ACS Publications. Most Trusted. Most Cited. Most Read
Soft-Sphere Continuum Solvation in Electronic-Structure Calculations
My Activity

Figure 1Loading Img
    Article

    Soft-Sphere Continuum Solvation in Electronic-Structure Calculations
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
    Laboratoire de simulation atomistique (L_Sim), SP2M, INAC, CEA-UJF, F-38054 Grenoble, France
    Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland
    § Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne, Switzerland
    Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2017, 13, 8, 3829–3845
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.7b00375
    Published June 19, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present an implicit solvation approach where the interface between the quantum-mechanical solute and the surrounding environment is described by a fully continuous permittivity built up with atomic-centered “soft” spheres. This approach combines many of the advantages of the self-consistent continuum solvation model in handling solutes and surfaces in contact with complex dielectric environments or electrolytes in electronic-structure calculations. In addition it is able to describe accurately both neutral and charged systems. The continuous function, describing the variation of the permittivity, allows to compute analytically the nonelectrostatic contributions to the solvation free energy that are described in terms of the quantum surface. The whole methodology is computationally stable, provides consistent energies and forces, and keeps the computational efforts and runtimes comparable to those of standard vacuum calculations. The capabilitiy to treat arbitrary molecular or slab-like geometries as well as charged molecules is key to tackle electrolytes within mixed explicit/implicit frameworks. We show that, with given, fixed atomic radii, two parameters are sufficient to give a mean absolute error of only 1.12 kcal/mol with respect to the experimental aqueous solvation energies for a set of 274 neutral solutes. For charged systems, the same set of parameters provides solvation energies for a set of 60 anions and 52 cations with an error of 2.96 and 2.13 kcal/mol, respectively, improving upon previous literature values. To tackle elements not present in most solvation databases, a new benchmark scheme on wettability and contact angles is proposed for solid–liquid interfaces and applied to the investigation of the stable terminations of a CdS (112̅0) surface in an electrochemical medium.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.7b00375.

    • Convergence tests are reported varying the k-point sampling for the total energy as well as the zero-point energy EZPE and the vibrational entropic contribution TS of the clean CdS surface. Formulas are presented for the free energy of liquid water GH2O(l)(298 K, 1 bar) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 80 publications.

    1. Stefan Rudin, Piotr M. Kowalski, Martina Klinkenberg, Dirk Bosbach, Felix Brandt. Anisotropy of Barite during Crystal Growth and the Uptake of Radium. Crystal Growth & Design 2024, 24 (19) , 7774-7788. https://doi.org/10.1021/acs.cgd.4c00416
    2. Yang Wang, Chong Teng, Elijah Begin, Mason Bussiere, Junwei Lucas Bao. PW-SMD: A Plane-Wave Implicit Solvation Model Based on Electron Density for Surface Chemistry and Crystalline Systems in Aqueous Solution. Journal of Chemical Theory and Computation 2024, 20 (15) , 6826-6847. https://doi.org/10.1021/acs.jctc.4c00594
    3. Stefan Rudin, Piotr M. Kowalski, Martina Klinkenberg, Thomas Bornhake, Dirk Bosbach, Felix Brandt. Simulation of Crystal Growth by an Innovative Hybrid Density Functional Theory Continuum Solvation Approach: Kink Site Formation on Barite (001). Crystal Growth & Design 2024, 24 (1) , 159-170. https://doi.org/10.1021/acs.cgd.3c00809
    4. Gabriel A. Gerez S, Roberto Di Remigio Eikås, Stig Rune Jensen, Magnar Bjørgve, Luca Frediani. Cavity-Free Continuum Solvation: Implementation and Parametrization in a Multiwavelet Framework. Journal of Chemical Theory and Computation 2023, 19 (7) , 1986-1997. https://doi.org/10.1021/acs.jctc.2c01098
    5. Stefan Ringe, Nicolas G. Hörmann, Harald Oberhofer, Karsten Reuter. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews 2022, 122 (12) , 10777-10820. https://doi.org/10.1021/acs.chemrev.1c00675
    6. Gabriel A. Bramley, Manh-Thuong Nguyen, Vassiliki-Alexandra Glezakou, Roger Rousseau, Chris-Kriton Skylaris. Understanding Adsorption of Organics on Pt(111) in the Aqueous Phase: Insights from DFT Based Implicit Solvent and Statistical Thermodynamics Models. Journal of Chemical Theory and Computation 2022, 18 (3) , 1849-1861. https://doi.org/10.1021/acs.jctc.1c00894
    7. Jakob Filser, Karsten Reuter, Harald Oberhofer. Piecewise Multipole-Expansion Implicit Solvation for Arbitrarily Shaped Molecular Solutes. Journal of Chemical Theory and Computation 2022, 18 (1) , 461-478. https://doi.org/10.1021/acs.jctc.1c00834
    8. Robert E. Warburton, James M. Mayer, Sharon Hammes-Schiffer. Proton-Coupled Defects Impact O–H Bond Dissociation Free Energies on Metal Oxide Surfaces. The Journal of Physical Chemistry Letters 2021, 12 (40) , 9761-9767. https://doi.org/10.1021/acs.jpclett.1c02837
    9. Nicolas G. Hörmann, Karsten Reuter. Thermodynamic Cyclic Voltammograms Based on Ab Initio Calculations: Ag(111) in Halide-Containing Solutions. Journal of Chemical Theory and Computation 2021, 17 (3) , 1782-1794. https://doi.org/10.1021/acs.jctc.0c01166
    10. Gabriel Bramley, Manh-Thuong Nguyen, Vassiliki-Alexandra Glezakou, Roger Rousseau, Chris-Kriton Skylaris. Reconciling Work Functions and Adsorption Enthalpies for Implicit Solvent Models: A Pt (111)/Water Interface Case Study. Journal of Chemical Theory and Computation 2020, 16 (4) , 2703-2715. https://doi.org/10.1021/acs.jctc.0c00034
    11. Jacek Dziedzic, Arihant Bhandari, Lucian Anton, Chao Peng, James C. Womack, Marjan Famili, Denis Kramer, Chris-Kriton Skylaris. Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory. The Journal of Physical Chemistry C 2020, 124 (14) , 7860-7872. https://doi.org/10.1021/acs.jpcc.0c00762
    12. Giuseppe Fisicaro, Simona Filice, Silvia Scalese, Giuseppe Compagnini, Riccardo Reitano, Luigi Genovese, Stefan Goedecker, Ioannis Deretzis, Antonino La Magna. Wet Environment Effects for Ethanol and Water Adsorption on Anatase TiO2 (101) Surfaces. The Journal of Physical Chemistry C 2020, 124 (4) , 2406-2419. https://doi.org/10.1021/acs.jpcc.9b05400
    13. Francesco Nattino, Céline Dupont, Nicola Marzari, Oliviero Andreussi. Functional Extrapolations to Tame Unbound Anions in Density-Functional Theory Calculations. Journal of Chemical Theory and Computation 2019, 15 (11) , 6313-6322. https://doi.org/10.1021/acs.jctc.9b00552
    14. Matthew Truscott, Oliviero Andreussi. Field-Aware Interfaces in Continuum Solvation. The Journal of Physical Chemistry B 2019, 123 (16) , 3513-3524. https://doi.org/10.1021/acs.jpcb.9b01363
    15. Oliviero Andreussi, Nicolas Georg Hörmann, Francesco Nattino, Giuseppe Fisicaro, Stefan Goedecker, Nicola Marzari. Solvent-Aware Interfaces in Continuum Solvation. Journal of Chemical Theory and Computation 2019, 15 (3) , 1996-2009. https://doi.org/10.1021/acs.jctc.8b01174
    16. Arcesio Castañeda Medina, Rochus Schmid. High Order Compact Multigrid Solver for Implicit Solvation Models. Journal of Chemical Theory and Computation 2019, 15 (2) , 1293-1301. https://doi.org/10.1021/acs.jctc.8b00774
    17. Joseph A. Gauthier, Stefan Ringe, Colin F. Dickens, Alejandro J. Garza, Alexis T. Bell, Martin Head-Gordon, Jens K. Nørskov, Karen Chan. Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models. ACS Catalysis 2019, 9 (2) , 920-931. https://doi.org/10.1021/acscatal.8b02793
    18. Teresa L. Mako, Joan M. Racicot, Mindy Levine. Supramolecular Luminescent Sensors. Chemical Reviews 2019, 119 (1) , 322-477. https://doi.org/10.1021/acs.chemrev.8b00260
    19. Frédéric Labat, Bartolomeo Civalleri, Roberto Dovesi. Implicit Solvation Using a Generalized Finite-Difference Approach in CRYSTAL: Implementation and Results for Molecules, Polymers, and Surfaces. Journal of Chemical Theory and Computation 2018, 14 (11) , 5969-5983. https://doi.org/10.1021/acs.jctc.8b00762
    20. James C. Womack, Lucian Anton, Jacek Dziedzic, Phil J. Hasnip, Matt I. J. Probert, Chris-Kriton Skylaris. DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution. Journal of Chemical Theory and Computation 2018, 14 (3) , 1412-1432. https://doi.org/10.1021/acs.jctc.7b01274
    21. Markus Sinstein, Christoph Scheurer, Sebastian Matera, Volker Blum, Karsten Reuter, and Harald Oberhofer . Efficient Implicit Solvation Method for Full Potential DFT. Journal of Chemical Theory and Computation 2017, 13 (11) , 5582-5603. https://doi.org/10.1021/acs.jctc.7b00297
    22. Ekaterina Zossimova, Johannes Fiedler, Frank Vollmer, Michael Walter. Hybrid quantum-classical polarizability model for single molecule biosensing. Nanoscale 2024, 16 (11) , 5820-5828. https://doi.org/10.1039/D3NR05396B
    23. Pradip Si, Ajay Jayanth, Oliviero Andreussi. Soft‐sphere continuum solvation models for nonaqueous solvents. Journal of Computational Chemistry 2023, 12 https://doi.org/10.1002/jcc.27254
    24. Vasanthapandiyan M, Shagun Singh, Fernanda Bononi, Oliviero Andreussi, Naiwrit Karmodak. Thermodynamic and kinetic modeling of electrocatalytic reactions using a first-principles approach. The Journal of Chemical Physics 2023, 159 (11) https://doi.org/10.1063/5.0165835
    25. G. Medrano, E. Bainglass, O. Andreussi. Uncoupling system and environment simulation cells for fast-scaling modeling of complex continuum embeddings. The Journal of Chemical Physics 2023, 159 (5) https://doi.org/10.1063/5.0150298
    26. Salvatore Valastro, Emanuele Smecca, Giovanni Mannino, Corrado Bongiorno, Giuseppe Fisicaro, Stefan Goedecker, Valentina Arena, Carlo Spampinato, Ioannis Deretzis, Sandro Dattilo, Andrea Scamporrino, Sabrina Carroccio, Enza Fazio, Fortunato Neri, Francesco Bisconti, Aurora Rizzo, Corrado Spinella, Antonino La Magna, Alessandra Alberti. Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge. Nature Sustainability 2023, 6 (8) , 974-983. https://doi.org/10.1038/s41893-023-01120-w
    27. Fatah Chiter, Dominique Costa, Matic Poberžnik, Ingrid Milošev, Philippe Marcus, Anton Kokalj. DFT Study of Cl − Ingress into Organic Self-Assembled Monolayers on Aluminum. Journal of The Electrochemical Society 2023, 170 (7) , 071504. https://doi.org/10.1149/1945-7111/ace334
    28. Giuseppe Fisicaro, Bastian Schaefer, Jonas A. Finkler, Stefan Goedecker. Principles of isomer stability in small clusters. Materials Advances 2023, 4 (7) , 1746-1768. https://doi.org/10.1039/D2MA01088G
    29. Valentina Arena, Emanuele Smecca, Salvatore Valastro, Corrado Bongiorno, Giuseppe Fisicaro, Ioannis Deretzis, Carlo Spampinato, Giovanni Mannino, Sandro Dattilo, Andrea Scamporrino, Sabrina Carroccio, Antonino La Magna, Alessandra Alberti. Lead Detection in a Gig-Lox TiO2 Sponge by X-ray Reflectivity. Nanomaterials 2023, 13 (8) , 1397. https://doi.org/10.3390/nano13081397
    30. Simona Fantacci, Alessandra Satta. Modeling Luminescence in Cultural Heritage: Theoretical Insight into the Luminescence of Dyes and Pigments. 2023https://doi.org/10.1007/4243_2023_47
    31. Luigi Genovese, Thierry Deutsch. Flexibilities of Wavelets as a Computational Basis Set for Large-Scale Electronic Structure Calculations. 2023, 479-523. https://doi.org/10.1007/978-3-031-22340-2_11
    32. Anton Kokalj, Matjaž Dlouhy. Dissociative adsorption of azoles on Cu(111) promoted by chemisorbed O and OH. Corrosion Science 2022, 209 , 110680. https://doi.org/10.1016/j.corsci.2022.110680
    33. Matjaž Dlouhy, Anton Kokalj. How adsorbed H, O, OH, and Cl affect plain adsorption of imidazole on copper. Corrosion Science 2022, 205 , 110443. https://doi.org/10.1016/j.corsci.2022.110443
    34. Lea Gašparič, Matic Poberžnik, Anton Kokalj. DFT study of hydrogen bonding between metal hydroxides and organic molecules containing N, O, S, and P heteroatoms: clusters vs. surfaces. Chemical Physics 2022, 559 , 111539. https://doi.org/10.1016/j.chemphys.2022.111539
    35. Matthew Anthony Si Ren Truscott, Oliviero Andreussi. Ongoing Developments on Continuum Solvation Models. 2022https://doi.org/10.12794/metadc1944309
    36. Anton Kokalj. Corrosion inhibitors: physisorbed or chemisorbed?. Corrosion Science 2022, 196 , 109939. https://doi.org/10.1016/j.corsci.2021.109939
    37. Xiao‐Hui Yang, Yong‐Bin Zhuang, Jia‐Xin Zhu, Jia‐Bo Le, Jun Cheng. Recent progress on multiscale modeling of electrochemistry. WIREs Computational Molecular Science 2022, 12 (1) https://doi.org/10.1002/wcms.1559
    38. Arnab Kabiraj, Santanu Mahapatra. High-throughput assessment of two-dimensional electrode materials for energy storage devices. Cell Reports Physical Science 2022, 3 (1) , 100718. https://doi.org/10.1016/j.xcrp.2021.100718
    39. Lucy M Morgan, Michael P Mercer, Arihant Bhandari, Chao Peng, Mazharul M Islam, Hui Yang, Julian Holland, Samuel W Coles, Ryan Sharpe, Aron Walsh, Benjamin J Morgan, Denis Kramer, M Saiful Islam, Harry E Hoster, Jacqueline Sophie Edge, Chris-Kriton Skylaris. Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy 2022, 4 (1) , 012002. https://doi.org/10.1088/2516-1083/ac3894
    40. Filippo Lipparini, Benedetta Mennucci. Hybrid QM/classical models: Methodological advances and new applications. Chemical Physics Reviews 2021, 2 (4) https://doi.org/10.1063/5.0064075
    41. Raffaele Cheula, Mariano D. Susman, David H. West, Sivadinarayana Chinta, Jeffrey D. Rimer, Matteo Maestri. Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High‐Index Faceting. Angewandte Chemie 2021, 133 (48) , 25595-25600. https://doi.org/10.1002/ange.202105018
    42. Raffaele Cheula, Mariano D. Susman, David H. West, Sivadinarayana Chinta, Jeffrey D. Rimer, Matteo Maestri. Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High‐Index Faceting. Angewandte Chemie International Edition 2021, 60 (48) , 25391-25396. https://doi.org/10.1002/anie.202105018
    43. Alexandra C. Dávila López, Thorben Eggert, Karsten Reuter, Nicolas G. Hörmann. Static and dynamic water structures at interfaces: A case study with focus on Pt(111). The Journal of Chemical Physics 2021, 155 (19) https://doi.org/10.1063/5.0067106
    44. Oliviero Andreussi, Francesco Nattino, Nicolas Georg Hörmann. Continuum Embedding Models for Electrolyte Solutions in First‐Principles Simulations of Electrochemistry. 2021, 93-137. https://doi.org/10.1002/9781119605652.ch3
    45. Axel Groß. Molecular Dynamics of the Electrochemical Interface and the Double Layer. 2021, 201-220. https://doi.org/10.1002/9781119605652.ch6
    46. . Computational Electrocatalysis. 2021, 355-376. https://doi.org/10.1002/9783527349159.ch20
    47. Ismail Can Oğuz, Dario Vassetti, Frédéric Labat. Assessing the performances of different continuum solvation models for the calculation of hydration energies of molecules, polymers and surfaces: a comparison between the SMD, VASPsol and FDPB models. Theoretical Chemistry Accounts 2021, 140 (8) https://doi.org/10.1007/s00214-021-02799-w
    48. Arihant Bhandari, Chao Peng, Jacek Dziedzic, Lucian Anton, John R. Owen, Denis Kramer, Chris-Kriton Skylaris. Electrochemistry from first-principles in the grand canonical ensemble. The Journal of Chemical Physics 2021, 155 (2) https://doi.org/10.1063/5.0056514
    49. John M. Herbert. Dielectric continuum methods for quantum chemistry. WIREs Computational Molecular Science 2021, 11 (4) https://doi.org/10.1002/wcms.1519
    50. Anton Kokalj, Dominique Costa. Model Study of Penetration of Cl − Ions from Solution into Organic Self-Assembled-Monolayer on Metal Substrate: Trends and Modeling Aspects. Journal of The Electrochemical Society 2021, 168 (7) , 071508. https://doi.org/10.1149/1945-7111/ac0a24
    51. Nicolas Georg Hörmann, Karsten Reuter. Thermodynamic cyclic voltammograms: peak positions and shapes. Journal of Physics: Condensed Matter 2021, 33 (26) , 264004. https://doi.org/10.1088/1361-648X/abf7a1
    52. Nawras Abidi, Kang Rui Garrick Lim, Zhi Wei Seh, Stephan N. Steinmann. Atomistic modeling of electrocatalysis: Are we there yet?. WIREs Computational Molecular Science 2021, 11 (3) https://doi.org/10.1002/wcms.1499
    53. Nicolas G. Hörmann, Nicola Marzari, Karsten Reuter. Electrosorption at metal surfaces from first principles. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-00394-4
    54. Mauro Francesco Sgroi, Daniele Pullini, Alina Iuliana Pruna. Lithium Polysulfide Interaction with Group III Atoms-Doped Graphene: A Computational Insight. Batteries 2020, 6 (3) , 46. https://doi.org/10.3390/batteries6030046
    55. Micael J. T. Oliveira, Nick Papior, Yann Pouillon, Volker Blum, Emilio Artacho, Damien Caliste, Fabiano Corsetti, Stefano de Gironcoli, Alin M. Elena, Alberto García, Víctor M. García-Suárez, Luigi Genovese, William P. Huhn, Georg Huhs, Sebastian Kokott, Emine Küçükbenli, Ask H. Larsen, Alfio Lazzaro, Irina V. Lebedeva, Yingzhou Li, David López-Durán, Pablo López-Tarifa, Martin Lüders, Miguel A. L. Marques, Jan Minar, Stephan Mohr, Arash A. Mostofi, Alan O’Cais, Mike C. Payne, Thomas Ruh, Daniel G. A. Smith, José M. Soler, David A. Strubbe, Nicolas Tancogne-Dejean, Dominic Tildesley, Marc Torrent, Victor Wen-zhe Yu. The CECAM electronic structure library and the modular software development paradigm. The Journal of Chemical Physics 2020, 153 (2) https://doi.org/10.1063/5.0012901
    56. Anton Robert, Sohvi Luukkonen, Maximilien Levesque. Pressure correction for solvation theories. The Journal of Chemical Physics 2020, 152 (19) https://doi.org/10.1063/5.0002029
    57. Laura E. Ratcliff, William Dawson, Giuseppe Fisicaro, Damien Caliste, Stephan Mohr, Augustin Degomme, Brice Videau, Viviana Cristiglio, Martina Stella, Marco D’Alessandro, Stefan Goedecker, Takahito Nakajima, Thierry Deutsch, Luigi Genovese. Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations. The Journal of Chemical Physics 2020, 152 (19) https://doi.org/10.1063/5.0004792
    58. Sankha Mukherjee, Lance Kavalsky, Kinnor Chattopadhyay, Chandra Veer Singh. Dramatic improvement in the performance of graphene as Li/Na battery anodes with suitable electrolytic solvents. Carbon 2020, 161 , 570-576. https://doi.org/10.1016/j.carbon.2020.02.001
    59. Kathleen Schwarz, Ravishankar Sundararaman. The electrochemical interface in first-principles calculations. Surface Science Reports 2020, 75 (2) , 100492. https://doi.org/10.1016/j.surfrep.2020.100492
    60. Sarah Blanck, Sophie Loehlé, Stephan N. Steinmann, Carine Michel. Adhesion of lubricant on aluminium through adsorption of additive head-groups on γ-alumina: A DFT study. Tribology International 2020, 145 , 106140. https://doi.org/10.1016/j.triboint.2019.106140
    61. Yasemin Basdogan, Alex M. Maldonado, John A. Keith. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals. WIREs Computational Molecular Science 2020, 10 (2) https://doi.org/10.1002/wcms.1446
    62. Harald Oberhofer. Electrocatalysis Beyond the Computational Hydrogen Electrode. 2020, 1505-1537. https://doi.org/10.1007/978-3-319-44680-6_9
    63. Christopher J. Stein, John M. Herbert, Martin Head-Gordon. The Poisson–Boltzmann model for implicit solvation of electrolyte solutions: Quantum chemical implementation and assessment via Sechenov coefficients. The Journal of Chemical Physics 2019, 151 (22) https://doi.org/10.1063/1.5131020
    64. Rosaria A. Puglisi, Sebastiano Caccamo, Corrado Bongiorno, Giuseppe Fisicaro, Luigi Genovese, Stefan Goedecker, Giovanni Mannino, Antonino La Magna. Direct observation of single organic molecules grafted on the surface of a silicon nanowire. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-42073-5
    65. Basant A. Ali, Nageh K. Allam. A first-principles roadmap and limits to design efficient supercapacitor electrode materials. Physical Chemistry Chemical Physics 2019, 21 (32) , 17494-17511. https://doi.org/10.1039/C9CP02614B
    66. Quinn Campbell, Ismaila Dabo. Electrochemical stability and light-harvesting ability of silicon photoelectrodes in aqueous environments. The Journal of Chemical Physics 2019, 151 (4) https://doi.org/10.1063/1.5093810
    67. Yihuang Xiong, Ismaila Dabo. Influence of surface restructuring on the activity of SrTiO 3 photoelectrodes for photocatalytic hydrogen reduction. Physical Review Materials 2019, 3 (6) https://doi.org/10.1103/PhysRevMaterials.3.065801
    68. Daniele Perilli, Daniele Selli, Hongsheng Liu, Cristiana Di Valentin. Computational Electrochemistry of Water Oxidation on Metal‐Doped and Metal‐Supported Defective h‐BN. ChemSusChem 2019, 12 (9) , 1995-2007. https://doi.org/10.1002/cssc.201802499
    69. Marko M. Melander, Mikael J. Kuisma, Thorbjørn Erik Køppen Christensen, Karoliina Honkala. Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials. The Journal of Chemical Physics 2019, 150 (4) https://doi.org/10.1063/1.5047829
    70. Christoph Hille, Stefan Ringe, Martin Deimel, Christian Kunkel, William E. Acree, Karsten Reuter, Harald Oberhofer. Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme. The Journal of Chemical Physics 2019, 150 (4) https://doi.org/10.1063/1.5050938
    71. Francesco Nattino, Matthew Truscott, Nicola Marzari, Oliviero Andreussi. Continuum models of the electrochemical diffuse layer in electronic-structure calculations. The Journal of Chemical Physics 2019, 150 (4) https://doi.org/10.1063/1.5054588
    72. Oliviero Andreussi, Giuseppe Fisicaro. Continuum embeddings in condensed‐matter simulations. International Journal of Quantum Chemistry 2019, 119 (1) https://doi.org/10.1002/qua.25725
    73. Giovanni La Penna, Oliviero Andreussi. When Water Plays an Active Role in Electronic Structure. Insights from First-Principles Molecular Dynamics Simulations of Biological Systems. 2019, 715-753. https://doi.org/10.1007/978-3-319-95843-9_22
    74. Quinn Campbell, Daniel Fisher, Ismaila Dabo. Voltage-dependent reconstruction of layered Bi 2 WO 6 and Bi 2 MoO 6 photocatalysts and its influence on charge separation for water splitting. Physical Review Materials 2019, 3 (1) https://doi.org/10.1103/PhysRevMaterials.3.015404
    75. Sung Sakong, Axel Groß. The electric double layer at metal-water interfaces revisited based on a charge polarization scheme. The Journal of Chemical Physics 2018, 149 (8) https://doi.org/10.1063/1.5040056
    76. Dennis Pache, Rochus Schmid. Molecular Dynamics Investigation of the Dielectric Decrement of Ion Solutions. ChemElectroChem 2018, 5 (11) , 1444-1450. https://doi.org/10.1002/celc.201800158
    77. Ravishankar Sundararaman, Kendra Letchworth-Weaver, Kathleen A. Schwarz. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations. The Journal of Chemical Physics 2018, 148 (14) https://doi.org/10.1063/1.5024219
    78. Laura E Ratcliff, A Degomme, José A Flores-Livas, Stefan Goedecker, Luigi Genovese. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers. Journal of Physics: Condensed Matter 2018, 30 (9) , 095901. https://doi.org/10.1088/1361-648X/aaa8c9
    79. Harald Oberhofer. Electrocatalysis Beyond the Computational Hydrogen Electrode. 2018, 1-33. https://doi.org/10.1007/978-3-319-50257-1_9-1
    80. Giuseppe Fisicaro, Michael Sicher, Maximilian Amsler, Santanu Saha, Luigi Genovese, Stefan Goedecker. Surface reconstruction of fluorites in vacuum and aqueous environment. Physical Review Materials 2017, 1 (3) https://doi.org/10.1103/PhysRevMaterials.1.033609

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2017, 13, 8, 3829–3845
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.7b00375
    Published June 19, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    2210

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.