ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

GW in the Gaussian and Plane Waves Scheme with Application to Linear Acenes

View Author Information
Department of Chemistry and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), University of Zurich, 8057 Zurich, Switzerland
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Cite this: J. Chem. Theory Comput. 2016, 12, 8, 3623–3635
Publication Date (Web):June 27, 2016
https://doi.org/10.1021/acs.jctc.6b00380
Copyright © 2016 American Chemical Society

    Article Views

    2059

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We present an implementation of G0W0 and eigenvalue-self-consistent GW (evGW) in the Gaussian and plane waves scheme for molecules. We calculate the correlation self-energy for imaginary frequencies employing the resolution of the identity. The correlation self-energy for real frequencies is then evaluated by analytic continuation. This technique allows an efficient parallel implementation and application to systems with several hundreds of atoms. Various benchmark calculations are presented. In particular, the convergence with respect to the most important numerical parameters is assessed for the benzene molecule. Comparisons with respect to other G0W0 implementations are reported for a set of molecules, while the performance of the method has been measured for water clusters containing up to 480 atoms in a cc-TZVP basis. Additionally, G0W0 has been applied for studying the influence of the ligands on the gap of small CdSe nanoparticles. evGW has been employed to calculate the HOMO–LUMO gaps of linear acenes, linear chains formed of connected benzene rings. Distinct differences between the closed and the open-shell (broken-symmetry) evGW HOMO–LUMO gaps for long acenes are found. In future experiments, a comparison of measured HOMO–LUMO gaps and our calculated evGW values may be helpful to determine the electronic ground state of long acenes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.6b00380.

    • Basis sets for computing the oligoacene and CdSe nanocluster HOMO–LUMO gaps and an exemplary input file of CP2K (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 92 publications.

    1. Tatiana Nemirovich, Brandon Young, Krystof Brezina, Philip E. Mason, Robert Seidel, Dominik Stemer, Bernd Winter, Pavel Jungwirth, Stephen E. Bradforth, H. Christian Schewe. Stability and Reactivity of Aromatic Radical Anions in Solution with Relevance to Birch Reduction. Journal of the American Chemical Society 2024, Article ASAP.
    2. Zilin Ruan, Jakob Schramm, John B. Bauer, Tim Naumann, Holger F. Bettinger, Ralf Tonner-Zech, J. Michael Gottfried. Synthesis of Tridecacene by Multistep Single-Molecule Manipulation. Journal of the American Chemical Society 2024, 146 (6) , 3700-3709. https://doi.org/10.1021/jacs.3c09392
    3. Jia-Qi Zhang, Bin Hu, Alideertu Dong, Roberts I. Eglitis, Zhi-Jun Yi, Ran Jia. Band Gap Regulation with Imino Groups in Graphdiyne: A Promising Photocatalyst for Water-Splitting and CO2 Reduction. ACS Applied Nano Materials 2023, 6 (23) , 22506-22516. https://doi.org/10.1021/acsanm.3c05354
    4. Arno Förster, Erik van Lenthe, Edoardo Spadetto, Lucas Visscher. Two-Component GW Calculations: Cubic Scaling Implementation and Comparison of Vertex-Corrected and Partially Self-Consistent GW Variants. Journal of Chemical Theory and Computation 2023, 19 (17) , 5958-5976. https://doi.org/10.1021/acs.jctc.3c00512
    5. Ramón L. Panadés-Barrueta, Dorothea Golze. Accelerating Core-Level GW Calculations by Combining the Contour Deformation Approach with the Analytic Continuation of W. Journal of Chemical Theory and Computation 2023, 19 (16) , 5450-5464. https://doi.org/10.1021/acs.jctc.3c00555
    6. Antoine Marie, Pierre-François Loos. A Similarity Renormalization Group Approach to Green’s Function Methods. Journal of Chemical Theory and Computation 2023, 19 (13) , 3943-3957. https://doi.org/10.1021/acs.jctc.3c00281
    7. Jiachen Li, Ye Jin, Patrick Rinke, Weitao Yang, Dorothea Golze. Benchmark of GW Methods for Core-Level Binding Energies. Journal of Chemical Theory and Computation 2022, 18 (12) , 7570-7585. https://doi.org/10.1021/acs.jctc.2c00617
    8. Dorothea Golze, Markus Hirvensalo, Patricia Hernández-León, Anja Aarva, Jarkko Etula, Toma Susi, Patrick Rinke, Tomi Laurila, Miguel A. Caro. Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW. Chemistry of Materials 2022, 34 (14) , 6240-6254. https://doi.org/10.1021/acs.chemmater.1c04279
    9. Yeongsu Cho, Sylvia J. Bintrim, Timothy C. Berkelbach. Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials. Journal of Chemical Theory and Computation 2022, 18 (6) , 3438-3446. https://doi.org/10.1021/acs.jctc.2c00087
    10. Linyao Zhang, Yinan Shu, Chang Xing, Xiye Chen, Shaozeng Sun, Yudong Huang, Donald G. Truhlar. Recommendation of Orbitals for G0W0 Calculations on Molecules and Crystals. Journal of Chemical Theory and Computation 2022, 18 (6) , 3523-3537. https://doi.org/10.1021/acs.jctc.2c00242
    11. Yi Yao, Dorothea Golze, Patrick Rinke, Volker Blum, Yosuke Kanai. All-Electron BSE@GW Method for K-Edge Core Electron Excitation Energies. Journal of Chemical Theory and Computation 2022, 18 (3) , 1569-1583. https://doi.org/10.1021/acs.jctc.1c01180
    12. H. Christian Schewe, Krystof Brezina, Vojtech Kostal, Philip E. Mason, Tillmann Buttersack, Dominik M. Stemer, Robert Seidel, Wilson Quevedo, Florian Trinter, Bernd Winter, Pavel Jungwirth. Photoelectron Spectroscopy of Benzene in the Liquid Phase and Dissolved in Liquid Ammonia. The Journal of Physical Chemistry B 2022, 126 (1) , 229-238. https://doi.org/10.1021/acs.jpcb.1c08172
    13. Takatoshi Fujita, Yoshifumi Noguchi. Fragment-Based Excited-State Calculations Using the GW Approximation and the Bethe–Salpeter Equation. The Journal of Physical Chemistry A 2021, 125 (49) , 10580-10592. https://doi.org/10.1021/acs.jpca.1c07337
    14. Viet-Anh Ha, George Volonakis, Hyungjun Lee, Marios Zacharias, Feliciano Giustino. Quasiparticle Band Structure and Phonon-Induced Band Gap Renormalization of the Lead-Free Halide Double Perovskite Cs2InAgCl6. The Journal of Physical Chemistry C 2021, 125 (39) , 21689-21700. https://doi.org/10.1021/acs.jpcc.1c06542
    15. Huanhuan Ma, Lei Wang, Lingyun Wan, Jielan Li, Xinming Qin, Jie Liu, Wei Hu, Lin Lin, Chao Yang, Jinlong Yang. Realizing Effective Cubic-Scaling Coulomb Hole Plus Screened Exchange Approximation in Periodic Systems via Interpolative Separable Density Fitting with a Plane-Wave Basis Set. The Journal of Physical Chemistry A 2021, 125 (34) , 7545-7557. https://doi.org/10.1021/acs.jpca.1c03762
    16. Arno Förster, Lucas Visscher. GW100: A Slater-Type Orbital Perspective. Journal of Chemical Theory and Computation 2021, 17 (8) , 5080-5097. https://doi.org/10.1021/acs.jctc.1c00308
    17. Vojtech Kostal, Krystof Brezina, Ondrej Marsalek, Pavel Jungwirth. Benzene Radical Anion Microsolvated in Ammonia Clusters: Modeling the Transition from an Unbound Resonance to a Bound Species. The Journal of Physical Chemistry A 2021, 125 (26) , 5811-5818. https://doi.org/10.1021/acs.jpca.1c04594
    18. Jonas Armleder, Timo Strunk, Franz Symalla, Pascal Friederich, Jorge Enrique Olivares Peña, Tobias Neumann, Wolfgang Wenzel, Artem Fediai. Computing Charging and Polarization Energies of Small Organic Molecules Embedded into Amorphous Materials with Quantum Accuracy. Journal of Chemical Theory and Computation 2021, 17 (6) , 3727-3738. https://doi.org/10.1021/acs.jctc.1c00036
    19. Sergei Manzhos, Chu-Chen Chueh, Giacomo Giorgi, Takaya Kubo, Gopalan Saianand, Johann Lüder, Prashant Sonar, Manabu Ihara. Materials Design and Optimization for Next-Generation Solar Cell and Light-Emitting Technologies. The Journal of Physical Chemistry Letters 2021, 12 (19) , 4638-4657. https://doi.org/10.1021/acs.jpclett.1c00714
    20. Johannes Tölle, Thorsten Deilmann, Michael Rohlfing, Johannes Neugebauer. Subsystem-Based GW/Bethe–Salpeter Equation. Journal of Chemical Theory and Computation 2021, 17 (4) , 2186-2199. https://doi.org/10.1021/acs.jctc.0c01307
    21. Ivan Duchemin, Xavier Blase. Cubic-Scaling All-Electron GW Calculations with a Separable Density-Fitting Space–Time Approach. Journal of Chemical Theory and Computation 2021, 17 (4) , 2383-2393. https://doi.org/10.1021/acs.jctc.1c00101
    22. Brendan Smith, Mohammad Shakiba, Alexey V. Akimov. Crystal Symmetry and Static Electron Correlation Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites. The Journal of Physical Chemistry Letters 2021, 12 (9) , 2444-2453. https://doi.org/10.1021/acs.jpclett.0c03799
    23. Jan Wilhelm, Patrick Seewald, Dorothea Golze. Low-Scaling GW with Benchmark Accuracy and Application to Phosphorene Nanosheets. Journal of Chemical Theory and Computation 2021, 17 (3) , 1662-1677. https://doi.org/10.1021/acs.jctc.0c01282
    24. Yu Pang, Meng Wu, Jianglong Zhang, Zhijun Yi. Transport Energy Level Alignment at the PTCDA/Phosphorene Interface: How Does the Interlayer Coulomb Interaction Affect its Electronic Structure?. The Journal of Physical Chemistry C 2021, 125 (5) , 3027-3035. https://doi.org/10.1021/acs.jpcc.0c10491
    25. Tianyu Zhu, Garnet Kin-Lic Chan. All-Electron Gaussian-Based G0W0 for Valence and Core Excitation Energies of Periodic Systems. Journal of Chemical Theory and Computation 2021, 17 (2) , 727-741. https://doi.org/10.1021/acs.jctc.0c00704
    26. Arno Förster, Lucas Visscher. Low-Order Scaling G0W0 by Pair Atomic Density Fitting. Journal of Chemical Theory and Computation 2020, 16 (12) , 7381-7399. https://doi.org/10.1021/acs.jctc.0c00693
    27. Dorothea Golze, Levi Keller, Patrick Rinke. Accurate Absolute and Relative Core-Level Binding Energies from GW. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1840-1847. https://doi.org/10.1021/acs.jpclett.9b03423
    28. Ángel Morales-García, Rosendo Valero, Francesc Illas. Electronic Properties of Realistic Anatase TiO2 Nanoparticles from G0W0 Calculations on a Gaussian and Plane Waves Scheme. Journal of Chemical Theory and Computation 2019, 15 (9) , 5024-5030. https://doi.org/10.1021/acs.jctc.9b00516
    29. Michiel J. van Setten, Dimitra Xenioti, Mébarek Alouani, Ferdinand Evers, Richard Korytár. Incommensurate Quantum Size Oscillations of Oligoacene Wires Adsorbed on Au(111). The Journal of Physical Chemistry C 2019, 123 (14) , 8902-8907. https://doi.org/10.1021/acs.jpcc.8b12213
    30. Sivan Refaely-Abramson, Zhen-Fei Liu, Fabien Bruneval, Jeffrey B. Neaton. First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions. The Journal of Physical Chemistry C 2019, 123 (11) , 6379-6387. https://doi.org/10.1021/acs.jpcc.8b12124
    31. Dorothea Golze, Jan Wilhelm, Michiel J. van Setten, Patrick Rinke. Core-Level Binding Energies from GW: An Efficient Full-Frequency Approach within a Localized Basis. Journal of Chemical Theory and Computation 2018, 14 (9) , 4856-4869. https://doi.org/10.1021/acs.jctc.8b00458
    32. Xin Gui, Christof Holzer, Wim Klopper. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe–Salpeter Formalism. Journal of Chemical Theory and Computation 2018, 14 (4) , 2127-2136. https://doi.org/10.1021/acs.jctc.8b00014
    33. Marco Di Giovannantonio, José I. Urgel, Uliana Beser, Aliaksandr V. Yakutovich, Jan Wilhelm, Carlo A. Pignedoli, Pascal Ruffieux, Akimitsu Narita, Klaus Müllen, Roman Fasel. On-Surface Synthesis of Indenofluorene Polymers by Oxidative Five-Membered Ring Formation. Journal of the American Chemical Society 2018, 140 (10) , 3532-3536. https://doi.org/10.1021/jacs.8b00587
    34. Jan Wilhelm, Dorothea Golze, Leopold Talirz, Jürg Hutter, and Carlo A. Pignedoli . Toward GW Calculations on Thousands of Atoms. The Journal of Physical Chemistry Letters 2018, 9 (2) , 306-312. https://doi.org/10.1021/acs.jpclett.7b02740
    35. Dorothea Golze, Marcella Iannuzzi, and Jürg Hutter . Local Fitting of the Kohn–Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations. Journal of Chemical Theory and Computation 2017, 13 (5) , 2202-2214. https://doi.org/10.1021/acs.jctc.7b00148
    36. Emanuele Maggio, Peitao Liu, Michiel J. van Setten, and Georg Kresse . GW100: A Plane Wave Perspective for Small Molecules. Journal of Chemical Theory and Computation 2017, 13 (2) , 635-648. https://doi.org/10.1021/acs.jctc.6b01150
    37. Jan Wilhelm, Patrick Seewald, Mauro Del Ben, and Jürg Hutter . Large-Scale Cubic-Scaling Random Phase Approximation Correlation Energy Calculations Using a Gaussian Basis. Journal of Chemical Theory and Computation 2016, 12 (12) , 5851-5859. https://doi.org/10.1021/acs.jctc.6b00840
    38. Young‐Moo Byun, Jejoong Yoo. GPU acceleration of many‐body perturbation theory methods in MOLGW with OpenACC. International Journal of Quantum Chemistry 2024, 124 (5) https://doi.org/10.1002/qua.27345
    39. Francisco A. Delesma, Moritz Leucke, Dorothea Golze, Patrick Rinke. Benchmarking the accuracy of the separable resolution of the identity approach for correlated methods in the numeric atom-centered orbitals framework. The Journal of Chemical Physics 2024, 160 (2) https://doi.org/10.1063/5.0184406
    40. Artem Fediai, Patrick Reiser, Jorge Enrique Olivares Peña, Pascal Friederich, Wolfgang Wenzel. Accurate GW frontier orbital energies of 134 kilo molecules. Scientific Data 2023, 10 (1) https://doi.org/10.1038/s41597-023-02486-4
    41. Guy Ohad, Stephen E. Gant, Dahvyd Wing, Jonah B. Haber, María Camarasa-Gómez, Francisca Sagredo, Marina R. Filip, Jeffrey B. Neaton, Leeor Kronik. Optical absorption spectra of metal oxides from time-dependent density functional theory and many-body perturbation theory based on optimally-tuned hybrid functionals. Physical Review Materials 2023, 7 (12) https://doi.org/10.1103/PhysRevMaterials.7.123803
    42. Max Kehry, Wim Klopper, Christof Holzer. Robust relativistic many-body Green’s function based approaches for assessing core ionized and excited states. The Journal of Chemical Physics 2023, 159 (4) https://doi.org/10.1063/5.0160265
    43. Ashima Bajaj, Md. Ehesan Ali. Anti-ohmic nanoconductors: myth, reality and promise. Physical Chemistry Chemical Physics 2023, 25 (13) , 9607-9616. https://doi.org/10.1039/D3CP00366C
    44. Charles J. C. Scott, Oliver J. Backhouse, George H. Booth. A “moment-conserving” reformulation of GW theory. The Journal of Chemical Physics 2023, 158 (12) https://doi.org/10.1063/5.0143291
    45. Jincheng Lei, Tianyu Zhu. Gaussian-based quasiparticle self-consistent GW for periodic systems. The Journal of Chemical Physics 2022, 157 (21) https://doi.org/10.1063/5.0125756
    46. Kristjan Eimre, José I. Urgel, Hironobu Hayashi, Marco Di Giovannantonio, Pascal Ruffieux, Shizuka Sato, Satoru Otomo, Yee Seng Chan, Naoki Aratani, Daniele Passerone, Oliver Gröning, Hiroko Yamada, Roman Fasel, Carlo A. Pignedoli. On-surface synthesis and characterization of nitrogen-substituted undecacenes. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-27961-1
    47. Chia-Nan Yeh, Sergei Iskakov, Dominika Zgid, Emanuel Gull. Fully self-consistent finite-temperature G W in Gaussian Bloch orbitals for solids. Physical Review B 2022, 106 (23) https://doi.org/10.1103/PhysRevB.106.235104
    48. Marco Di Giovannantonio, Roman Fasel. On‐surface synthesis and atomic scale characterization of unprotected indenofluorene polymers. Journal of Polymer Science 2022, 60 (12) , 1814-1826. https://doi.org/10.1002/pol.20210902
    49. Weiwei Gao, Weiyi Xia, Peihong Zhang, James R Chelikowsky, Jijun Zhao. Numerical methods for efficient GW calculations and the applications in low-dimensional systems. Electronic Structure 2022, 4 (2) , 023003. https://doi.org/10.1088/2516-1075/ac709a
    50. Stephen E. Gant, Jonah B. Haber, Marina R. Filip, Francisca Sagredo, Dahvyd Wing, Guy Ohad, Leeor Kronik, Jeffrey B. Neaton. Optimally tuned starting point for single-shot G W calculations of solids. Physical Review Materials 2022, 6 (5) https://doi.org/10.1103/PhysRevMaterials.6.053802
    51. Zhijun Yi, Meng Wu, Ran Jia. Edge modified phosphorene nanoribbon heterojunctions: promising metal-free photocatalysts for direct overall water splitting. Journal of Materials Science 2022, 57 (9) , 5482-5496. https://doi.org/10.1007/s10853-022-06986-3
    52. Marcos Martínez-Fernández, Emiliano Martínez-Periñán, Sergio Royuela, José I. Martínez, F. Zamora, Encarnación Lorenzo, José L. Segura. Covalent organic frameworks based on electroactive naphthalenediimide as active electrocatalysts toward oxygen reduction reaction. Applied Materials Today 2022, 26 , 101384. https://doi.org/10.1016/j.apmt.2022.101384
    53. Krystof Brezina, Vojtech Kostal, Pavel Jungwirth, Ondrej Marsalek. Electronic structure of the solvated benzene radical anion. The Journal of Chemical Physics 2022, 156 (1) https://doi.org/10.1063/5.0076115
    54. Sergei Manzhos, Giacomo Giorgi, Johann Lüder, Manabu Ihara. Modeling Methods for Plasmonic Effects in Halide Perovskite Based Systems for Photonics Applications. 2021, 11-1-11-52. https://doi.org/10.1063/9780735423633_011
    55. Zhi-Jun Yi, Meng Wu, Yu Pang, Ran Jia, Ru-Ren Xu. Non-local dielectric screening effects in phosphorene/g-C3N4 heterojunctions. Applied Surface Science 2021, 567 , 150842. https://doi.org/10.1016/j.apsusc.2021.150842
    56. Sergio Gámez-Valenzuela, Julio A Alonso, Gonzalo Santoro, José I Martínez. Structure, stability, and optical absorption spectra of small Ti n C x clusters: a first-principles approach. Monthly Notices of the Royal Astronomical Society 2021, 508 (4) , 5074-5091. https://doi.org/10.1093/mnras/stab2735
    57. Shantanu Mishra, Gonçalo Catarina, Fupeng Wu, Ricardo Ortiz, David Jacob, Kristjan Eimre, Ji Ma, Carlo A. Pignedoli, Xinliang Feng, Pascal Ruffieux, Joaquín Fernández-Rossier, Roman Fasel. Observation of fractional edge excitations in nanographene spin chains. Nature 2021, 598 (7880) , 287-292. https://doi.org/10.1038/s41586-021-03842-3
    58. Arno Förster, Lucas Visscher. Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.736591
    59. Zi Cheng Wong, Liviu Ungur. Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation. Physical Chemistry Chemical Physics 2021, 23 (34) , 19054-19070. https://doi.org/10.1039/D1CP02795F
    60. Shantanu Mishra, Xuelin Yao, Qiang Chen, Kristjan Eimre, Oliver Gröning, Ricardo Ortiz, Marco Di Giovannantonio, Juan Carlos Sancho-García, Joaquín Fernández-Rossier, Carlo A. Pignedoli, Klaus Müllen, Pascal Ruffieux, Akimitsu Narita, Roman Fasel. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nature Chemistry 2021, 13 (6) , 581-586. https://doi.org/10.1038/s41557-021-00678-2
    61. Tianyu Zhu, Garnet Kin-Lic Chan. Ab Initio Full Cell G W + DMFT for Correlated Materials. Physical Review X 2021, 11 (2) https://doi.org/10.1103/PhysRevX.11.021006
    62. Meisam Rezaei, Serdar Öğüt. Photoelectron spectra of early 3 d -transition metal dioxide molecular anions from GW calculations. The Journal of Chemical Physics 2021, 154 (9) https://doi.org/10.1063/5.0042106
    63. Christina Tönshoff, Holger F. Bettinger. Pushing the Limits of Acene Chemistry: The Recent Surge of Large Acenes. Chemistry – A European Journal 2021, 27 (10) , 3193-3212. https://doi.org/10.1002/chem.202003112
    64. Sylvia J. Bintrim, Timothy C. Berkelbach. Full-frequency GW without frequency. The Journal of Chemical Physics 2021, 154 (4) https://doi.org/10.1063/5.0035141
    65. Levi Keller, Volker Blum, Patrick Rinke, Dorothea Golze. Relativistic correction scheme for core-level binding energies from GW. The Journal of Chemical Physics 2020, 153 (11) https://doi.org/10.1063/5.0018231
    66. Manolo C Per, Deidre M Cleland. Roadmap on post-DFT methods for nanoscience. Nano Futures 2020, 4 (3) , 032004. https://doi.org/10.1088/2399-1984/aba109
    67. Zi Cheng Wong, Liviu Ungur. Deriving the vibronic coupling constants of the cyclopentadienyl radical with density functional theory and G W. The Journal of Chemical Physics 2020, 153 (6) https://doi.org/10.1063/5.0014753
    68. Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Guo, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. McClain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximilian Scheurer, Henry F. Schurkus, James E. T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu. Sokolov, Garnet Kin-Lic Chan. Recent developments in the P y SCF program package. The Journal of Chemical Physics 2020, 153 (2) https://doi.org/10.1063/5.0006074
    69. Ferdinand Evers, Richard Korytár, Sumit Tewari, Jan M. van Ruitenbeek. Advances and challenges in single-molecule electron transport. Reviews of Modern Physics 2020, 92 (3) https://doi.org/10.1103/RevModPhys.92.035001
    70. Thomas D. Kühne, Marcella Iannuzzi, Mauro Del Ben, Vladimir V. Rybkin, Patrick Seewald, Frederick Stein, Teodoro Laino, Rustam Z. Khaliullin, Ole Schütt, Florian Schiffmann, Dorothea Golze, Jan Wilhelm, Sergey Chulkov, Mohammad Hossein Bani-Hashemian, Valéry Weber, Urban Borštnik, Mathieu Taillefumier, Alice Shoshana Jakobovits, Alfio Lazzaro, Hans Pabst, Tiziano Müller, Robert Schade, Manuel Guidon, Samuel Andermatt, Nico Holmberg, Gregory K. Schenter, Anna Hehn, Augustin Bussy, Fabian Belleflamme, Gloria Tabacchi, Andreas Glöß, Michael Lass, Iain Bethune, Christopher J. Mundy, Christian Plessl, Matt Watkins, Joost VandeVondele, Matthias Krack, Jürg Hutter. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics 2020, 152 (19) https://doi.org/10.1063/5.0007045
    71. Laura Katharina Scarbath-Evers, René Hammer, Dorothea Golze, Martin Brehm, Daniel Sebastiani, Wolf Widdra. From flat to tilted: gradual interfaces in organic thin film growth. Nanoscale 2020, 12 (6) , 3834-3845. https://doi.org/10.1039/C9NR06592J
    72. Shantanu Mishra, Doreen Beyer, Kristjan Eimre, Shawulienu Kezilebieke, Reinhard Berger, Oliver Gröning, Carlo A. Pignedoli, Klaus Müllen, Peter Liljeroth, Pascal Ruffieux, Xinliang Feng, Roman Fasel. Topological frustration induces unconventional magnetism in a nanographene. Nature Nanotechnology 2020, 15 (1) , 22-28. https://doi.org/10.1038/s41565-019-0577-9
    73. José I. Urgel, Shantanu Mishra, Hironobu Hayashi, Jan Wilhelm, Carlo A. Pignedoli, Marco Di Giovannantonio, Roland Widmer, Masataka Yamashita, Nao Hieda, Pascal Ruffieux, Hiroko Yamada, Roman Fasel. On-surface light-induced generation of higher acenes and elucidation of their open-shell character. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-08650-y
    74. Young-Moo Byun, Serdar Öğüt. Practical GW scheme for electronic structure of 3 d -transition-metal monoxide anions: ScO−, TiO−, CuO−, and ZnO−. The Journal of Chemical Physics 2019, 151 (13) https://doi.org/10.1063/1.5118671
    75. Takatoshi Fujita, Yoshifumi Noguchi, Takeo Hoshi. Charge-transfer excited states in the donor/acceptor interface from large-scale GW calculations. The Journal of Chemical Physics 2019, 151 (11) https://doi.org/10.1063/1.5113944
    76. Dorothea Golze, Marc Dvorak, Patrick Rinke. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00377
    77. Christof Holzer, Wim Klopper. Ionized, electron-attached, and excited states of molecular systems with spin–orbit coupling: Two-component GW and Bethe–Salpeter implementations. The Journal of Chemical Physics 2019, 150 (20) https://doi.org/10.1063/1.5094244
    78. Mauro Del Ben, Felipe H. da Jornada, Gabriel Antonius, Tonatiuh Rangel, Steven G. Louie, Jack Deslippe, Andrew Canning. Static subspace approximation for the evaluation of G 0 W 0 quasiparticle energies within a sum-over-bands approach. Physical Review B 2019, 99 (12) https://doi.org/10.1103/PhysRevB.99.125128
    79. Matthias Beuerle, Christian Ochsenfeld. Low-scaling analytical gradients for the direct random phase approximation using an atomic orbital formalism. The Journal of Chemical Physics 2018, 149 (24) https://doi.org/10.1063/1.5052572
    80. Takatoshi Fujita, Yoshifumi Noguchi. Development of the fragment-based COHSEX method for large and complex molecular systems. Physical Review B 2018, 98 (20) https://doi.org/10.1103/PhysRevB.98.205140
    81. Bin Shen, Jörg Tatchen, Elsa Sanchez‐Garcia, Holger F. Bettinger. Evolution of the Optical Gap in the Acene Series: Undecacene. Angewandte Chemie 2018, 130 (33) , 10666-10669. https://doi.org/10.1002/ange.201802197
    82. Bin Shen, Jörg Tatchen, Elsa Sanchez‐Garcia, Holger F. Bettinger. Evolution of the Optical Gap in the Acene Series: Undecacene. Angewandte Chemie International Edition 2018, 57 (33) , 10506-10509. https://doi.org/10.1002/anie.201802197
    83. Taofang Zeng, Yi He. Scaling of the self-energy correction to the HOMO-LUMO gap with magnesium cluster size and its potential for extrapolating to larger magnesium clusters. Journal of Applied Physics 2018, 124 (4) https://doi.org/10.1063/1.5026612
    84. Lucia Reining. The GW approximation: content, successes and limitations. WIREs Computational Molecular Science 2018, 8 (3) https://doi.org/10.1002/wcms.1344
    85. Susi Lehtola, John Parkhill, Martin Head-Gordon. Orbital optimisation in the perfect pairing hierarchy: applications to full-valence calculations on linear polyacenes. Molecular Physics 2018, 116 (5-6) , 547-560. https://doi.org/10.1080/00268976.2017.1342009
    86. Christof Holzer, Antoine Dupé, Lydia M. Peschel, Ferdinand Belaj, Nadia C. Mösch‐Zanetti. Mercaptoaryl‐Oxazoline Complexes of Palladium and Their High Activities as Catalysts for Suzuki–Miyaura Coupling Reactions in Water. European Journal of Inorganic Chemistry 2018, 2018 (5) , 568-575. https://doi.org/10.1002/ejic.201700823
    87. Christof Holzer, Wim Klopper. Communication: Symmetry-adapted perturbation theory with intermolecular induction and dispersion energies from the Bethe–Salpeter equation. The Journal of Chemical Physics 2017, 147 (18) https://doi.org/10.1063/1.5007929
    88. Jan Wilhelm, Jürg Hutter. Periodic G W calculations in the Gaussian and plane-waves scheme. Physical Review B 2017, 95 (23) https://doi.org/10.1103/PhysRevB.95.235123
    89. Noa Marom. Accurate description of the electronic structure of organic semiconductors by GW methods. Journal of Physics: Condensed Matter 2017, 29 (10) , 103003. https://doi.org/10.1088/1361-648X/29/10/103003
    90. Peter Schmitteckert, Ronny Thomale, Richard Korytár, Ferdinand Evers. Incommensurate quantum-size oscillations in acene-based molecular wires—Effects of quantum fluctuations. The Journal of Chemical Physics 2017, 146 (9) https://doi.org/10.1063/1.4975319
    91. Soumen Ghosh, Christopher J. Cramer, Donald G. Truhlar, Laura Gagliardi. Generalized-active-space pair-density functional theory: an efficient method to study large, strongly correlated, conjugated systems. Chemical Science 2017, 8 (4) , 2741-2750. https://doi.org/10.1039/C6SC05036K
    92. Xia Leng, Jin Feng, Tingwei Chen, Chengbu Liu, Yuchen Ma. Optical properties of acene molecules and pentacene crystal from the many-body Green's function method. Physical Chemistry Chemical Physics 2016, 18 (44) , 30777-30784. https://doi.org/10.1039/C6CP05902C

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect