Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Improved Accuracy and Efficiency in Quantum Embedding through Absolute Localization

View Author Information
Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
Cite this: J. Chem. Theory Comput. 2017, 13, 4, 1503–1508
Publication Date (Web):March 6, 2017
https://doi.org/10.1021/acs.jctc.7b00034
Copyright © 2017 American Chemical Society

    Article Views

    1303

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Projection-based quantum embedding methodologies provide a framework for performing wave function-in-density functional theory (WF-in-DFT) calculations. The total WF-in-DFT energy is dependent on the partitioning of the total system and requires similar partitioning in each system for accurate energy differences. To achieve this, we enforce an absolute localization of the WF orbitals to basis functions only associated with the WF subsystem. This absolute localization, followed by iterative optimization of the subsystems’ orbitals, provides improved energy differences for WF-in-DFT while simultaneously improving the computational efficiency.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.7b00034.

    • Freeze-and-thaw DFT-in-DFT with the Huzinaga operator in the supermolecular basis; DFT-in-DFT energy barriers of systems I–IV; geometries of all systems used (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 50 publications.

    1. Ádám B. Szirmai, Bence Hégely, Attila Tajti, Mihály Kállay, Péter G. Szalay. Projected Atomic Orbitals As Optimal Virtual Space for Excited State Projection-Based Embedding Calculations. Journal of Chemical Theory and Computation 2024, 20 (9) , 3420-3425. https://doi.org/10.1021/acs.jctc.4c00104
    2. Piero Lafiosca, Federico Rossi, Franco Egidi, Tommaso Giovannini, Chiara Cappelli. Multiscale Frozen Density Embedding/Molecular Mechanics Approach for Simulating Magnetic Response Properties of Solvated Systems. Journal of Chemical Theory and Computation 2024, 20 (1) , 266-279. https://doi.org/10.1021/acs.jctc.3c00850
    3. Elena Kolodzeiski, Christopher J. Stein. Automated, Consistent, and Even-Handed Selection of Active Orbital Spaces for Quantum Embedding. Journal of Chemical Theory and Computation 2023, 19 (19) , 6643-6655. https://doi.org/10.1021/acs.jctc.3c00653
    4. Marina Jansen, Peter Reinholdt, Erik D. Hedegård, Carolin König. Theoretical and Numerical Comparison of Quantum- and Classical Embedding Models for Optical Spectra. The Journal of Physical Chemistry A 2023, 127 (27) , 5689-5703. https://doi.org/10.1021/acs.jpca.3c02540
    5. Manas Sharma, Marek Sierka. Efficient Implementation of Density Functional Theory Based Embedding for Molecular and Periodic Systems Using Gaussian Basis Functions. Journal of Chemical Theory and Computation 2022, 18 (11) , 6892-6904. https://doi.org/10.1021/acs.jctc.2c00380
    6. Nan He, Chenyang Li, Francesco A. Evangelista. Second-Order Active-Space Embedding Theory. Journal of Chemical Theory and Computation 2022, 18 (3) , 1527-1541. https://doi.org/10.1021/acs.jctc.1c01099
    7. Jonathan M. Waldrop, Theresa L. Windus, Niranjan Govind. Projector-Based Quantum Embedding for Molecular Systems: An Investigation of Three Partitioning Approaches. The Journal of Physical Chemistry A 2021, 125 (29) , 6384-6393. https://doi.org/10.1021/acs.jpca.1c03821
    8. John Mark P. Martirez, Emily A. Carter. Projector-Free Capped-Fragment Scheme within Density Functional Embedding Theory for Covalent and Ionic Compounds. Journal of Chemical Theory and Computation 2021, 17 (7) , 4105-4121. https://doi.org/10.1021/acs.jctc.1c00285
    9. Giovanni Macetti, Alessandro Genoni. Initial Maximum Overlap Method for Large Systems by the Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Technique. Journal of Chemical Theory and Computation 2021, 17 (7) , 4169-4182. https://doi.org/10.1021/acs.jctc.1c00388
    10. Kevin Carter-Fenk, Christopher J. Mundy, John M. Herbert. Natural Charge-Transfer Analysis: Eliminating Spurious Charge-Transfer States in Time-Dependent Density Functional Theory via Diabatization, with Application to Projection-Based Embedding. Journal of Chemical Theory and Computation 2021, 17 (7) , 4195-4210. https://doi.org/10.1021/acs.jctc.1c00412
    11. Giovanni Macetti, Erna K. Wieduwilt, Alessandro Genoni. QM/ELMO: A Multi-Purpose Fully Quantum Mechanical Embedding Scheme Based on Extremely Localized Molecular Orbitals. The Journal of Physical Chemistry A 2021, 125 (13) , 2709-2726. https://doi.org/10.1021/acs.jpca.0c11450
    12. Bruno Senjean, Souloke Sen, Michal Repisky, Gerald Knizia, Lucas Visscher. Generalization of Intrinsic Orbitals to Kramers-Paired Quaternion Spinors, Molecular Fragments, and Valence Virtual Spinors. Journal of Chemical Theory and Computation 2021, 17 (3) , 1337-1354. https://doi.org/10.1021/acs.jctc.0c00964
    13. Gioia Marrazzini, Tommaso Giovannini, Marco Scavino, Franco Egidi, Chiara Cappelli, Henrik Koch. Multilevel Density Functional Theory. Journal of Chemical Theory and Computation 2021, 17 (2) , 791-803. https://doi.org/10.1021/acs.jctc.0c00940
    14. Tommaso Giovannini, Henrik Koch. Energy-Based Molecular Orbital Localization in a Specific Spatial Region. Journal of Chemical Theory and Computation 2021, 17 (1) , 139-150. https://doi.org/10.1021/acs.jctc.0c00737
    15. Giovanni Macetti, Alessandro Genoni. Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Strategy for Excited States: Coupling to Time-Dependent Density Functional Theory and Equation-of-Motion Coupled Cluster. Journal of Chemical Theory and Computation 2020, 16 (12) , 7490-7506. https://doi.org/10.1021/acs.jctc.0c00956
    16. Hung-Hsuan Lin, Lorenzo Maschio, Daniel Kats, Denis Usvyat, Thomas Heine. Fragment-Based Restricted Active Space Configuration Interaction with Second-Order Corrections Embedded in Periodic Hartree–Fock Wave Function. Journal of Chemical Theory and Computation 2020, 16 (11) , 7100-7108. https://doi.org/10.1021/acs.jctc.0c00576
    17. Giovanni Macetti, Erna K. Wieduwilt, Xavier Assfeld, Alessandro Genoni. Localized Molecular Orbital-Based Embedding Scheme for Correlated Methods. Journal of Chemical Theory and Computation 2020, 16 (6) , 3578-3596. https://doi.org/10.1021/acs.jctc.0c00084
    18. Moritz Bensberg, Johannes Neugebauer. Orbital Alignment for Accurate Projection-Based Embedding Calculations along Reaction Paths. Journal of Chemical Theory and Computation 2020, 16 (6) , 3607-3619. https://doi.org/10.1021/acs.jctc.0c00104
    19. Niklas Niemeyer, Johannes Tölle, Johannes Neugebauer. Approximate versus Exact Embedding for Chiroptical Properties: Reconsidering Failures in Potential and Response. Journal of Chemical Theory and Computation 2020, 16 (5) , 3104-3120. https://doi.org/10.1021/acs.jctc.0c00125
    20. Daniel S. Graham, Xuelan Wen, Dhabih V. Chulhai, Jason D. Goodpaster. Robust, Accurate, and Efficient: Quantum Embedding Using the Huzinaga Level-Shift Projection Operator for Complex Systems. Journal of Chemical Theory and Computation 2020, 16 (4) , 2284-2295. https://doi.org/10.1021/acs.jctc.9b01185
    21. Xuelan Wen, Daniel S. Graham, Dhabih V. Chulhai, Jason D. Goodpaster. Absolutely Localized Projection-Based Embedding for Excited States. Journal of Chemical Theory and Computation 2020, 16 (1) , 385-398. https://doi.org/10.1021/acs.jctc.9b00959
    22. Daniel Claudino, Nicholas J. Mayhall. Simple and Efficient Truncation of Virtual Spaces in Embedded Wave Functions via Concentric Localization. Journal of Chemical Theory and Computation 2019, 15 (11) , 6085-6096. https://doi.org/10.1021/acs.jctc.9b00682
    23. Hayley R. Petras, Daniel S. Graham, Sai Kumar Ramadugu, Jason D. Goodpaster, James J. Shepherd. Fully Quantum Embedding with Density Functional Theory for Full Configuration Interaction Quantum Monte Carlo. Journal of Chemical Theory and Computation 2019, 15 (10) , 5332-5342. https://doi.org/10.1021/acs.jctc.9b00571
    24. Bence Hégely, Péter R. Nagy, Mihály Kállay. Dual Basis Set Approach for Density Functional and Wave Function Embedding Schemes. Journal of Chemical Theory and Computation 2018, 14 (9) , 4600-4615. https://doi.org/10.1021/acs.jctc.8b00350
    25. Soumen Ghosh, Pragya Verma, Christopher J. Cramer, Laura Gagliardi, Donald G. Truhlar. Combining Wave Function Methods with Density Functional Theory for Excited States. Chemical Reviews 2018, 118 (15) , 7249-7292. https://doi.org/10.1021/acs.chemrev.8b00193
    26. Dhabih V. Chulhai, Jason D. Goodpaster. Projection-Based Correlated Wave Function in Density Functional Theory Embedding for Periodic Systems. Journal of Chemical Theory and Computation 2018, 14 (4) , 1928-1942. https://doi.org/10.1021/acs.jctc.7b01154
    27. Ádám B. Szirmai, Bónis Barcza, Attila Tajti, Péter G. Szalay. Accuracy of projected atomic virtual orbital space in embedding applications. Molecular Physics 2024, https://doi.org/10.1080/00268976.2024.2355694
    28. József Csóka, Bence Hégely, Péter R. Nagy, Mihály Kállay. Development of analytic gradients for the Huzinaga quantum embedding method and its applications to large-scale hybrid and double hybrid DFT forces. The Journal of Chemical Physics 2024, 160 (12) https://doi.org/10.1063/5.0194463
    29. Daniel C. Claudino, Robert L. Smith, Nicholas J. Mayhall. Projection-Based Molecular Quantum Embedding via Singular-Value-Informed Orbital Partitioning. 2024, 111-120. https://doi.org/10.1016/B978-0-12-821978-2.00132-X
    30. Christoph R. Jacob, Johannes Neugebauer. Subsystem density‐functional theory (update). WIREs Computational Molecular Science 2024, 14 (1) https://doi.org/10.1002/wcms.1700
    31. Indrani Choudhuri, Jingyun Ye, Donald G. Truhlar. Computational quantum chemistry of metal–organic frameworks. Chemical Physics Reviews 2023, 4 (3) https://doi.org/10.1063/5.0153656
    32. Giovanni Macetti, Alessandro Genoni. Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems. Molecules 2023, 28 (1) , 136. https://doi.org/10.3390/molecules28010136
    33. Marina Jansen, Nghia Nguyen Thi Minh, Erik D. Hedegård, Carolin König. Quantum-derived embedding schemes for local excitations. 2022, 24-60. https://doi.org/10.1039/9781839169342-00024
    34. Patrick Eschenbach, Johannes Neugebauer. Subsystem density-functional theory: A reliable tool for spin-density based properties. The Journal of Chemical Physics 2022, 157 (13) https://doi.org/10.1063/5.0103091
    35. Daniel S. Graham, Xuelan Wen, Dhabih V. Chulhai, Jason D. Goodpaster. Huzinaga projection embedding for efficient and accurate energies of systems with localized spin-densities. The Journal of Chemical Physics 2022, 156 (5) https://doi.org/10.1063/5.0076493
    36. Valentina Parravicini, Thomas-C. Jagau. Embedded equation-of-motion coupled-cluster theory for electronic excitation, ionisation, electron attachment, and electronic resonances. Molecular Physics 2021, 119 (21-22) https://doi.org/10.1080/00268976.2021.1943029
    37. Emiel Koridon, Saad Yalouz, Bruno Senjean, Francesco Buda, Thomas E. O'Brien, Lucas Visscher. Orbital transformations to reduce the 1-norm of the electronic structure Hamiltonian for quantum computing applications. Physical Review Research 2021, 3 (3) https://doi.org/10.1103/PhysRevResearch.3.033127
    38. Franco Egidi, Sara Angelico, Piero Lafiosca, Tommaso Giovannini, Chiara Cappelli. A polarizable three-layer frozen density embedding/molecular mechanics approach. The Journal of Chemical Physics 2021, 154 (16) https://doi.org/10.1063/5.0045574
    39. Linda Goletto, Tommaso Giovannini, Sarai D. Folkestad, Henrik Koch. Combining multilevel Hartree–Fock and multilevel coupled cluster approaches with molecular mechanics: a study of electronic excitations in solutions. Physical Chemistry Chemical Physics 2021, 23 (7) , 4413-4425. https://doi.org/10.1039/D0CP06359B
    40. Erna Wieduwilt, Giovanni Macetti, Rebecca Scatena, Piero Macchi, Alessandro Genoni. Extending Libraries of Extremely Localized Molecular Orbitals to Metal Organic Frameworks: A Preliminary Investigation. Crystals 2021, 11 (2) , 207. https://doi.org/10.3390/cryst11020207
    41. Anja Massolle, Johannes Neugebauer. Subsystem density-functional theory for interacting open-shell systems: spin densities and magnetic exchange couplings. Faraday Discussions 2020, 224 , 201-226. https://doi.org/10.1039/D0FD00063A
    42. Moritz Bensberg, Johannes Neugebauer. Density functional theory based embedding approaches for transition-metal complexes. Physical Chemistry Chemical Physics 2020, 22 (45) , 26093-26103. https://doi.org/10.1039/D0CP05188H
    43. Adam Wasserman, Michele Pavanello. Quantum embedding electronic structure methods. International Journal of Quantum Chemistry 2020, 120 (21) https://doi.org/10.1002/qua.26495
    44. Chad E. Hoyer, Xiaosong Li. Relativistic two-component projection-based quantum embedding for open-shell systems. The Journal of Chemical Physics 2020, 153 (9) https://doi.org/10.1063/5.0012433
    45. Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Guo, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. McClain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximilian Scheurer, Henry F. Schurkus, James E. T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu. Sokolov, Garnet Kin-Lic Chan. Recent developments in the P y SCF program package. The Journal of Chemical Physics 2020, 153 (2) https://doi.org/10.1063/5.0006074
    46. Prajay Patel, Angela K. Wilson. Domain‐based local pair natural orbital methods within the correlation consistent composite approach. Journal of Computational Chemistry 2020, 41 (8) , 800-813. https://doi.org/10.1002/jcc.26129
    47. Nan He, Francesco A. Evangelista. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. The Journal of Chemical Physics 2020, 152 (9) https://doi.org/10.1063/1.5142481
    48. Moritz Bensberg, Johannes Neugebauer. Direct orbital selection for projection-based embedding. The Journal of Chemical Physics 2019, 150 (21) https://doi.org/10.1063/1.5099007
    49. Moritz Bensberg, Johannes Neugebauer. Automatic basis-set adaptation in projection-based embedding. The Journal of Chemical Physics 2019, 150 (18) https://doi.org/10.1063/1.5084550
    50. F. Libisch, M. Marsman, J. Burgdörfer, G. Kresse. Embedding for bulk systems using localized atomic orbitals. The Journal of Chemical Physics 2017, 147 (3) https://doi.org/10.1063/1.4993795