gordon. Ionic liquids from a fragmented perspective. Physical Chemistry Chemical Physics 2019, 21 (31) , 16878-16888. https://doi.org/10.1039/C9CP02836F
- Vladimir Mironov, Yuri Alexeev, Dmitri G. Fedorov. Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method. International Journal of Quantum Chemistry 2019, 119 (12) https://doi.org/10.1002/qua.25937
- Marko Trajkovski, Tamaki Endoh, Hisae Tateishi-Karimata, Tatsuya Ohyama, Shigenori Tanaka, Janez Plavec, Naoki Sugimoto. Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations. Nucleic Acids Research 2018, 46 (8) , 4301-4315. https://doi.org/10.1093/nar/gky250
- Peng Xu, Emilie B. Guidez, Colleen Bertoni, Mark S. Gordon. Perspective: Ab initio force field methods derived from quantum mechanics. The Journal of Chemical Physics 2018, 148 (9) https://doi.org/10.1063/1.5009551
- Yoshio Nishimoto, Dmitri G. Fedorov. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. The Journal of Chemical Physics 2018, 148 (6) https://doi.org/10.1063/1.5012935
- Dmitri G. Fedorov. The fragment molecular orbital method: theoretical development, implementation in GAMESS , and applications. WIREs Computational Molecular Science 2017, 7 (6) https://doi.org/10.1002/wcms.1322
- Timothy J Giese, Darrin M York. Quantum mechanical force fields for condensed phase molecular simulations. Journal of Physics: Condensed Matter 2017, 29 (38) , 383002. https://doi.org/10.1088/1361-648X/aa7c5c
- Soohaeng Yoo Willow. Path integral molecular dynamics at zero thermal temperature. Chemical Physics Letters 2017, 674 , 33-37. https://doi.org/10.1016/j.cplett.2017.02.038
- Yoshio Nishimoto, Dmitri G. Fedorov. Three‐body expansion of the fragment molecular orbital method combined with density‐functional tight‐binding. Journal of Computational Chemistry 2017, 38 (7) , 406-418. https://doi.org/10.1002/jcc.24693
- Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, Luigi Genovese. Challenges in large scale quantum mechanical calculations. WIREs Computational Molecular Science 2017, 7 (1) https://doi.org/10.1002/wcms.1290