Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Efficient Calculation of Molecular Integrals over London Atomic Orbitals

View Author Information
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
Cite this: J. Chem. Theory Comput. 2017, 13, 8, 3636–3649
Publication Date (Web):July 10, 2017
https://doi.org/10.1021/acs.jctc.7b00540
Copyright © 2017 American Chemical Society

    Article Views

    1324

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The use of London atomic orbitals (LAOs) in a nonperturbative manner enables the determination of gauge-origin invariant energies and properties for molecular species in arbitrarily strong magnetic fields. Central to the efficient implementation of such calculations for molecular systems is the evaluation of molecular integrals, particularly the electron repulsion integrals (ERIs). We present an implementation of several different algorithms for the evaluation of ERIs over Gaussian-type LAOs at arbitrary magnetic field strengths. The efficiencies of generalized McMurchie–Davidson (MD), Head-Gordon–Pople (HGP), and Rys quadrature schemes are compared. For the Rys quadrature implementation, we avoid the use of high precision arithmetic and interpolation schemes in the computation of the quadrature roots and weights, enabling the application of this algorithm seamlessly to a wide range of magnetic fields. The efficiency of each generalized algorithm is compared by numerical application, classifying the ERIs according to their total angular momenta and evaluating their performance for primitive and contracted basis sets. In common with zero-field integral evaluation, no single algorithm is optimal for all angular momenta; thus, a simple mixed scheme is put forward that selects the most efficient approach to calculate the ERIs for each shell quartet. The mixed approach is significantly more efficient than the exclusive use of any individual algorithm.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 36 publications.

    1. Hugo Åström, Susi Lehtola. Insight on Gaussian Basis Set Truncation Errors in Weak to Intermediate Magnetic Fields with an Approximate Hamiltonian. The Journal of Physical Chemistry A 2023, 127 (51) , 10872-10888. https://doi.org/10.1021/acs.jpca.3c04531
    2. Yannick J. Franzke, Christof Holzer, Josefine H. Andersen, Tomislav Begušić, Florian Bruder, Sonia Coriani, Fabio Della Sala, Eduardo Fabiano, Daniil A. Fedotov, Susanne Fürst, Sebastian Gillhuber, Robin Grotjahn, Martin Kaupp, Max Kehry, Marjan Krstić, Fabian Mack, Sourav Majumdar, Brian D. Nguyen, Shane M. Parker, Fabian Pauly, Ansgar Pausch, Eva Perlt, Gabriel S. Phun, Ahmadreza Rajabi, Dmitrij Rappoport, Bibek Samal, Tim Schrader, Manas Sharma, Enrico Tapavicza, Robert S. Treß, Vamsee Voora, Artur Wodyński, Jason M. Yu, Benedikt Zerulla, Filipp Furche, Christof Hättig, Marek Sierka, David P. Tew, Florian Weigend. TURBOMOLE: Today and Tomorrow. Journal of Chemical Theory and Computation 2023, 19 (20) , 6859-6890. https://doi.org/10.1021/acs.jctc.3c00347
    3. Chi Y. Cheng, Andrew M. Wibowo-Teale. Semiempirical Methods for Molecular Systems in Strong Magnetic Fields. Journal of Chemical Theory and Computation 2023, 19 (18) , 6226-6241. https://doi.org/10.1021/acs.jctc.3c00671
    4. Laurens D. M. Peters, Tanner Culpitt, Erik I. Tellgren, Trygve Helgaker. Berry Population Analysis: Atomic Charges from the Berry Curvature in a Magnetic Field. Journal of Chemical Theory and Computation 2023, 19 (4) , 1231-1242. https://doi.org/10.1021/acs.jctc.2c01138
    5. Benjamin T. Speake, Tom J. P. Irons, Meilani Wibowo, Andrew G. Johnson, Grégoire David, Andrew M. Teale. An Embedded Fragment Method for Molecules in Strong Magnetic Fields. Journal of Chemical Theory and Computation 2022, 18 (12) , 7412-7427. https://doi.org/10.1021/acs.jctc.2c00865
    6. Laurent Lemmens, Xeno De Vriendt, Patrick Bultinck, Guillaume Acke. Analyzing the Behavior of Spin Phases in External Magnetic Fields by Means of Spin-Constrained States. Journal of Chemical Theory and Computation 2022, 18 (6) , 3364-3376. https://doi.org/10.1021/acs.jctc.1c00953
    7. Grégoire David, Tom J. P. Irons, Adam E. A. Fouda, James W. Furness, Andrew M. Teale. Self-Consistent Field Methods for Excited States in Strong Magnetic Fields: a Comparison between Energy- and Variance-Based Approaches. Journal of Chemical Theory and Computation 2021, 17 (9) , 5492-5508. https://doi.org/10.1021/acs.jctc.1c00236
    8. Meilani Wibowo, Tom J. P. Irons, Andrew M. Teale. Modeling Ultrafast Electron Dynamics in Strong Magnetic Fields Using Real-Time Time-Dependent Electronic Structure Methods. Journal of Chemical Theory and Computation 2021, 17 (4) , 2137-2165. https://doi.org/10.1021/acs.jctc.0c01269
    9. Tom J. P. Irons, Grégoire David, Andrew M. Teale. Optimizing Molecular Geometries in Strong Magnetic Fields. Journal of Chemical Theory and Computation 2021, 17 (4) , 2166-2185. https://doi.org/10.1021/acs.jctc.0c01297
    10. Tom J. P. Irons, Lucy Spence, Grégoire David, Benjamin T. Speake, Trygve Helgaker, Andrew M. Teale. Analyzing Magnetically Induced Currents in Molecular Systems Using Current-Density-Functional Theory. The Journal of Physical Chemistry A 2020, 124 (7) , 1321-1333. https://doi.org/10.1021/acs.jpca.9b10833
    11. Sangita Sen, Kai K. Lange, Erik I. Tellgren. Excited States of Molecules in Strong Uniform and Nonuniform Magnetic Fields. Journal of Chemical Theory and Computation 2019, 15 (7) , 3974-3990. https://doi.org/10.1021/acs.jctc.9b00103
    12. Shichao Sun, David Williams-Young, Xiaosong Li. An ab Initio Linear Response Method for Computing Magnetic Circular Dichroism Spectra with Nonperturbative Treatment of Magnetic Field. Journal of Chemical Theory and Computation 2019, 15 (5) , 3162-3169. https://doi.org/10.1021/acs.jctc.9b00095
    13. Shichao Sun, David B. Williams-Young, Torin F. Stetina, Xiaosong Li. Generalized Hartree–Fock with Nonperturbative Treatment of Strong Magnetic Fields: Application to Molecular Spin Phase Transitions. Journal of Chemical Theory and Computation 2019, 15 (1) , 348-356. https://doi.org/10.1021/acs.jctc.8b01140
    14. Meilani Wibowo-Teale, Bang C. Huynh, Andrew M. Wibowo-Teale, Frank De Proft, Paul Geerlings. Symmetry and reactivity of π-systems in electric and magnetic fields: a perspective from conceptual DFT. Physical Chemistry Chemical Physics 2024, 26 (21) , 15156-15180. https://doi.org/10.1039/D4CP00799A
    15. Tanner Culpitt, Erik I. Tellgren, Fabijan Pavošević. Unitary coupled-cluster for quantum computation of molecular properties in a strong magnetic field. The Journal of Chemical Physics 2023, 159 (20) https://doi.org/10.1063/5.0177417
    16. Benedicte Sverdrup Ofstad, Meilani Wibowo-Teale, Håkon Emil Kristiansen, Einar Aurbakken, Marios Petros Kitsaras, Øyvind Sigmundson Schøyen, Eirill Hauge, Tom J. P. Irons, Simen Kvaal, Stella Stopkowicz, Andrew M. Wibowo-Teale, Thomas Bondo Pedersen. Magnetic optical rotation from real-time simulations in finite magnetic fields. The Journal of Chemical Physics 2023, 159 (20) https://doi.org/10.1063/5.0171927
    17. Meilani Wibowo-Teale, Benjamin J. Ennifer, Andrew M. Wibowo-Teale. Real-time time-dependent self-consistent field methods with dynamic magnetic fields. The Journal of Chemical Physics 2023, 159 (10) https://doi.org/10.1063/5.0160317
    18. Jonathan Wong, Brad Ganoe, Xiao Liu, Tim Neudecker, Joonho Lee, Jiashu Liang, Zhe Wang, Jie Li, Adam Rettig, Teresa Head-Gordon, Martin Head-Gordon. An in-silico NMR laboratory for nuclear magnetic shieldings computed via finite fields: Exploring nucleus-specific renormalizations of MP2 and MP3. The Journal of Chemical Physics 2023, 158 (16) https://doi.org/10.1063/5.0145130
    19. Meilani Wibowo, Bang C. Huynh, Chi Y. Cheng, Tom J. P. Irons, Andrew M. Teale. Understanding ground and excited-state molecular structure in strong magnetic fields using the maximum overlap method. Molecular Physics 2023, 121 (7-8) https://doi.org/10.1080/00268976.2022.2152748
    20. Andrew M. Teale, Trygve Helgaker, Andreas Savin, Carlo Adamo, Bálint Aradi, Alexei V. Arbuznikov, Paul W. Ayers, Evert Jan Baerends, Vincenzo Barone, Patrizia Calaminici, Eric Cancès, Emily A. Carter, Pratim Kumar Chattaraj, Henry Chermette, Ilaria Ciofini, T. Daniel Crawford, Frank De Proft, John F. Dobson, Claudia Draxl, Thomas Frauenheim, Emmanuel Fromager, Patricio Fuentealba, Laura Gagliardi, Giulia Galli, Jiali Gao, Paul Geerlings, Nikitas Gidopoulos, Peter M. W. Gill, Paola Gori-Giorgi, Andreas Görling, Tim Gould, Stefan Grimme, Oleg Gritsenko, Hans Jørgen Aagaard Jensen, Erin R. Johnson, Robert O. Jones, Martin Kaupp, Andreas M. Köster, Leeor Kronik, Anna I. Krylov, Simen Kvaal, Andre Laestadius, Mel Levy, Mathieu Lewin, Shubin Liu, Pierre-François Loos, Neepa T. Maitra, Frank Neese, John P. Perdew, Katarzyna Pernal, Pascal Pernot, Piotr Piecuch, Elisa Rebolini, Lucia Reining, Pina Romaniello, Adrienn Ruzsinszky, Dennis R. Salahub, Matthias Scheffler, Peter Schwerdtfeger, Viktor N. Staroverov, Jianwei Sun, Erik Tellgren, David J. Tozer, Samuel B. Trickey, Carsten A. Ullrich, Alberto Vela, Giovanni Vignale, Tomasz A. Wesolowski, Xin Xu, Weitao Yang. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Physical Chemistry Chemical Physics 2022, 24 (47) , 28700-28781. https://doi.org/10.1039/D2CP02827A
    21. Tom J. P. Irons, Bang C. Huynh, Andrew M. Teale, Frank De Proft, Paul Geerlings. Molecular charge distributions in strong magnetic fields: a conceptual and current DFT study. Molecular Physics 2022, https://doi.org/10.1080/00268976.2022.2145245
    22. Laurens D. M. Peters, Tanner Culpitt, Erik I. Tellgren, Trygve Helgaker. Magnetic-translational sum rule and approximate models of the molecular Berry curvature. The Journal of Chemical Physics 2022, 157 (13) https://doi.org/10.1063/5.0112943
    23. Laurenz Monzel, Ansgar Pausch, Laurens D. M. Peters, Erik I. Tellgren, Trygve Helgaker, Wim Klopper. Molecular dynamics of linear molecules in strong magnetic fields. The Journal of Chemical Physics 2022, 157 (5) https://doi.org/10.1063/5.0097800
    24. Simon Blaschke, Stella Stopkowicz. Cholesky decomposition of complex two-electron integrals over GIAOs: Efficient MP2 computations for large molecules in strong magnetic fields. The Journal of Chemical Physics 2022, 156 (4) https://doi.org/10.1063/5.0076588
    25. Tanner Culpitt, Laurens D. M. Peters, Erik I. Tellgren, Trygve Helgaker. Analytic calculation of the Berry curvature and diagonal Born–Oppenheimer correction for molecular systems in uniform magnetic fields. The Journal of Chemical Physics 2022, 156 (4) https://doi.org/10.1063/5.0079304
    26. Dage Sundholm, Maria Dimitrova, Raphael J. F. Berger. Current density and molecular magnetic properties. Chemical Communications 2021, 57 (93) , 12362-12378. https://doi.org/10.1039/D1CC03350F
    27. Tim Stauch, Brad Ganoe, Jonathan Wong, Joonho Lee, Adam Rettig, Jiashu Liang, Jie Li, Evgeny Epifanovsky, Teresa Head-Gordon, Martin Head-Gordon. Molecular magnetisabilities computed via finite fields: assessing alternatives to MP2 and revisiting magnetic exaltations in aromatic and antiaromatic species. Molecular Physics 2021, 119 (21-22) https://doi.org/10.1080/00268976.2021.1990426
    28. Tanner Culpitt, Laurens D. M. Peters, Erik I. Tellgren, Trygve Helgaker. Ab initio molecular dynamics with screened Lorentz forces. I. Calculation and atomic charge interpretation of Berry curvature. The Journal of Chemical Physics 2021, 155 (2) https://doi.org/10.1063/5.0055388
    29. Laurens D. M. Peters, Tanner Culpitt, Laurenz Monzel, Erik I. Tellgren, Trygve Helgaker. Ab Initio molecular dynamics with screened Lorentz forces. II. Efficient propagators and rovibrational spectra in strong magnetic fields. The Journal of Chemical Physics 2021, 155 (2) https://doi.org/10.1063/5.0056235
    30. Ansgar Pausch, Wim Klopper. Efficient evaluation of three-centre two-electron integrals over London orbitals. Molecular Physics 2020, 118 (21-22) , e1736675. https://doi.org/10.1080/00268976.2020.1736675
    31. Jon Austad, Alex Borgoo, Erik I. Tellgren, Trygve Helgaker. Bonding in the helium dimer in strong magnetic fields: the role of spin and angular momentum. Physical Chemistry Chemical Physics 2020, 22 (41) , 23502-23521. https://doi.org/10.1039/D0CP03259J
    32. Florian Hampe, Niklas Gross, Stella Stopkowicz. Full triples contribution in coupled-cluster and equation-of-motion coupled-cluster methods for atoms and molecules in strong magnetic fields. Physical Chemistry Chemical Physics 2020, 22 (41) , 23522-23529. https://doi.org/10.1039/D0CP04169F
    33. David B. Williams‐Young, Alessio Petrone, Shichao Sun, Torin F. Stetina, Patrick Lestrange, Chad E. Hoyer, Daniel R. Nascimento, Lauren Koulias, Andrew Wildman, Joseph Kasper, Joshua J. Goings, Feizhi Ding, A. Eugene DePrince, Edward F. Valeev, Xiaosong Li. The Chronus Quantum software package. WIREs Computational Molecular Science 2020, 10 (2) https://doi.org/10.1002/wcms.1436
    34. Torin F. Stetina, Shichao Sun, David B. Williams‐Young, Xiaosong Li. Modeling Magneto‐Photoabsorption Using Time‐Dependent Complex Generalized Hartree‐Fock. ChemPhotoChem 2019, 3 (9) , 739-746. https://doi.org/10.1002/cptc.201900161
    35. Christof Holzer, Andrew M. Teale, Florian Hampe, Stella Stopkowicz, Trygve Helgaker, Wim Klopper. GW quasiparticle energies of atoms in strong magnetic fields. The Journal of Chemical Physics 2019, 150 (21) https://doi.org/10.1063/1.5093396
    36. Marjan Khamesian, Ignacio Fdez. Galván, Mickaël G. Delcey, Lasse Kragh Sørensen, Roland Lindh. Spectroscopy of linear and circular polarized light with the exact semiclassical light–matter interaction. 2019, 39-76. https://doi.org/10.1016/bs.arcc.2019.08.004