ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Function-Space-Based Solution Scheme for the Size-Modified Poisson–Boltzmann Equation in Full-Potential DFT

View Author Information
Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
Fachbereich f. Mathematik u. Informatik, Freie Universität Berlin, Otto-von-Simson-Str. 19, D-14195 Berlin, Germany
Cite this: J. Chem. Theory Comput. 2016, 12, 8, 4052–4066
Publication Date (Web):June 20, 2016
https://doi.org/10.1021/acs.jctc.6b00435
Copyright © 2016 American Chemical Society

Article Views

1041

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Abstract Image

The size-modified Poisson–Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green’s function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.6b00435.

  • Derivations of the free energy formulas and Kohn–Sham Hamiltonian correction terms both for the MPBE and the LPBE case. Detailed description of the applied Newton method appended along with extensive accuracy and convergence tests of the implemented method. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 56 publications.

  1. Henry Yu, Stephen E. Weitzner, Joel B. Varley, Brandon C. Wood, Sneha A. Akhade. Surface Engineering of Copper Catalyst through CO* Adsorbate. The Journal of Physical Chemistry C 2023, 127 (4) , 1789-1797. https://doi.org/10.1021/acs.jpcc.2c06456
  2. Sergii V. Siryk, Walter Rocchia. Arbitrary-Shape Dielectric Particles Interacting in the Linearized Poisson–Boltzmann Framework: An Analytical Treatment. The Journal of Physical Chemistry B 2022, 126 (49) , 10400-10426. https://doi.org/10.1021/acs.jpcb.2c05564
  3. Se-Jun Kim, Sébastien Lebègue, Stefan Ringe, Hyungjun Kim. GW Quasiparticle Energies and Bandgaps of Two-Dimensional Materials Immersed in Water. The Journal of Physical Chemistry Letters 2022, 13 (32) , 7574-7582. https://doi.org/10.1021/acs.jpclett.2c01808
  4. Zhe Chen, Chunli Liu, Licheng Sun, Tao Wang. Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catalysis 2022, 12 (15) , 8936-8975. https://doi.org/10.1021/acscatal.2c02629
  5. Stefan Ringe, Nicolas G. Hörmann, Harald Oberhofer, Karsten Reuter. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews 2022, 122 (12) , 10777-10820. https://doi.org/10.1021/acs.chemrev.1c00675
  6. Jakob Filser, Karsten Reuter, Harald Oberhofer. Piecewise Multipole-Expansion Implicit Solvation for Arbitrarily Shaped Molecular Solutes. Journal of Chemical Theory and Computation 2022, 18 (1) , 461-478. https://doi.org/10.1021/acs.jctc.1c00834
  7. Qiang Cui, Tanmoy Pal, Luke Xie. Biomolecular QM/MM Simulations: What Are Some of the “Burning Issues”?. The Journal of Physical Chemistry B 2021, 125 (3) , 689-702. https://doi.org/10.1021/acs.jpcb.0c09898
  8. Jacek Dziedzic, Arihant Bhandari, Lucian Anton, Chao Peng, James C. Womack, Marjan Famili, Denis Kramer, Chris-Kriton Skylaris. Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory. The Journal of Physical Chemistry C 2020, 124 (14) , 7860-7872. https://doi.org/10.1021/acs.jpcc.0c00762
  9. Johnas Eklöf-Österberg, Joakim Löfgren, Paul Erhart, Kasper Moth-Poulsen. Understanding Interactions Driving the Template-Directed Self-Assembly of Colloidal Nanoparticles at Surfaces. The Journal of Physical Chemistry C 2020, 124 (8) , 4660-4667. https://doi.org/10.1021/acs.jpcc.0c00710
  10. Tanya K. Todorova, Moritz W. Schreiber, Marc Fontecave. Mechanistic Understanding of CO2 Reduction Reaction (CO2RR) Toward Multicarbon Products by Heterogeneous Copper-Based Catalysts. ACS Catalysis 2020, 10 (3) , 1754-1768. https://doi.org/10.1021/acscatal.9b04746
  11. Joseph A. Gauthier, Colin F. Dickens, Hendrik H. Heenen, Sudarshan Vijay, Stefan Ringe, Karen Chan. Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics. Journal of Chemical Theory and Computation 2019, 15 (12) , 6895-6906. https://doi.org/10.1021/acs.jctc.9b00717
  12. Matthew Truscott, Oliviero Andreussi. Field-Aware Interfaces in Continuum Solvation. The Journal of Physical Chemistry B 2019, 123 (16) , 3513-3524. https://doi.org/10.1021/acs.jpcb.9b01363
  13. Oliviero Andreussi, Nicolas Georg Hörmann, Francesco Nattino, Giuseppe Fisicaro, Stefan Goedecker, Nicola Marzari. Solvent-Aware Interfaces in Continuum Solvation. Journal of Chemical Theory and Computation 2019, 15 (3) , 1996-2009. https://doi.org/10.1021/acs.jctc.8b01174
  14. Arcesio Castañeda Medina, Rochus Schmid. High Order Compact Multigrid Solver for Implicit Solvation Models. Journal of Chemical Theory and Computation 2019, 15 (2) , 1293-1301. https://doi.org/10.1021/acs.jctc.8b00774
  15. Joseph A. Gauthier, Stefan Ringe, Colin F. Dickens, Alejandro J. Garza, Alexis T. Bell, Martin Head-Gordon, Jens K. Nørskov, Karen Chan. Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models. ACS Catalysis 2019, 9 (2) , 920-931. https://doi.org/10.1021/acscatal.8b02793
  16. Anjli M. Patel, Stefan Ringe, Samira Siahrostami, Michal Bajdich, Jens K. Nørskov, Ambarish R. Kulkarni. Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. The Journal of Physical Chemistry C 2018, 122 (51) , 29307-29318. https://doi.org/10.1021/acs.jpcc.8b09430
  17. Stephan N. Steinmann, Rodrigo Ferreira De Morais, Andreas W. Götz, Paul Fleurat-Lessard, Marcella Iannuzzi, Philippe Sautet, Carine Michel. Force Field for Water over Pt(111): Development, Assessment, and Comparison. Journal of Chemical Theory and Computation 2018, 14 (6) , 3238-3251. https://doi.org/10.1021/acs.jctc.7b01177
  18. Fanglin Che, Jake T. Gray, Su Ha, Norbert Kruse, Susannah L. Scott, Jean-Sabin McEwen. Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catalysis 2018, 8 (6) , 5153-5174. https://doi.org/10.1021/acscatal.7b02899
  19. James C. Womack, Lucian Anton, Jacek Dziedzic, Phil J. Hasnip, Matt I. J. Probert, Chris-Kriton Skylaris. DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution. Journal of Chemical Theory and Computation 2018, 14 (3) , 1412-1432. https://doi.org/10.1021/acs.jctc.7b01274
  20. Zhu Liu, Jakob Timmermann, Karsten Reuter, and Christoph Scheurer . Benchmarks and Dielectric Constants for Reparametrized OPLS and Polarizable Force Field Models of Chlorinated Hydrocarbons. The Journal of Physical Chemistry B 2018, 122 (2) , 770-779. https://doi.org/10.1021/acs.jpcb.7b06709
  21. Markus Sinstein, Christoph Scheurer, Sebastian Matera, Volker Blum, Karsten Reuter, and Harald Oberhofer . Efficient Implicit Solvation Method for Full Potential DFT. Journal of Chemical Theory and Computation 2017, 13 (11) , 5582-5603. https://doi.org/10.1021/acs.jctc.7b00297
  22. Markus Schneider, Chiara Masellis, Thomas Rizzo, and Carsten Baldauf . Kinetically Trapped Liquid-State Conformers of a Sodiated Model Peptide Observed in the Gas Phase. The Journal of Physical Chemistry A 2017, 121 (36) , 6838-6844. https://doi.org/10.1021/acs.jpca.7b06431
  23. Simone Pezzotti, Alessandra Serva, Christopher J. Stein, Martina Havenith. Adsorption of ions and solutes at electrified metal-aqueous interfaces: insights from THz spectroscopy and simulations. 2023https://doi.org/10.1016/B978-0-323-85669-0.00092-1
  24. Bipasa Samanta, Ángel Morales-García, Francesc Illas, Nicolae Goga, Juan Antonio Anta, Sofia Calero, Anja Bieberle-Hütter, Florian Libisch, Ana B. Muñoz-García, Michele Pavone, Maytal Caspary Toroker. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chemical Society Reviews 2022, 51 (9) , 3794-3818. https://doi.org/10.1039/D1CS00648G
  25. Lucy M Morgan, Michael P Mercer, Arihant Bhandari, Chao Peng, Mazharul M Islam, Hui Yang, Julian Holland, Samuel W Coles, Ryan Sharpe, Aron Walsh, Benjamin J Morgan, Denis Kramer, M Saiful Islam, Harry E Hoster, Jacqueline Sophie Edge, Chris-Kriton Skylaris. Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy 2022, 4 (1) , 012002. https://doi.org/10.1088/2516-1083/ac3894
  26. Hyuntae Lim, YounJoon Jung. MLSolvA: solvation free energy prediction from pairwise atomistic interactions by machine learning. Journal of Cheminformatics 2021, 13 (1) https://doi.org/10.1186/s13321-021-00533-z
  27. Filippo Lipparini, Benedetta Mennucci. Hybrid QM/classical models: Methodological advances and new applications. Chemical Physics Reviews 2021, 2 (4) , 041303. https://doi.org/10.1063/5.0064075
  28. Oliviero Andreussi, Francesco Nattino, Nicolas Georg Hörmann. Continuum Embedding Models for Electrolyte Solutions in First‐Principles Simulations of Electrochemistry. 2021, 93-137. https://doi.org/10.1002/9781119605652.ch3
  29. Sergii V. Siryk, Artemi Bendandi, Alberto Diaspro, Walter Rocchia. Charged dielectric spheres interacting in electrolytic solution: A linearized Poisson–Boltzmann equation model. The Journal of Chemical Physics 2021, 155 (11) , 114114. https://doi.org/10.1063/5.0056120
  30. John M. Herbert. Dielectric continuum methods for quantum chemistry. WIREs Computational Molecular Science 2021, 11 (4) https://doi.org/10.1002/wcms.1519
  31. Sergei F. Vyboishchikov, Alexander A. Voityuk. Fast non‐iterative calculation of solvation energies for water and non‐aqueous solvents. Journal of Computational Chemistry 2021, 42 (17) , 1184-1194. https://doi.org/10.1002/jcc.26531
  32. Laura P Granda-Marulanda, Ian T McCrum, Marc T M Koper. A simple method to calculate solution-phase free energies of charged species in computational electrocatalysis. Journal of Physics: Condensed Matter 2021, 33 (20) , 204001. https://doi.org/10.1088/1361-648X/abf19d
  33. Nawras Abidi, Kang Rui Garrick Lim, Zhi Wei Seh, Stephan N. Steinmann. Atomistic modeling of electrocatalysis: Are we there yet?. WIREs Computational Molecular Science 2021, 11 (3) https://doi.org/10.1002/wcms.1499
  34. Christianna N. Lininger, Joseph A. Gauthier, Wan-Lu Li, Elliot Rossomme, Valerie Vaissier Welborn, Zhou Lin, Teresa Head-Gordon, Martin Head-Gordon, Alexis T. Bell. Challenges for density functional theory: calculation of CO adsorption on electrocatalytically relevant metals. Physical Chemistry Chemical Physics 2021, 23 (15) , 9394-9406. https://doi.org/10.1039/D0CP03821K
  35. Geert-Jan Kroes. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Physical Chemistry Chemical Physics 2021, 23 (15) , 8962-9048. https://doi.org/10.1039/D1CP00044F
  36. Arihant Bhandari, Lucian Anton, Jacek Dziedzic, Chao Peng, Denis Kramer, Chris-Kriton Skylaris. Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces. The Journal of Chemical Physics 2020, 153 (12) , 124101. https://doi.org/10.1063/5.0021210
  37. Francesco Nattino, Nicola Marzari. Operando XANES from first-principles and its application to iridium oxide. Physical Chemistry Chemical Physics 2020, 22 (19) , 10807-10818. https://doi.org/10.1039/C9CP06726D
  38. Karsten Reuter, Horia Metiu. A Decade of Computational Surface Catalysis. 2020, 1309-1319. https://doi.org/10.1007/978-3-319-44680-6_1
  39. Harald Oberhofer. Electrocatalysis Beyond the Computational Hydrogen Electrode. 2020, 1505-1537. https://doi.org/10.1007/978-3-319-44680-6_9
  40. Kiran Mathew, V. S. Chaitanya Kolluru, Srinidhi Mula, Stephan N. Steinmann, Richard G. Hennig. Implicit self-consistent electrolyte model in plane-wave density-functional theory. The Journal of Chemical Physics 2019, 151 (23) , 234101. https://doi.org/10.1063/1.5132354
  41. Christopher J. Stein, John M. Herbert, Martin Head-Gordon. The Poisson–Boltzmann model for implicit solvation of electrolyte solutions: Quantum chemical implementation and assessment via Sechenov coefficients. The Journal of Chemical Physics 2019, 151 (22) , 224111. https://doi.org/10.1063/1.5131020
  42. Joseph A. Gauthier, Colin F. Dickens, Stefan Ringe, Karen Chan. Practical Considerations for Continuum Models Applied to Surface Electrochemistry. ChemPhysChem 2019, 20 (22) , 3074-3080. https://doi.org/10.1002/cphc.201900536
  43. Stefan Ringe, Ezra L. Clark, Joaquin Resasco, Amber Walton, Brian Seger, Alexis T. Bell, Karen Chan. Understanding cation effects in electrochemical CO 2 reduction. Energy & Environmental Science 2019, 12 (10) , 3001-3014. https://doi.org/10.1039/C9EE01341E
  44. Christoph Hille, Stefan Ringe, Martin Deimel, Christian Kunkel, William E. Acree, Karsten Reuter, Harald Oberhofer. Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme. The Journal of Chemical Physics 2019, 150 (4) , 041710. https://doi.org/10.1063/1.5050938
  45. Francesco Nattino, Matthew Truscott, Nicola Marzari, Oliviero Andreussi. Continuum models of the electrochemical diffuse layer in electronic-structure calculations. The Journal of Chemical Physics 2019, 150 (4) , 041722. https://doi.org/10.1063/1.5054588
  46. Artem Baskin, David Prendergast. Exploring chemical speciation at electrified interfaces using detailed continuum models. The Journal of Chemical Physics 2019, 150 (4) , 041725. https://doi.org/10.1063/1.5058159
  47. Oliviero Andreussi, Giuseppe Fisicaro. Continuum embeddings in condensed-matter simulations. International Journal of Quantum Chemistry 2019, 119 (1) , e25725. https://doi.org/10.1002/qua.25725
  48. Dennis Pache, Rochus Schmid. Molecular Dynamics Investigation of the Dielectric Decrement of Ion Solutions. ChemElectroChem 2018, 5 (11) , 1444-1450. https://doi.org/10.1002/celc.201800158
  49. Sandra Döpking, Craig P. Plaisance, Daniel Strobusch, Karsten Reuter, Christoph Scheurer, Sebastian Matera. Addressing global uncertainty and sensitivity in first-principles based microkinetic models by an adaptive sparse grid approach. The Journal of Chemical Physics 2018, 148 (3) , 034102. https://doi.org/10.1063/1.5004770
  50. Karsten Reuter, Horia Metiu. A Decade of Computational Surface Catalysis. 2018, 1-11. https://doi.org/10.1007/978-3-319-50257-1_1-1
  51. Harald Oberhofer. Electrocatalysis Beyond the Computational Hydrogen Electrode. 2018, 1-33. https://doi.org/10.1007/978-3-319-50257-1_9-1
  52. A. Groß. Computational Modeling of Electrocatalytic Reactions. 2018, 455-465. https://doi.org/10.1016/B978-0-12-409547-2.13363-3
  53. Stefan Ringe, Harald Oberhofer, Karsten Reuter. Transferable ionic parameters for first-principles Poisson-Boltzmann solvation calculations: Neutral solutes in aqueous monovalent salt solutions. The Journal of Chemical Physics 2017, 146 (13) , 134103. https://doi.org/10.1063/1.4978850
  54. Alfred B. Anderson. Concepts and computational methods for the electrochemical interface and applications: Past, present, and future. Current Opinion in Electrochemistry 2017, 1 (1) , 27-33. https://doi.org/10.1016/j.coelec.2016.12.010
  55. M. Ropo, V. Blum, C. Baldauf. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep35772
  56. Stephan N. Steinmann, Philippe Sautet, Carine Michel. Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models. Physical Chemistry Chemical Physics 2016, 18 (46) , 31850-31861. https://doi.org/10.1039/C6CP04094B

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect