ACS Publications. Most Trusted. Most Cited. Most Read
Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex
My Activity

Figure 1Loading Img
    Article

    Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex
    Click to copy article linkArticle link copied!

    View Author Information
    Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, 44780 Bochum, Germany
    Max Planck Institute for Coal Research, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
    § Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
    Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2018, 14, 1, 166–179
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.7b01035
    Published December 6, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.7b01035.

    • Oxygen-evolving complex of photosystem II, Figure S1; corresponding orbitals for dimer 1 obtained from BS-DFT, Figure S2; total energies of the four spin states for complex 1 (Table S1); exchange coupling constant calculation (Table S2); energy level differences, exchange coupling constants from adjacent spin levels, and average J values from DMRG-CASCI(19,16) (Table S3); summary of major steps in the treatment of the exchange coupling problem for the present dimer (Table S4) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 64 publications.

    1. Maria Drosou, Sinjini Bhattacharjee, Dimitrios A. Pantazis. Combined Multireference–Multiscale Approach to the Description of Photosynthetic Reaction Centers. Journal of Chemical Theory and Computation 2024, 20 (16) , 7210-7226. https://doi.org/10.1021/acs.jctc.4c00578
    2. Andres Barrientos-Herrera, Carlos Cruz, Walter Cañón-Mancisidor, Marlen Gutiérrez-Cutiño, Dayan Páez-Hernández, Patricio Hermosilla-Ibáñez, Verónica Paredes-García, Diego Venegas-Yazigi. Innocent or Noninnocent Interactions of the Cations on Spin-Frustrated Lindqvist Hexavanadate: Structural Analysis and Magnetic Properties. Crystal Growth & Design 2024, 24 (13) , 5656-5669. https://doi.org/10.1021/acs.cgd.4c00445
    3. Quan Manh Phung, Ho Ngoc Nam, Abhik Ghosh. Local Oxidation States in {FeNO}6–8 Porphyrins: Insights from DMRG/CASSCF–CASPT2 Calculations. Inorganic Chemistry 2023, 62 (49) , 20496-20505. https://doi.org/10.1021/acs.inorgchem.3c03689
    4. Daniel S. King, Donald G. Truhlar, Laura Gagliardi. Variational Active Space Selection with Multiconfiguration Pair-Density Functional Theory. Journal of Chemical Theory and Computation 2023, 19 (22) , 8118-8128. https://doi.org/10.1021/acs.jctc.3c00792
    5. Matthew R. Hennefarth, Daniel S. King, Laura Gagliardi. Linearized Pair-Density Functional Theory for Vertical Excitation Energies. Journal of Chemical Theory and Computation 2023, 19 (22) , 7983-7988. https://doi.org/10.1021/acs.jctc.3c00863
    6. Giovanni Li Manni, Ignacio Fdez. Galván, Ali Alavi, Flavia Aleotti, Francesco Aquilante, Jochen Autschbach, Davide Avagliano, Alberto Baiardi, Jie J. Bao, Stefano Battaglia, Letitia Birnoschi, Alejandro Blanco-González, Sergey I. Bokarev, Ria Broer, Roberto Cacciari, Paul B. Calio, Rebecca K. Carlson, Rafael Carvalho Couto, Luis Cerdán, Liviu F. Chibotaru, Nicholas F. Chilton, Jonathan Richard Church, Irene Conti, Sonia Coriani, Juliana Cuéllar-Zuquin, Razan E. Daoud, Nike Dattani, Piero Decleva, Coen de Graaf, Mickaël G. Delcey, Luca De Vico, Werner Dobrautz, Sijia S. Dong, Rulin Feng, Nicolas Ferré, Michael Filatov(Gulak), Laura Gagliardi, Marco Garavelli, Leticia González, Yafu Guan, Meiyuan Guo, Matthew R. Hennefarth, Matthew R. Hermes, Chad E. Hoyer, Miquel Huix-Rotllant, Vishal Kumar Jaiswal, Andy Kaiser, Danil S. Kaliakin, Marjan Khamesian, Daniel S. King, Vladislav Kochetov, Marek Krośnicki, Arpit Arun Kumaar, Ernst D. Larsson, Susi Lehtola, Marie-Bernadette Lepetit, Hans Lischka, Pablo López Ríos, Marcus Lundberg, Dongxia Ma, Sebastian Mai, Philipp Marquetand, Isabella C. D. Merritt, Francesco Montorsi, Maximilian Mörchen, Artur Nenov, Vu Ha Anh Nguyen, Yoshio Nishimoto, Meagan S. Oakley, Massimo Olivucci, Markus Oppel, Daniele Padula, Riddhish Pandharkar, Quan Manh Phung, Felix Plasser, Gerardo Raggi, Elisa Rebolini, Markus Reiher, Ivan Rivalta, Daniel Roca-Sanjuán, Thies Romig, Arta Anushirwan Safari, Aitor Sánchez-Mansilla, Andrew M. Sand, Igor Schapiro, Thais R. Scott, Javier Segarra-Martí, Francesco Segatta, Dumitru-Claudiu Sergentu, Prachi Sharma, Ron Shepard, Yinan Shu, Jakob K. Staab, Tjerk P. Straatsma, Lasse Kragh Sørensen, Bruno Nunes Cabral Tenorio, Donald G. Truhlar, Liviu Ungur, Morgane Vacher, Valera Veryazov, Torben Arne Voß, Oskar Weser, Dihua Wu, Xuchun Yang, David Yarkony, Chen Zhou, J. Patrick Zobel, Roland Lindh. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. Journal of Chemical Theory and Computation 2023, 19 (20) , 6933-6991. https://doi.org/10.1021/acs.jctc.3c00182
    7. Rishu Khurana, Ashima Bajaj, K. R. Shamasundar, Md. Ehesan Ali. High-Spin Blatter’s Triradicals. The Journal of Physical Chemistry A 2023, 127 (37) , 7802-7810. https://doi.org/10.1021/acs.jpca.3c02683
    8. Henry C. Fitzhugh, James W. Furness, Mark R. Pederson, Juan E. Peralta, Jianwei Sun. Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes. Journal of Chemical Theory and Computation 2023, 19 (17) , 5760-5772. https://doi.org/10.1021/acs.jctc.3c00336
    9. Ruocheng Han, Sandra Luber, Giovanni Li Manni. Magnetic Interactions in a [Co(II)3Er(III)(OR)4] Model Cubane through Forefront Multiconfigurational Methods. Journal of Chemical Theory and Computation 2023, 19 (10) , 2811-2826. https://doi.org/10.1021/acs.jctc.2c01318
    10. Luis Rizo, Benjamin G. Janesko. Reimagining the Wave Function in Density Functional Theory: Exploring Strongly Correlated States in Pancake-Bonded Radical Dimers. The Journal of Physical Chemistry A 2023, 127 (16) , 3684-3691. https://doi.org/10.1021/acs.jpca.2c08616
    11. Grégoire David, Nicolas Ferré, Boris Le Guennic. Consistent Evaluation of Magnetic Exchange Couplings in Multicenter Compounds in KS-DFT: The Recomposition Method. Journal of Chemical Theory and Computation 2023, 19 (1) , 157-173. https://doi.org/10.1021/acs.jctc.2c01022
    12. Riddhish Pandharkar, Matthew R. Hermes, Christopher J. Cramer, Laura Gagliardi. Localized Active Space-State Interaction: a Multireference Method for Chemical Insight. Journal of Chemical Theory and Computation 2022, 18 (11) , 6557-6566. https://doi.org/10.1021/acs.jctc.2c00536
    13. Sakshi Nain, Rishu Khurana, Md. Ehesan Ali. Harnessing Colossal Magnetic Anisotropy in Sandwiched 3d2-Metallocenes. The Journal of Physical Chemistry A 2022, 126 (18) , 2811-2817. https://doi.org/10.1021/acs.jpca.2c01605
    14. Yifan Cheng, Zhaoxuan Xie, Haibo Ma. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. The Journal of Physical Chemistry Letters 2022, 13 (3) , 904-915. https://doi.org/10.1021/acs.jpclett.1c04078
    15. Zoraida Sandoval-Olivares, Eduardo Solis-Céspedes, Dayán Páez-Hernández. Antiferromagnetic Coupling Supported by Metallophilic Interactions: Theoretical View. Inorganic Chemistry 2022, 61 (3) , 1401-1417. https://doi.org/10.1021/acs.inorgchem.1c03068
    16. Quan Manh Phung, Yasin Muchammad, Takeshi Yanai, Abhik Ghosh. A DMRG/CASPT2 Investigation of Metallocorroles: Quantifying Ligand Noninnocence in Archetypal 3d and 4d Element Derivatives. JACS Au 2021, 1 (12) , 2303-2314. https://doi.org/10.1021/jacsau.1c00417
    17. Takashi Tsuchimochi, Kosuke Yoshimura, Yuma Shimomoto, Seiichiro L. Ten-no. Improved Description and Efficient Implementation of Spin-Projected Perturbation Theory for Practical Applications. Journal of Chemical Theory and Computation 2021, 17 (6) , 3471-3482. https://doi.org/10.1021/acs.jctc.1c00324
    18. Rémi Maurice. Magnetic Anisotropy in a Cubane-like Ni4 Complex: An Ab Initio Perspective. Inorganic Chemistry 2021, 60 (9) , 6306-6318. https://doi.org/10.1021/acs.inorgchem.1c00047
    19. Jakub Chalupský, Martin Srnec. Beyond the Classical Contributions to Exchange Coupling in Binuclear Transition Metal Complexes. The Journal of Physical Chemistry A 2021, 125 (11) , 2276-2283. https://doi.org/10.1021/acs.jpca.0c11237
    20. Rishu Khurana, Sameer Gupta, Md. Ehesan Ali. First-Principles Investigations of Magnetic Anisotropy and Spin-Crossover Behavior of Fe(III)–TBP Complexes. The Journal of Physical Chemistry A 2021, 125 (10) , 2197-2207. https://doi.org/10.1021/acs.jpca.1c00022
    21. Jakub Chalupský, Martin Srnec, Takeshi Yanai. Interpretation of Exchange Interaction through Orbital Entanglement. The Journal of Physical Chemistry Letters 2021, 12 (4) , 1268-1274. https://doi.org/10.1021/acs.jpclett.0c03652
    22. Svetlana Pylaeva, Patrick Marx, Gurjot Singh, Thomas D. Kühne, Michael Roemelt, Hossam Elgabarty. Organic Mixed-Valence Compounds and the Overhauser Effect in Insulating Solids. The Journal of Physical Chemistry A 2021, 125 (3) , 867-874. https://doi.org/10.1021/acs.jpca.0c11296
    23. Prachi Sharma, Donald G. Truhlar, Laura Gagliardi. Magnetic Coupling in a Tris-hydroxo-Bridged Chromium Dimer Occurs through Ligand Mediated Superexchange in Conjunction with Through-Space Coupling. Journal of the American Chemical Society 2020, 142 (39) , 16644-16650. https://doi.org/10.1021/jacs.0c06399
    24. Abhishek Khedkar, Michael Roemelt. Extending the ASS1ST Active Space Selection Scheme to Large Molecules and Excited States. Journal of Chemical Theory and Computation 2020, 16 (8) , 4993-5005. https://doi.org/10.1021/acs.jctc.0c00332
    25. Carmen Herrmann. Electronic Communication as a Transferable Property of Molecular Bridges?. The Journal of Physical Chemistry A 2019, 123 (47) , 10205-10223. https://doi.org/10.1021/acs.jpca.9b05618
    26. Christopher J. Stein, Dimitrios A. Pantazis, Vera Krewald. Orbital Entanglement Analysis of Exchange-Coupled Systems. The Journal of Physical Chemistry Letters 2019, 10 (21) , 6762-6770. https://doi.org/10.1021/acs.jpclett.9b02417
    27. Elliot J. Taffet, Benjamin G. Lee, Zi S. D. Toa, Natalie Pace, Garry Rumbles, June Southall, Richard J. Cogdell, Gregory D. Scholes. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. The Journal of Physical Chemistry B 2019, 123 (41) , 8628-8643. https://doi.org/10.1021/acs.jpcb.9b04027
    28. Abhishek Khedkar, Michael Roemelt. Active Space Selection Based on Natural Orbital Occupation Numbers from n-Electron Valence Perturbation Theory. Journal of Chemical Theory and Computation 2019, 15 (6) , 3522-3536. https://doi.org/10.1021/acs.jctc.8b01293
    29. Hiroshi Isobe, Mitsuo Shoji, Takayoshi Suzuki, Jian-Ren Shen, Kizashi Yamaguchi. Spin, Valence, and Structural Isomerism in the S3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity. Journal of Chemical Theory and Computation 2019, 15 (4) , 2375-2391. https://doi.org/10.1021/acs.jctc.8b01055
    30. Shadan Ghassemi Tabrizi, Alexei V. Arbuznikov, Martin Kaupp. Hubbard Trimer with Spin–Orbit Coupling: Hartree–Fock Solutions, (Non)Collinearity, and Anisotropic Spin Hamiltonian. The Journal of Physical Chemistry A 2019, 123 (12) , 2361-2378. https://doi.org/10.1021/acs.jpca.8b11959
    31. Dimitrios A. Pantazis. Meeting the Challenge of Magnetic Coupling in a Triply-Bridged Chromium Dimer: Complementary Broken-Symmetry Density Functional Theory and Multireference Density Matrix Renormalization Group Perspectives. Journal of Chemical Theory and Computation 2019, 15 (2) , 938-948. https://doi.org/10.1021/acs.jctc.8b00969
    32. Grégoire David, Frank Wennmohs, Frank Neese, Nicolas Ferré. Chemical Tuning of Magnetic Exchange Couplings Using Broken-Symmetry Density Functional Theory. Inorganic Chemistry 2018, 57 (20) , 12769-12776. https://doi.org/10.1021/acs.inorgchem.8b01970
    33. Elliot J. Taffet, Gregory D. Scholes. Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. The Journal of Physical Chemistry B 2018, 122 (22) , 5835-5844. https://doi.org/10.1021/acs.jpcb.8b02504
    34. Elliot J. Taffet, Yoann Olivier, Frankie Lam, David Beljonne, Gregory D. Scholes. Carbene–Metal–Amide Bond Deformation, Rather Than Ligand Rotation, Drives Delayed Fluorescence. The Journal of Physical Chemistry Letters 2018, 9 (7) , 1620-1626. https://doi.org/10.1021/acs.jpclett.8b00503
    35. Ana Paula de Lima Batista, Jamile Rocha Pavan, Marcos Antônio Ribeiro, Sofia Nikolaou. Unveiling the electronic and molecular structure of a trinuclear ruthenium cluster containing one nitrosyl ligand. Journal of Molecular Structure 2024, 1308 , 138119. https://doi.org/10.1016/j.molstruc.2024.138119
    36. Mihkel Ugandi, Michael Roemelt. A configuration‐based heatbath‐CI for spin‐adapted multireference electronic structure calculations with large active spaces. Journal of Computational Chemistry 2023, 44 (31) , 2374-2390. https://doi.org/10.1002/jcc.27203
    37. Ali K. Almansori, Karrar AI‐Ameed, Mohammed Obies, Falah S. Abd‐Suhail. Magnetic Exchange Coupling in Macrocyclic Cobalt (II) Complexes: The Influence of Bridging Ligands and Choice of the Computational Methodologies. ChemistrySelect 2023, 8 (41) https://doi.org/10.1002/slct.202302629
    38. Shadan Ghassemi Tabrizi. Systematic determination of coupling constants in spin clusters from broken-symmetry mean-field solutions. The Journal of Chemical Physics 2023, 159 (15) https://doi.org/10.1063/5.0172314
    39. Debpriyo Goswami, Shanti Gopal Patra, Debashis Ray. Magneto-Structural Analysis of Hydroxido-Bridged CuII2 Complexes: Density Functional Theory and Other Treatments. Magnetochemistry 2023, 9 (6) , 154. https://doi.org/10.3390/magnetochemistry9060154
    40. Sriparna Roy, Satadal Paul, Anirban Misra. A Theoretical Account of the Coupling between Metal‐ and Ligand‐centred Spins. ChemPhysChem 2023, 24 (8) https://doi.org/10.1002/cphc.202200889
    41. Shuchang Luo, Xianwei Shen, Peng Gao, Ting Tu, Xiaoyuan Sun. Magneto–structural maps and bridged-ligand effect for dichloro-bridged dinuclear copper( ii ) complexes: a theoretical perspective. RSC Advances 2023, 13 (18) , 12430-12437. https://doi.org/10.1039/D3RA00585B
    42. Mihkel Ugandi, Michael Roemelt. A recursive formulation of one‐electron coupling coefficients for spin‐adapted configuration interaction calculations featuring many unpaired electrons. International Journal of Quantum Chemistry 2023, 123 (5) https://doi.org/10.1002/qua.27045
    43. Aleksandra Ziółkowska, Maciej Witwicki. Understanding the Exchange Interaction between Paramagnetic Metal Ions and Radical Ligands: DFT and Ab Initio Study on Semiquinonato Cu(II) Complexes. International Journal of Molecular Sciences 2023, 24 (4) , 4001. https://doi.org/10.3390/ijms24044001
    44. Wolfgang Lubitz, Dimitrios A. Pantazis, Nicholas Cox. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Letters 2023, 597 (1) , 6-29. https://doi.org/10.1002/1873-3468.14543
    45. Alessandro Lunghi, Stefano Sanvito. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nature Reviews Chemistry 2022, 6 (11) , 761-781. https://doi.org/10.1038/s41570-022-00424-3
    46. Rajat Walia, Jun Yang. Exploring optimal multimode vibronic pathways in singlet fission of azaborine analogues of perylene. Photochemical & Photobiological Sciences 2022, 21 (9) , 1689-1700. https://doi.org/10.1007/s43630-022-00251-x
    47. Weitang Li, Jiajun Ren, Hengrui Yang, Zhigang Shuai. On the fly swapping algorithm for ordering of degrees of freedom in density matrix renormalization group. Journal of Physics: Condensed Matter 2022, 34 (25) , 254003. https://doi.org/10.1088/1361-648X/ac640e
    48. Haibo Ma, Ulrich Schollwöck, Zhigang Shuai. Post-density matrix renormalization group. 2022, 189-246. https://doi.org/10.1016/B978-0-323-85694-2.00009-7
    49. Gurjot Singh, Stefani Gamboa, Maylis Orio, Dimitrios A. Pantazis, Michael Roemelt. Magnetic exchange coupling in Cu dimers studied with modern multireference methods and broken-symmetry coupled cluster theory. Theoretical Chemistry Accounts 2021, 140 (10) https://doi.org/10.1007/s00214-021-02830-0
    50. Shuchang Luo, Wenhai Xiao, Xiaoyuan Sun, Pengfei Zheng. Regulation mechanism of the solvent coligands on the magnetic properties of azido-Cu(II) complexes by mixed carboxylate/alkanols ligands: A theoretical exploration. Polyhedron 2021, 205 , 115312. https://doi.org/10.1016/j.poly.2021.115312
    51. Abhishek Khedkar, Michael Roemelt. Modern multireference methods and their application in transition metal chemistry. Physical Chemistry Chemical Physics 2021, 23 (32) , 17097-17112. https://doi.org/10.1039/D1CP02640B
    52. Maylis Orio, Dimitrios A. Pantazis. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chemical Communications 2021, 57 (33) , 3952-3974. https://doi.org/10.1039/D1CC00705J
    53. Esma Birsen Boydas, Bernd Winter, David Batchelor, Michael Roemelt. Insight into the X‐ray absorption spectra of Cu‐porphyrazines from electronic structure theory. International Journal of Quantum Chemistry 2021, 121 (3) https://doi.org/10.1002/qua.26515
    54. Leon Freitag, Markus Reiher. The Density Matrix Renormalization Group for Strong Correlation in Ground and Excited States. 2020, 205-245. https://doi.org/10.1002/9781119417774.ch7
    55. Vera Krewald. Magnetische Wechselwirkungen quantenchemisch charakterisieren, Trendbericht Theoretische Chemie 2020, Teil 2. Nachrichten aus der Chemie 2020, 68 (11) , 54-57. https://doi.org/10.1002/nadc.20204102066
    56. Abhishek Khedkar, Michael Roemelt. An ab initio multireference study of reductive eliminations from organoferrates( iii ) in the gas-phase: it is all about the spin state. Physical Chemistry Chemical Physics 2020, 22 (31) , 17677-17686. https://doi.org/10.1039/D0CP02834G
    57. Vera Krewald, Frank Neese, Dimitrios A. Pantazis. Implications of structural heterogeneity for the electronic structure of the final oxygen-evolving intermediate in photosystem II. Journal of Inorganic Biochemistry 2019, 199 , 110797. https://doi.org/10.1016/j.jinorgbio.2019.110797
    58. Michael Roemelt, Dimitrios A. Pantazis. Multireference Approaches to Spin‐State Energetics of Transition Metal Complexes Utilizing the Density Matrix Renormalization Group. Advanced Theory and Simulations 2019, 2 (5) https://doi.org/10.1002/adts.201800201
    59. Dimitrios A. Pantazis. Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes. Inorganics 2019, 7 (5) , 57. https://doi.org/10.3390/inorganics7050057
    60. Dimitrios A. Pantazis. The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. Inorganics 2019, 7 (4) , 55. https://doi.org/10.3390/inorganics7040055
    61. Mariusz Radoń. Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Physical Chemistry Chemical Physics 2019, 21 (9) , 4854-4870. https://doi.org/10.1039/C9CP00105K
    62. Takashi Kawakami, Koichi Miyagawa, Sandeep Sharma, Toru Saito, Mitsuo Shoji, Satoru Yamada, Shusuke Yamanaka, Mitsutaka Okumura, Takahito Nakajima, Kizashi Yamaguchi. UNO DMRG CAS CI calculations of binuclear manganese complex Mn(IV) 2 O 2 (NHCHCO 2 ) 4 : Scope and applicability of Heisenberg model. Journal of Computational Chemistry 2019, 40 (2) , 333-341. https://doi.org/10.1002/jcc.25602
    63. Vera Krewald, Dimitrios A. Pantazis. Applications of the Density Matrix Renormalization Group to Exchange-Coupled Transition Metal Systems. 2019, 91-120. https://doi.org/10.1007/978-3-030-11714-6_4
    64. T. Kawakami, K. Miyagawa, H. Isobe, M. Shoji, S. Yamanaka, M. Katouda, T. Nakajima, K. Nakatani, M. Okumura, K. Yamaguchi. Relative stability between the manganese hydroxide- and oxo-models for water oxidation by CCSD, DMRG CASCI, CASSCF, CASPT2 and CASDFT methods; Importance of static and dynamical electron correlation effects for OEC of PSII. Chemical Physics Letters 2018, 705 , 85-91. https://doi.org/10.1016/j.cplett.2018.05.046

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2018, 14, 1, 166–179
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.7b01035
    Published December 6, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    1811

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.