ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Spin State Energetics in First-Row Transition Metal Complexes: Contribution of (3s3p) Correlation and Its Description by Second-Order Perturbation Theory

View Author Information
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
Cite this: J. Chem. Theory Comput. 2017, 13, 2, 537–553
Publication Date (Web):December 22, 2016
https://doi.org/10.1021/acs.jctc.6b01005
Copyright © 2016 American Chemical Society

    Article Views

    2012

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    This paper presents an in-depth study of the performance of multiconfigurational second-order perturbation theory (CASPT2, NEVPT2) in describing spin state energetics in first-row transition metal (TM) systems, including bare TM ions, TM ions in a field of point charges (TM/PC), and an extensive series of TM complexes, where the main focus lies on the (3s3p) correlation contribution to the relative energies of different spin states. To the best of our knowledge, this is the first systematic NEVPT2 investigation of TM spin state energetics. CASPT2 has been employed in several previous studies but was regularly found to be biased toward high spin states. The bias was attributed to a too low value of the so-called IPEA shift ϵ, an empirical correction in the CASPT2 zeroth-order Hamiltonian with a standard value of 0.25 hartree. Based on comparisons with experiment (TM ions) and calculations with the multireference configuration interaction (TM ions and TM/PC systems) and coupled-cluster (TM complexes) methods, we demonstrate in this work that standard CASPT2 works well for valence correlation and that its bias toward high-spin states is caused by an erratic description of (3s3p) correlation effects. The latter problem only occurs for spin transitions involving a ligand field (de)excitation, not in bare TM ions. At the same time the (3s3p) correlation contribution also becomes strongly ϵ dependent. The error can be reduced by increasing ϵ but only at the expense of deteriorating the CASPT2 description of valence correlation in the TM complexes. The alternative NEVPT2 method works well for bare TM and TM/PC systems, but its results for the TM complexes are disappointing, with large errors both for the valence and (3s3p) correlation contributions to the relative energies of different spin states.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.6b01005.

    • Symmetry information and principal configurations of all considered states in the TM/PC and molecular systems; T1, D1, and |%TAE| diagnostics for all molecular states; relative spin state energetics for TM/PC systems other than the ones included in Table 2; plot of the natural orbitals of the NiCp(acac) molecule; Cartesian coordinates of all molecules studied in this work (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 111 publications.

    1. Victor P. Vysotskiy, Claudia Filippi, Ulf Ryde. Scalar Relativistic All-Electron and Pseudopotential Ab Initio Study of a Minimal Nitrogenase [Fe(SH)4H]− Model Employing Coupled-Cluster and Auxiliary-Field Quantum Monte Carlo Many-Body Methods. The Journal of Physical Chemistry A 2024, 128 (7) , 1358-1374. https://doi.org/10.1021/acs.jpca.3c05808
    2. João Paulo Almeida de Mendonça, Lorenzo Antonio Mariano, Emilie Devijver, Noel Jakse, Roberta Poloni. Artificial Neural Network-Based Density Functional Approach for Adiabatic Energy Differences in Transition Metal Complexes. Journal of Chemical Theory and Computation 2023, 19 (21) , 7555-7566. https://doi.org/10.1021/acs.jctc.3c00600
    3. Quan Manh Phung, Ho Ngoc Nam, Masaaki Saitow. Unraveling the Spin-State Energetics of FeN4 Complexes with Ab Initio Methods. The Journal of Physical Chemistry A 2023, 127 (36) , 7544-7556. https://doi.org/10.1021/acs.jpca.3c04254
    4. Alberto Pérez-Bitrián, Julen Munárriz, Johanna S. Sturm, Daniel Wegener, Konstantin B. Krause, Anja Wiesner, Christian Limberg, Sebastian Riedel. Further Perspectives on the Teflate versus Fluoride Analogy: The Case of a Co(II) Pentafluoroorthotellurate Complex. Inorganic Chemistry 2023, 62 (32) , 12947-12953. https://doi.org/10.1021/acs.inorgchem.3c01730
    5. Ahmet Altun, Christoph Riplinger, Frank Neese, Giovanni Bistoni. Exploring the Accuracy Limits of PNO-Based Local Coupled-Cluster Calculations for Transition-Metal Complexes. Journal of Chemical Theory and Computation 2023, 19 (7) , 2039-2047. https://doi.org/10.1021/acs.jctc.3c00087
    6. Samuel M. Bhutto, Reagan X. Hooper, Brandon Q. Mercado, Patrick L. Holland. Mechanism of Nitrogen-Carbon Bond Formation from Iron(IV) Disilylhydrazido Intermediates during N2 Reduction. Journal of the American Chemical Society 2023, 145 (8) , 4626-4637. https://doi.org/10.1021/jacs.2c12382
    7. Marc Reimann, Martin Kaupp. Spin-State Splittings in 3d Transition-Metal Complexes Revisited: Toward a Reliable Theory Benchmark. Journal of Chemical Theory and Computation 2023, 19 (1) , 97-108. https://doi.org/10.1021/acs.jctc.2c00925
    8. Juan Felipe Huan Lew-Yee, Jorge M. del Campo, Mario Piris. Electron Correlation in the Iron(II) Porphyrin by Natural Orbital Functional Approximations. Journal of Chemical Theory and Computation 2023, 19 (1) , 211-220. https://doi.org/10.1021/acs.jctc.2c01093
    9. Marc Reimann, Martin Kaupp. Spin-State Splittings in 3d Transition-Metal Complexes Revisited: Benchmarking Approximate Methods for Adiabatic Spin-State Energy Differences in Fe(II) Complexes. Journal of Chemical Theory and Computation 2022, 18 (12) , 7442-7456. https://doi.org/10.1021/acs.jctc.2c00924
    10. Andrea Missana, Andreas Hauser, Latévi Max Lawson Daku. Environmental Control of the Magnetic Behavior of Transition Metal Complexes: Density Functional Theory Study of Zeolite Y Embedded Complexes [M(bpy)3]2+@Y (M = Fe2+, Co2+). The Journal of Physical Chemistry A 2022, 126 (36) , 6221-6235. https://doi.org/10.1021/acs.jpca.2c05070
    11. Aditya Nandy, Husain Adamji, David W. Kastner, Vyshnavi Vennelakanti, Azadeh Nazemi, Mingjie Liu, Heather J. Kulik. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catalysis 2022, 12 (15) , 9281-9306. https://doi.org/10.1021/acscatal.2c02096
    12. Y. Lemke, J. Kussmann, C. Ochsenfeld. Efficient Integral-Direct Methods for Self-Consistent Reduced Density Matrix Functional Theory Calculations on Central and Graphics Processing Units. Journal of Chemical Theory and Computation 2022, 18 (7) , 4229-4244. https://doi.org/10.1021/acs.jctc.2c00231
    13. Gautam D. Stroscio, Chen Zhou, Donald G. Truhlar, Laura Gagliardi. Multiconfiguration Pair-Density Functional Theory Calculations of Iron(II) Porphyrin: Effects of Hybrid Pair-Density Functionals and Expanded RAS and DMRG Active Spaces on Spin-State Orderings. The Journal of Physical Chemistry A 2022, 126 (24) , 3957-3963. https://doi.org/10.1021/acs.jpca.2c02347
    14. Eugenio Vitale, Giovanni Li Manni, Ali Alavi, Daniel Kats. FCIQMC-Tailored Distinguishable Cluster Approach: Open-Shell Systems. Journal of Chemical Theory and Computation 2022, 18 (6) , 3427-3437. https://doi.org/10.1021/acs.jctc.2c00059
    15. Maria Drosou, Christiana A. Mitsopoulou, Dimitrios A. Pantazis. Reconciling Local Coupled Cluster with Multireference Approaches for Transition Metal Spin-State Energetics. Journal of Chemical Theory and Computation 2022, 18 (6) , 3538-3548. https://doi.org/10.1021/acs.jctc.2c00265
    16. Oskar Weser, Kai Guther, Khaldoon Ghanem, Giovanni Li Manni. Stochastic Generalized Active Space Self-Consistent Field: Theory and Application. Journal of Chemical Theory and Computation 2022, 18 (1) , 251-272. https://doi.org/10.1021/acs.jctc.1c00936
    17. Yazhou Li, Xuhui Lin, Fang Ma, Yirong Mo. Computational Study of CO2 Reduction Catalyzed by Iron(I) Complex at Different Spin States: Cooperativity of Hydrogen Bonding and Auxiliary Group Effect. ACS Omega 2021, 6 (47) , 31971-31981. https://doi.org/10.1021/acsomega.1c04758
    18. Aditya Nandy, Chenru Duan, Michael G. Taylor, Fang Liu, Adam H. Steeves, Heather J. Kulik. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chemical Reviews 2021, 121 (16) , 9927-10000. https://doi.org/10.1021/acs.chemrev.1c00347
    19. Lorenzo A. Mariano, Bess Vlaisavljevich, Roberta Poloni. Improved Spin-State Energy Differences of Fe(II) Molecular and Crystalline Complexes via the Hubbard U-Corrected Density. Journal of Chemical Theory and Computation 2021, 17 (5) , 2807-2816. https://doi.org/10.1021/acs.jctc.1c00034
    20. Maxime Tarrago, Christina Römelt, Joscha Nehrkorn, Alexander Schnegg, Frank Neese, Eckhard Bill, Shengfa Ye. Experimental and Theoretical Evidence for an Unusual Almost Triply Degenerate Electronic Ground State of Ferrous Tetraphenylporphyrin. Inorganic Chemistry 2021, 60 (7) , 4966-4985. https://doi.org/10.1021/acs.inorgchem.1c00031
    21. Alan E. Rask, Paul M. Zimmerman. Toward Full Configuration Interaction for Transition-Metal Complexes. The Journal of Physical Chemistry A 2021, 125 (7) , 1598-1609. https://doi.org/10.1021/acs.jpca.0c07624
    22. Lorenzo A. Mariano, Bess Vlaisavljevich, Roberta Poloni. Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction. Journal of Chemical Theory and Computation 2020, 16 (11) , 6755-6762. https://doi.org/10.1021/acs.jctc.0c00628
    23. Fabian Müller, Julius B. Stückrath, Florian A. Bischoff, Laura Gagliardi, Joachim Sauer, Sreekanta Debnath, Marcel Jorewitz, Knut R. Asmis. Valence and Structure Isomerism of Al2FeO4+: Synergy of Spectroscopy and Quantum Chemistry. Journal of the American Chemical Society 2020, 142 (42) , 18050-18059. https://doi.org/10.1021/jacs.0c07158
    24. Fang Liu, Chenru Duan, Heather J. Kulik. Rapid Detection of Strong Correlation with Machine Learning for Transition-Metal Complex High-Throughput Screening. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8067-8076. https://doi.org/10.1021/acs.jpclett.0c02288
    25. Kristine Pierloot, Quan Manh Phung, Abhik Ghosh. Electronic Structure of Neutral and Anionic Iron–Nitrosyl Corrole. A Multiconfigurational and Density Matrix Renormalization Group Investigation. Inorganic Chemistry 2020, 59 (16) , 11493-11502. https://doi.org/10.1021/acs.inorgchem.0c01312
    26. Joonho Lee, Fionn D. Malone, Miguel A. Morales. Utilizing Essential Symmetry Breaking in Auxiliary-Field Quantum Monte Carlo: Application to the Spin Gaps of the C36 Fullerene and an Iron Porphyrin Model Complex. Journal of Chemical Theory and Computation 2020, 16 (5) , 3019-3027. https://doi.org/10.1021/acs.jctc.0c00055
    27. Benedikt M. Flöser, Yang Guo, Christoph Riplinger, Felix Tuczek, Frank Neese. Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics. Journal of Chemical Theory and Computation 2020, 16 (4) , 2224-2235. https://doi.org/10.1021/acs.jctc.9b01109
    28. Samuel J. Stoneburner, Donald G. Truhlar, Laura Gagliardi. Transition Metal Spin-State Energetics by MC-PDFT with High Local Exchange. The Journal of Physical Chemistry A 2020, 124 (6) , 1187-1195. https://doi.org/10.1021/acs.jpca.9b10772
    29. Ignacio Fdez. Galván, Morgane Vacher, Ali Alavi, Celestino Angeli, Francesco Aquilante, Jochen Autschbach, Jie J. Bao, Sergey I. Bokarev, Nikolay A. Bogdanov, Rebecca K. Carlson, Liviu F. Chibotaru, Joel Creutzberg, Nike Dattani, Mickaël G. Delcey, Sijia S. Dong, Andreas Dreuw, Leon Freitag, Luis Manuel Frutos, Laura Gagliardi, Frédéric Gendron, Angelo Giussani, Leticia González, Gilbert Grell, Meiyuan Guo, Chad E. Hoyer, Marcus Johansson, Sebastian Keller, Stefan Knecht, Goran Kovačević, Erik Källman, Giovanni Li Manni, Marcus Lundberg, Yingjin Ma, Sebastian Mai, João Pedro Malhado, Per Åke Malmqvist, Philipp Marquetand, Stefanie A. Mewes, Jesper Norell, Massimo Olivucci, Markus Oppel, Quan Manh Phung, Kristine Pierloot, Felix Plasser, Markus Reiher, Andrew M. Sand, Igor Schapiro, Prachi Sharma, Christopher J. Stein, Lasse Kragh Sørensen, Donald G. Truhlar, Mihkel Ugandi, Liviu Ungur, Alessio Valentini, Steven Vancoillie, Valera Veryazov, Oskar Weser, Tomasz A. Wesołowski, Per-Olof Widmark, Sebastian Wouters, Alexander Zech, J. Patrick Zobel, Roland Lindh. OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation 2019, 15 (11) , 5925-5964. https://doi.org/10.1021/acs.jctc.9b00532
    30. Gavin A. Craig, Gunasekaran Velmurugan, Claire Wilson, Rafael Valiente, Gopalan Rajaraman, Mark Murrie. Magnetic Properties of a Family of [MnIII4LnIII4] Wheel Complexes: An Experimental and Theoretical Study. Inorganic Chemistry 2019, 58 (20) , 13815-13825. https://doi.org/10.1021/acs.inorgchem.9b01592
    31. Carlo Alberto Gaggioli, Samuel J. Stoneburner, Christopher J. Cramer, Laura Gagliardi. Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catalysis 2019, 9 (9) , 8481-8502. https://doi.org/10.1021/acscatal.9b01775
    32. Quan Manh Phung, Carlos Martín-Fernández, Jeremy N. Harvey, Milica Feldt. Ab Initio Calculations for Spin-Gaps of Non-Heme Iron Complexes. Journal of Chemical Theory and Computation 2019, 15 (8) , 4297-4304. https://doi.org/10.1021/acs.jctc.9b00370
    33. Abhishek Khedkar, Michael Roemelt. Active Space Selection Based on Natural Orbital Occupation Numbers from n-Electron Valence Perturbation Theory. Journal of Chemical Theory and Computation 2019, 15 (6) , 3522-3536. https://doi.org/10.1021/acs.jctc.8b01293
    34. Quan Manh Phung, Kristine Pierloot. Low-Lying Electromeric States in Chloro-Ligated Iron(IV)-Oxo Porphyrin as a Model for Compound I, Studied with Second-Order Perturbation Theory Based on Density Matrix Renormalization Group. Journal of Chemical Theory and Computation 2019, 15 (5) , 3033-3043. https://doi.org/10.1021/acs.jctc.9b00166
    35. Ivan Šalitroš, Radovan Herchel, Olaf Fuhr, Rodrigo González-Prieto, Mario Ruben. Polynuclear Iron(II) Complexes with 2,6-Bis(pyrazol-1-yl)pyridine-anthracene Ligands Exhibiting Highly Distorted High-Spin Centers. Inorganic Chemistry 2019, 58 (7) , 4310-4319. https://doi.org/10.1021/acs.inorgchem.8b03432
    36. Giovanni Li Manni, Daniel Kats, David P. Tew, Ali Alavi. Role of Valence and Semicore Electron Correlation on Spin Gaps in Fe(II)-Porphyrins. Journal of Chemical Theory and Computation 2019, 15 (3) , 1492-1497. https://doi.org/10.1021/acs.jctc.8b01277
    37. Ofelia B. Oña, Diego R. Alcoba, Gustavo E. Massaccesi, Alicia Torre, Luis Lain, Juan I. Melo, Josep M. Oliva-Enrich, Juan E. Peralta. Magnetic Properties of Co(II) Complexes with Polyhedral Carborane Ligands. Inorganic Chemistry 2019, 58 (4) , 2550-2557. https://doi.org/10.1021/acs.inorgchem.8b03156
    38. Milica Feldt, Quan Manh Phung, Kristine Pierloot, Ricardo A. Mata, Jeremy N. Harvey. Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. Journal of Chemical Theory and Computation 2019, 15 (2) , 922-937. https://doi.org/10.1021/acs.jctc.8b00963
    39. Meiyuan Guo, Erik Källman, Rahul V. Pinjari, Rafael C. Couto, Lasse Kragh Sørensen, Roland Lindh, Kristine Pierloot, Marcus Lundberg. Fingerprinting Electronic Structure of Heme Iron by Ab Initio Modeling of Metal L-Edge X-ray Absorption Spectra. Journal of Chemical Theory and Computation 2019, 15 (1) , 477-489. https://doi.org/10.1021/acs.jctc.8b00658
    40. Naheed Bibi, Eduardo Guimarães Ratier de Arruda, Alex Domingo, Aline Alves Oliveira, Carolina Galuppo, Quan Manh Phung, Naíma Mohammed Orra, Fanny Béron, Andrea Paesano, Jr., Kristine Pierloot, André Luiz Barboza Formiga. Switching the Spin-Crossover Phenomenon by Ligand Design on Imidazole–Diazineiron(II) Complexes. Inorganic Chemistry 2018, 57 (23) , 14603-14616. https://doi.org/10.1021/acs.inorgchem.8b02278
    41. Jordi Cirera, Mireia Via-Nadal, Eliseo Ruiz. Benchmarking Density Functional Methods for Calculation of State Energies of First Row Spin-Crossover Molecules. Inorganic Chemistry 2018, 57 (22) , 14097-14105. https://doi.org/10.1021/acs.inorgchem.8b01821
    42. Saurabh Kumar Singh, Mihail Atanasov, Frank Neese. Challenges in Multireference Perturbation Theory for the Calculations of the g-Tensor of First-Row Transition-Metal Complexes. Journal of Chemical Theory and Computation 2018, 14 (9) , 4662-4677. https://doi.org/10.1021/acs.jctc.8b00513
    43. Mariusz Radoń, Gabriela Drabik. Spin States and Other Ligand–Field States of Aqua Complexes Revisited with Multireference ab Initio Calculations Including Solvation Effects. Journal of Chemical Theory and Computation 2018, 14 (8) , 4010-4027. https://doi.org/10.1021/acs.jctc.8b00200
    44. Van Tan Tran, Quoc Tri Tran. The Electronic Structures of CoGen–/0 (n = 1–3) Clusters from Multiconfigurational CASSCF/CASPT2 and RASSCF/RASPT2 Calculations. The Journal of Physical Chemistry A 2018, 122 (31) , 6407-6415. https://doi.org/10.1021/acs.jpca.8b04846
    45. Anselm W. Hahn, Benjamin E. Van Kuiken, Vijay Gopal Chilkuri, Natalia Levin, Eckhard Bill, Thomas Weyhermüller, Alessandro Nicolaou, Jun Miyawaki, Yoshihisa Harada, Serena DeBeer. Probing the Valence Electronic Structure of Low-Spin Ferrous and Ferric Complexes Using 2p3d Resonant Inelastic X-ray Scattering (RIXS). Inorganic Chemistry 2018, 57 (15) , 9515-9530. https://doi.org/10.1021/acs.inorgchem.8b01550
    46. Giovanni Li Manni, Ali Alavi. Understanding the Mechanism Stabilizing Intermediate Spin States in Fe(II)-Porphyrin. The Journal of Physical Chemistry A 2018, 122 (22) , 4935-4947. https://doi.org/10.1021/acs.jpca.7b12710
    47. Quan Manh Phung, Milica Feldt, Jeremy N. Harvey, Kristine Pierloot. Toward Highly Accurate Spin State Energetics in First-Row Transition Metal Complexes: A Combined CASPT2/CC Approach. Journal of Chemical Theory and Computation 2018, 14 (5) , 2446-2455. https://doi.org/10.1021/acs.jctc.8b00057
    48. Daniel C. Ashley, Elena Jakubikova. Ray-Dutt and Bailar Twists in Fe(II)-Tris(2,2′-bipyridine): Spin States, Sterics, and Fe–N Bond Strengths. Inorganic Chemistry 2018, 57 (9) , 5585-5596. https://doi.org/10.1021/acs.inorgchem.8b00560
    49. Claudia Kupper, Bhaskar Mondal, Joan Serrano-Plana, Iris Klawitter, Frank Neese, Miquel Costas, Shengfa Ye, and Franc Meyer . Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways. Journal of the American Chemical Society 2017, 139 (26) , 8939-8949. https://doi.org/10.1021/jacs.7b03255
    50. Hoa Phan, Jeremy J. Hrudka, Dilyara Igimbayeva, Latévi M. Lawson Daku, and Michael Shatruk . A Simple Approach for Predicting the Spin State of Homoleptic Fe(II) Tris-diimine Complexes. Journal of the American Chemical Society 2017, 139 (18) , 6437-6447. https://doi.org/10.1021/jacs.7b02098
    51. Tianbai Huang, Stephan Kupfer, Robert Geitner, Stefanie Gräfe. Computational Modelling and Mechanistic Insight into Light‐Driven CO Dissociation of Square‐Planar Rhodium(I) Complexes. ChemPhotoChem 2024, https://doi.org/10.1002/cptc.202300219
    52. Jochen Autschbach. Quantum Chemistry of d- and f-Block Elements. 2024, 177-192. https://doi.org/10.1016/B978-0-12-821978-2.00134-3
    53. Mariusz Radoń. Benchmarks for transition metal spin-state energetics: why and how to employ experimental reference data?. Physical Chemistry Chemical Physics 2023, 25 (45) , 30800-30820. https://doi.org/10.1039/D3CP03537A
    54. A. L. Mariano, A. Fernández-Blanco, R. Poloni. Perspective from a Hubbard U -density corrected scheme towards a spin crossover-mediated change in gas affinity. The Journal of Chemical Physics 2023, 159 (15) https://doi.org/10.1063/5.0157971
    55. Aleksandr A. Chamkin, Elena S. Chamkina. A larger basis set describes atomization energy core–valence correction better than a higher-order coupled-cluster method. Physical Chemistry Chemical Physics 2023, 25 (40) , 27438-27447. https://doi.org/10.1039/D3CP03893A
    56. Aritra Mukhopadhyaya, Munish Sharma, Peter M. Oppeneer, Md. Ehesan Ali. Probing the spin states of tetra‐coordinated iron(II) porphyrins by their vibrational and pre K‐edge x‐ray absorption spectra. International Journal of Quantum Chemistry 2023, 123 (18) https://doi.org/10.1002/qua.27174
    57. Vyshnavi Vennelakanti, Michael G. Taylor, Aditya Nandy, Chenru Duan, Heather J. Kulik. Assessing the performance of approximate density functional theory on 95 experimentally characterized Fe(II) spin crossover complexes. The Journal of Chemical Physics 2023, 159 (2) https://doi.org/10.1063/5.0157187
    58. Pierpaolo Morgante, Roberto Peverati. Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins. Molecules 2023, 28 (8) , 3487. https://doi.org/10.3390/molecules28083487
    59. Valentin Diez-Cabanes, Simona Fantacci, Mariachiara Pastore. First-principles modeling of dye-sensitized solar cells: From the optical properties of standalone dyes to the charge separation at dye/TiO2 interfaces. 2023, 215-245. https://doi.org/10.1016/B978-0-323-91738-4.00013-0
    60. Stefano Battaglia, Ignacio Fdez. Galván, Roland Lindh. Multiconfigurational quantum chemistry: The CASPT2 method. 2023, 135-162. https://doi.org/10.1016/B978-0-323-91738-4.00016-6
    61. Léo Chaussy, Denis Hagebaum-Reignier, Stéphane Humbel, Paola Nava. Accurate computed singlet–triplet energy differences for cobalt systems: implication for two-state reactivity. Physical Chemistry Chemical Physics 2022, 24 (36) , 21841-21852. https://doi.org/10.1039/D2CP03291K
    62. Joshua J. Goings, Alec White, Joonho Lee, Christofer S. Tautermann, Matthias Degroote, Craig Gidney, Toru Shiozaki, Ryan Babbush, Nicholas C. Rubin. Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers. Proceedings of the National Academy of Sciences 2022, 119 (38) https://doi.org/10.1073/pnas.2203533119
    63. R. Pasquier, K. Rassoul, M. Alouani. Inverse spin crossover in fluorinated Fe(1,10-phenanthroline) 2 (NCS) 2 adsorbed on Cu (001) surface. Computational Condensed Matter 2022, 32 , e00735. https://doi.org/10.1016/j.cocom.2022.e00735
    64. Milica Feldt, Quan Manh Phung. Ab Initio Methods in First‐Row Transition Metal Chemistry. European Journal of Inorganic Chemistry 2022, 2022 (15) https://doi.org/10.1002/ejic.202200014
    65. A. Sánchez-Mansilla, C. Sousa, R. K. Kathir, R. Broer, T. P. Straatsma, C. de Graaf. On the role of dynamic electron correlation in non-orthogonal configuration interaction with fragments. Physical Chemistry Chemical Physics 2022, 24 (19) , 11931-11944. https://doi.org/10.1039/D2CP00772J
    66. A. E. Rask, P. M. Zimmerman. The many-body electronic interactions of Fe(II)–porphyrin. The Journal of Chemical Physics 2022, 156 (9) https://doi.org/10.1063/5.0079310
    67. Brian A. Finney, Sabyasachi Roy Chowdhury, Clara Kirkvold, Bess Vlaisavljevich. CASPT2 molecular geometries of Fe( ii ) spin-crossover complexes. Physical Chemistry Chemical Physics 2022, 24 (3) , 1390-1398. https://doi.org/10.1039/D1CP04885F
    68. Maria Drosou, Christiana A. Mitsopoulou, Dimitrios A. Pantazis. Spin-state energetics of manganese spin crossover complexes: Comparison of single-reference and multi-reference ab initio approaches. Polyhedron 2021, 208 , 115399. https://doi.org/10.1016/j.poly.2021.115399
    69. Abhishek Khedkar, Michael Roemelt. Modern multireference methods and their application in transition metal chemistry. Physical Chemistry Chemical Physics 2021, 23 (32) , 17097-17112. https://doi.org/10.1039/D1CP02640B
    70. Laia Navarro, Fileto Rodriguez, Jordi Cirera. Controlling the spin-crossover behavior of the [Cr(indenyl) 2 ] family via ligand functionalization. Dalton Transactions 2021, 50 (25) , 8704-8710. https://doi.org/10.1039/D1DT00481F
    71. Yang Guo, Kantharuban Sivalingam, Christian Kollmar, Frank Neese. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). II. The full rank NEVPT2 (FR-NEVPT2) formulation. The Journal of Chemical Physics 2021, 154 (21) https://doi.org/10.1063/5.0051218
    72. Oskar Weser, Leon Freitag, Kai Guther, Ali Alavi, Giovanni Li Manni. Chemical insights into the electronic structure of Fe( II ) porphyrin using FCIQMC , DMRG , and generalized active spaces. International Journal of Quantum Chemistry 2021, 121 (3) https://doi.org/10.1002/qua.26454
    73. Gabriela Drabik, Janusz Szklarzewicz, Mariusz Radoń. Spin-state energetics of metallocenes: How do best wave function and density functional theory results compare with the experimental data?. Physical Chemistry Chemical Physics 2021, 23 (1) , 151-172. https://doi.org/10.1039/D0CP04727A
    74. Julia Brüggemann, Christoph R. Jacob. Spin-state dependence of exchange–correlation holes. Faraday Discussions 2020, 224 , 56-78. https://doi.org/10.1039/D0FD00060D
    75. Leon Freitag, Markus Reiher. The Density Matrix Renormalization Group for Strong Correlation in Ground and Excited States. 2020, 205-245. https://doi.org/10.1002/9781119417774.ch7
    76. Anton Römer, Lukas Hasecke, Peter Blöchl, Ricardo A. Mata. A Review of Density Functional Models for the Description of Fe(II) Spin-Crossover Complexes. Molecules 2020, 25 (21) , 5176. https://doi.org/10.3390/molecules25215176
    77. Milica Feldt, Carlos Martín-Fernández, Jeremy N. Harvey. Energetics of non-heme iron reactivity: can ab initio calculations provide the right answer?. Physical Chemistry Chemical Physics 2020, 22 (41) , 23908-23919. https://doi.org/10.1039/D0CP04401F
    78. Sebastian Mai, Leticia González. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angewandte Chemie 2020, 132 (39) , 16976-16992. https://doi.org/10.1002/ange.201916381
    79. Sebastian Mai, Leticia González. Molecular Photochemistry: Recent Developments in Theory. Angewandte Chemie International Edition 2020, 59 (39) , 16832-16846. https://doi.org/10.1002/anie.201916381
    80. Andrej Antalík, Dana Nachtigallová, Rabindranath Lo, Mikuláš Matoušek, Jakub Lang, Örs Legeza, Jiří Pittner, Pavel Hobza, Libor Veis. Ground state of the Fe( ii )-porphyrin model system corresponds to quintet: a DFT and DMRG-based tailored CC study. Physical Chemistry Chemical Physics 2020, 22 (30) , 17033-17037. https://doi.org/10.1039/D0CP03086D
    81. Francesco Aquilante, Jochen Autschbach, Alberto Baiardi, Stefano Battaglia, Veniamin A. Borin, Liviu F. Chibotaru, Irene Conti, Luca De Vico, Mickaël Delcey, Ignacio Fdez. Galván, Nicolas Ferré, Leon Freitag, Marco Garavelli, Xuejun Gong, Stefan Knecht, Ernst D. Larsson, Roland Lindh, Marcus Lundberg, Per Åke Malmqvist, Artur Nenov, Jesper Norell, Michael Odelius, Massimo Olivucci, Thomas B. Pedersen, Laura Pedraza-González, Quan M. Phung, Kristine Pierloot, Markus Reiher, Igor Schapiro, Javier Segarra-Martí, Francesco Segatta, Luis Seijo, Saumik Sen, Dumitru-Claudiu Sergentu, Christopher J. Stein, Liviu Ungur, Morgane Vacher, Alessio Valentini, Valera Veryazov. Modern quantum chemistry with [Open]Molcas. The Journal of Chemical Physics 2020, 152 (21) https://doi.org/10.1063/5.0004835
    82. Samuel E. Neale, Dimitrios A. Pantazis, Stuart A. Macgregor. Accurate computed spin-state energetics for Co( iii ) complexes: implications for modelling homogeneous catalysis. Dalton Transactions 2020, 49 (19) , 6478-6487. https://doi.org/10.1039/D0DT00993H
    83. Ernst D. Larsson, Geng Dong, Valera Veryazov, Ulf Ryde, Erik D. Hedegård. Is density functional theory accurate for lytic polysaccharide monooxygenase enzymes?. Dalton Transactions 2020, 49 (5) , 1501-1512. https://doi.org/10.1039/C9DT04486H
    84. Heather J. Kulik. Making machine learning a useful tool in the accelerated discovery of transition metal complexes. WIREs Computational Molecular Science 2020, 10 (1) https://doi.org/10.1002/wcms.1439
    85. Marcel Swart. Dealing with Spin States in Computational Organometallic Catalysis. 2020, 191-226. https://doi.org/10.1007/3418_2020_49
    86. Ofelia B. Oña, Diego R. Alcoba, Gustavo E. Massaccesi, Alicia Torre, Luis Lain, Juan I. Melo, Josep M. Oliva-Enrich, Juan E. Peralta. Magnetic properties of closo-carborane-based Co(II) single-ion complexes with O, S, Se, and Te bridging atoms. Polyhedron 2020, 176 , 114257. https://doi.org/10.1016/j.poly.2019.114257
    87. Yachao Zhang. Calculating spin crossover temperatures by a first-principles LDA+ U scheme with parameter U evaluated from GW. The Journal of Chemical Physics 2019, 151 (13) https://doi.org/10.1063/1.5124239
    88. Quan Manh Phung, Kristine Pierloot. Electronic Structure of N ‐Bridged High‐Valent Diiron‐Oxo. Chemistry – A European Journal 2019, 25 (54) , 12491-12496. https://doi.org/10.1002/chem.201902766
    89. Antonio Francés‐Monerris, Philippe C. Gros, Xavier Assfeld, Antonio Monari, Mariachiara Pastore. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. ChemPhotoChem 2019, 3 (9) , 666-683. https://doi.org/10.1002/cptc.201900100
    90. Jordi Cirera, Eliseo Ruiz. Computational Modeling of Transition Temperatures in Spin-Crossover Systems. Comments on Inorganic Chemistry 2019, 39 (4) , 216-241. https://doi.org/10.1080/02603594.2019.1608967
    91. Nadia Ben Amor, Marie‐Catherine Heitz. RASPT2 study of the valence excited states of an iron–porphyrin–carbonyl model complex. Journal of Computational Chemistry 2019, 40 (17) , 1614-1621. https://doi.org/10.1002/jcc.25819
    92. David A. Kreplin, Peter J. Knowles, Hans-Joachim Werner. Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence. The Journal of Chemical Physics 2019, 150 (19) https://doi.org/10.1063/1.5094644
    93. Michael Roemelt, Dimitrios A. Pantazis. Multireference Approaches to Spin‐State Energetics of Transition Metal Complexes Utilizing the Density Matrix Renormalization Group. Advanced Theory and Simulations 2019, 2 (5) https://doi.org/10.1002/adts.201800201
    94. Fang Liu, Tzuhsiung Yang, Jing Yang, Eve Xu, Akash Bajaj, Heather J. Kulik. Bridging the Homogeneous-Heterogeneous Divide: Modeling Spin for Reactivity in Single Atom Catalysis. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00219
    95. Pierpaolo Morgante, Roberto Peverati. ACCDB: A collection of chemistry databases for broad computational purposes. Journal of Computational Chemistry 2019, 40 (6) , 839-848. https://doi.org/10.1002/jcc.25761
    96. Mariusz Radoń. Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Physical Chemistry Chemical Physics 2019, 21 (9) , 4854-4870. https://doi.org/10.1039/C9CP00105K
    97. Marcus Lundberg, Mickaël G. Delcey. Multiconfigurational Approach to X-ray Spectroscopy of Transition Metal Complexes. 2019, 185-217. https://doi.org/10.1007/978-3-030-11714-6_7
    98. Mariusz Radoń. Toward accurate spin-state energetics of transition metal complexes. 2019, 221-264. https://doi.org/10.1016/bs.adioch.2018.10.001
    99. Justin K. Kirkland, Shahriar N. Khan, Bryan Casale, Evangelos Miliordos, Konstantinos D. Vogiatzis. Ligand field effects on the ground and excited states of reactive FeO 2+ species. Physical Chemistry Chemical Physics 2018, 20 (45) , 28786-28795. https://doi.org/10.1039/C8CP05372C
    100. Balazs Pinter, Rachael Al-Saadon, Zehua Chen, Weitao Yang. Spin-state energetics of iron(II) porphyrin from the particle-particle random phase approximation. The European Physical Journal B 2018, 91 (11) https://doi.org/10.1140/epjb/e2018-90169-6
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect