Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set
- Jan Řezáč*Jan Řezáč*E-mail: [email protected]Gilead Sciences Research Center and The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech RepublicMore by Jan Řezáč
- ,
- Daniel BímDaniel BímGilead Sciences Research Center and The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech RepublicMore by Daniel Bím
- ,
- Ondrej GuttenOndrej GuttenGilead Sciences Research Center and The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech RepublicMore by Ondrej Gutten
- , and
- Lubomír Rulíšek*Lubomír Rulíšek*E-mail: [email protected]Gilead Sciences Research Center and The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech RepublicMore by Lubomír Rulíšek
Abstract

A carefully selected set of acyclic and cyclic model peptides and several other macrocycles, comprising 13 compounds in total, has been used to calibrate the accuracy of the DFT(-D3) method for conformational energies, employing BP86, PBE0, PBE, B3LYP, BLYP, TPSS, TPSSh, M06-2X, B97-D, OLYP, revPBE, M06-L, SCAN, revTPSS, BH-LYP, and ωB97X-D3 functionals. Both high- and low-energy conformers, 15 or 16 for each compound adding to 196 in total, denoted as the MPCONF196 data set, were included, and the reference values were obtained by the composite protocol, yielding the CCSD(T)/CBS extrapolated energies or their DLPNO-CCSD(T)/CBS equivalents in the case of larger systems. The latter was shown to be in near-quantitative (∼0.10–0.15 kcal·mol–1) agreement with the canonical CCSD(T), provided the TightPNO setting is used, and, therefore, can be used as the reference for larger systems (likely up to 150–200 atoms) for the problem studied here. At the same time, it was found that many D3-corrected DFT functionals provide results of ∼1 kcal·mol–1 accuracy, which we consider as quite encouraging. This result implies that DFT-D3 methods can be, for example, safely used in efficient conformational sampling algorithms. Specifically, the DFT-D3/DZVP-DFT level of calculation seems to be the best trade-off between computational cost and accuracy. Based on the calculated data, we have not found any cheaper variant for the treatment of conformational energies, since the semiempirical methods (including DFTB) provide results of inferior accuracy (errors of 3–5 kcal·mol–1).
Cited By
This article is cited by 63 publications.
- Van-Quan Vuong, Bálint Aradi, Anders M. N. Niklasson, Qiang Cui, Stephan Irle. Multipole Expansion of Atomic Electron Density Fluctuation Interactions in the Density-Functional Tight-Binding Method. Journal of Chemical Theory and Computation 2023, 19
(21)
, 7592-7605. https://doi.org/10.1021/acs.jctc.3c00778
- Simon Boothroyd, Pavan Kumar Behara, Owen C. Madin, David F. Hahn, Hyesu Jang, Vytautas Gapsys, Jeffrey R. Wagner, Joshua T. Horton, David L. Dotson, Matthew W. Thompson, Jessica Maat, Trevor Gokey, Lee-Ping Wang, Daniel J. Cole, Michael K. Gilson, John D. Chodera, Christopher I. Bayly, Michael R. Shirts, David L. Mobley. Development and Benchmarking of Open Force Field 2.0.0: The Sage Small Molecule Force Field. Journal of Chemical Theory and Computation 2023, 19
(11)
, 3251-3275. https://doi.org/10.1021/acs.jctc.3c00039
- Michael Brunsteiner, Sten Nilsson-Lil, Lucy M. Morgan, Adrian Davis, Amrit Paudel. Finite-Temperature Mechanical Properties of Organic Molecular Crystals from Classical Molecular Simulation. Crystal Growth & Design 2023, 23
(4)
, 2155-2168. https://doi.org/10.1021/acs.cgd.2c01187
- Kristian Kříž, Lisa Schmidt, Alfred T. Andersson, Marie-Madeleine Walz, David van der Spoel. An Imbalance in the Force: The Need for Standardized Benchmarks for Molecular Simulation. Journal of Chemical Information and Modeling 2023, 63
(2)
, 412-431. https://doi.org/10.1021/acs.jcim.2c01127
- Lorenzo D’Amore, David F. Hahn, David L. Dotson, Joshua T. Horton, Jamshed Anwar, Ian Craig, Thomas Fox, Alberto Gobbi, Sirish Kaushik Lakkaraju, Xavier Lucas, Katharina Meier, David L. Mobley, Arjun Narayanan, Christina E. M. Schindler, William C. Swope, Pieter J. in ’t Veld, Jeffrey Wagner, Bai Xue, Gary Tresadern. Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field. Journal of Chemical Information and Modeling 2022, 62
(23)
, 6094-6104. https://doi.org/10.1021/acs.jcim.2c01185
- Tadeáš Kalvoda, Martin Culka, Lubomír Rulíšek, Erik Andris. Exhaustive Mapping of the Conformational Space of Natural Dipeptides by the DFT-D3//COSMO-RS Method. The Journal of Physical Chemistry B 2022, 126
(32)
, 5949-5958. https://doi.org/10.1021/acs.jpcb.2c02861
- Thomas Gasevic, Julius B. Stückrath, Stefan Grimme, Markus Bursch. Optimization of the r2SCAN-3c Composite Electronic-Structure Method for Use with Slater-Type Orbital Basis Sets. The Journal of Physical Chemistry A 2022, 126
(23)
, 3826-3838. https://doi.org/10.1021/acs.jpca.2c02951
- Viki Kumar Prasad, Alberto Otero-de-la-Roza, Gino A. DiLabio. Small-Basis Set Density-Functional Theory Methods Corrected with Atom-Centered Potentials. Journal of Chemical Theory and Computation 2022, 18
(5)
, 2913-2930. https://doi.org/10.1021/acs.jctc.2c00036
- Bun Chan, William Dawson, Takahito Nakajima. Searching for a Reliable Density Functional for Molecule–Environment Interactions, Found B97M-V/def2-mTZVP. The Journal of Physical Chemistry A 2022, 126
(15)
, 2397-2406. https://doi.org/10.1021/acs.jpca.2c02032
- Viki Kumar Prasad, Alberto Otero-de-la-Roza, Gino A. DiLabio. Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree–Fock Methods Corrected with Atom-Centered Potentials. Journal of Chemical Theory and Computation 2022, 18
(4)
, 2208-2232. https://doi.org/10.1021/acs.jctc.1c01128
- Ping Wang, Chong Shu, Hexu Ye, Malgorzata Biczysko. Structural and Energetic Properties of Amino Acids and Peptides Benchmarked by Accurate Theoretical and Experimental Data. The Journal of Physical Chemistry A 2021, 125
(45)
, 9826-9837. https://doi.org/10.1021/acs.jpca.1c06504
- Yudong Qiu, Daniel G. A. Smith, Simon Boothroyd, Hyesu Jang, David F. Hahn, Jeffrey Wagner, Caitlin C. Bannan, Trevor Gokey, Victoria T. Lim, Chaya D. Stern, Andrea Rizzi, Bryon Tjanaka, Gary Tresadern, Xavier Lucas, Michael R. Shirts, Michael K. Gilson, John D. Chodera, Christopher I. Bayly, David L. Mobley, Lee-Ping Wang. Development and Benchmarking of Open Force Field v1.0.0—the Parsley Small-Molecule Force Field. Journal of Chemical Theory and Computation 2021, 17
(10)
, 6262-6280. https://doi.org/10.1021/acs.jctc.1c00571
- Junbo Chen, Jin Kato, Jason B. Harper, Yihan Shao, Junming Ho. On the Accuracy of QM/MM Models: A Systematic Study of Intramolecular Proton Transfer Reactions of Amino Acids in Water. The Journal of Physical Chemistry B 2021, 125
(32)
, 9304-9316. https://doi.org/10.1021/acs.jpcb.1c04876
- Jayden J. Gaston, Andrew J. Tague, Jamie E. Smyth, Nicholas M. Butler, Anthony C. Willis, Nico van Eikema Hommes, Haibo Yu, Timothy Clark, Paul A. Keller. The Detosylation of Chiral 1,2-Bis(tosylamides). The Journal of Organic Chemistry 2021, 86
(13)
, 9163-9180. https://doi.org/10.1021/acs.joc.1c00359
- Golokesh Santra, Minsik Cho, Jan M. L. Martin. Exploring Avenues beyond Revised DSD Functionals: I. Range Separation, with xDSD as a Special Case. The Journal of Physical Chemistry A 2021, 125
(21)
, 4614-4627. https://doi.org/10.1021/acs.jpca.1c01294
- Golokesh Santra, Emmanouil Semidalas, Jan M. L. Martin. Exploring Avenues beyond Revised DSD Functionals: II. Random-Phase Approximation and Scaled MP3 Corrections. The Journal of Physical Chemistry A 2021, 125
(21)
, 4628-4638. https://doi.org/10.1021/acs.jpca.1c01295
- Stefan Grimme, Fabian Bohle, Andreas Hansen, Philipp Pracht, Sebastian Spicher, Marcel Stahn. Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. The Journal of Physical Chemistry A 2021, 125
(19)
, 4039-4054. https://doi.org/10.1021/acs.jpca.1c00971
- Ziteng Liu, Liqiang Lin, Qingqing Jia, Zheng Cheng, Yanyan Jiang, Yanwen Guo, Jing Ma. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning. Journal of Chemical Information and Modeling 2021, 61
(3)
, 1066-1082. https://doi.org/10.1021/acs.jcim.0c01224
- Ashraya Ravikumar, Alexandre G. de Brevern, Narayanaswamy Srinivasan. Conformational Strain Indicated by Ramachandran Angles for the Protein Backbone Is Only Weakly Related to the Flexibility. The Journal of Physical Chemistry B 2021, 125
(10)
, 2597-2606. https://doi.org/10.1021/acs.jpcb.1c00168
- Kristian Kříž, Martin Nováček, Jan Řezáč. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. Journal of Chemical Theory and Computation 2021, 17
(3)
, 1548-1561. https://doi.org/10.1021/acs.jctc.0c01341
- Isolde Sandler, Junbo Chen, Mackenzie Taylor, Shaleen Sharma, Junming Ho. Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. The Journal of Physical Chemistry A 2021, 125
(7)
, 1553-1563. https://doi.org/10.1021/acs.jpca.0c11270
- László Gyevi-Nagy, Mihály Kállay, Péter R. Nagy. Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. Journal of Chemical Theory and Computation 2021, 17
(2)
, 860-878. https://doi.org/10.1021/acs.jctc.0c01077
- Martin Culka, Tadeáš Kalvoda, Ondrej Gutten, Lubomír Rulíšek. Mapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains?. The Journal of Physical Chemistry B 2021, 125
(1)
, 58-69. https://doi.org/10.1021/acs.jpcb.0c09251
- Martin Culka, Lubomír Rulíšek. Interplay between Conformational Strain and Intramolecular Interaction in Protein Structures: Which of Them Is Evolutionarily Conserved?. The Journal of Physical Chemistry B 2020, 124
(16)
, 3252-3260. https://doi.org/10.1021/acs.jpcb.9b11784
- Kristian Kříž, Jan Řezáč. Benchmarking of Semiempirical Quantum-Mechanical Methods on Systems Relevant to Computer-Aided Drug Design. Journal of Chemical Information and Modeling 2020, 60
(3)
, 1453-1460. https://doi.org/10.1021/acs.jcim.9b01171
- Bun Chan. Aqueous-Phase Conformations of Lactose, Maltose, and Sucrose and the Assessment of Low-Cost DFT Methods with the DSCONF Set of Conformers for the Three Disaccharides. The Journal of Physical Chemistry A 2020, 124
(3)
, 582-590. https://doi.org/10.1021/acs.jpca.9b10932
- Xiya Lu, Juan Duchimaza-Heredia, Qiang Cui. Analysis of Density Functional Tight Binding with Natural Bonding Orbitals. The Journal of Physical Chemistry A 2019, 123
(34)
, 7439-7453. https://doi.org/10.1021/acs.jpca.9b05072
- Dominique
A. Wappett, Lars Goerigk. Toward a Quantum-Chemical Benchmark Set for Enzymatically Catalyzed Reactions: Important Steps and Insights. The Journal of Physical Chemistry A 2019, 123
(32)
, 7057-7074. https://doi.org/10.1021/acs.jpca.9b05088
- Martin Culka, Lubomír Rulíšek. Factors Stabilizing β-Sheets in Protein Structures from a Quantum-Chemical Perspective. The Journal of Physical Chemistry B 2019, 123
(30)
, 6453-6461. https://doi.org/10.1021/acs.jpcb.9b04866
- Van Quan Vuong, Yoshio Nishimoto, Dmitri G. Fedorov, Bobby G. Sumpter, Thomas A. Niehaus, Stephan Irle. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. Journal of Chemical Theory and Computation 2019, 15
(5)
, 3008-3020. https://doi.org/10.1021/acs.jctc.9b00108
- Martin Culka, Jakub Galgonek, Jiří Vymětal, Jiří Vondrášek, Lubomír Rulíšek. Toward Ab Initio Protein Folding: Inherent Secondary Structure Propensity of Short Peptides from the Bioinformatics and Quantum-Chemical Perspective. The Journal of Physical Chemistry B 2019, 123
(6)
, 1215-1227. https://doi.org/10.1021/acs.jpcb.8b09245
- Jan Řezáč, Chandler Greenwell, Gregory J. O. Beran. Accurate Noncovalent Interactions via Dispersion-Corrected Second-Order Møller–Plesset Perturbation Theory. Journal of Chemical Theory and Computation 2018, 14
(9)
, 4711-4721. https://doi.org/10.1021/acs.jctc.8b00548
- Ondrej Gutten, Daniel Bím, Jan Řezáč, and Lubomír Rulíšek . Macrocycle Conformational Sampling by DFT-D3/COSMO-RS Methodology. Journal of Chemical Information and Modeling 2018, 58
(1)
, 48-60. https://doi.org/10.1021/acs.jcim.7b00453
- Ioannis Stylianakis, Nikolaos Zervos, Jenn-Huei Lii, Dimitrios A. Pantazis, Antonios Kolocouris. Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory. Journal of Computer-Aided Molecular Design 2023, 37
(12)
, 607-656. https://doi.org/10.1007/s10822-023-00513-5
- Sean M. Brown, Christopher Mayer-Bacon, Stephen Freeland. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life 2023, 13
(12)
, 2281. https://doi.org/10.3390/life13122281
- Christoph Plett, Stefan Grimme, Andreas Hansen. Conformational energies of biomolecules in solution: Extending the MPCONF196 benchmark with explicit water molecules. Journal of Computational Chemistry 2023, 134 https://doi.org/10.1002/jcc.27248
- Jingyu Sun, Weikang Xiao, Yizhen Tang, Yunju Zhang. Theoretical study of the mechanism and kinetics of the atmospheric reaction of acrylic acid with NO
3
radical. International Journal of Quantum Chemistry 2023, 123
(4)
https://doi.org/10.1002/qua.27034
- Marcel Müller, Andreas Hansen, Stefan Grimme. ω
B97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-
ζ
basis set. The Journal of Chemical Physics 2023, 158
(1)
https://doi.org/10.1063/5.0133026
- Monika Staś, Piotr Najgebauer, Dawid Siodłak. Imidazole-amino acids. Conformational switch under tautomer and pH change. Amino Acids 2023, 55
(1)
, 33-49. https://doi.org/10.1007/s00726-022-03201-0
- Xiaojuan Hu, Maja-Olivia Lenz-Himmer, Carsten Baldauf. Better force fields start with better data: A data set of cation dipeptide interactions. Scientific Data 2022, 9
(1)
https://doi.org/10.1038/s41597-022-01297-3
- Xiangli Shi, Ruoyu Tang, Zuokang Dong, Houfeng Liu, Fei Xu, Qingzhu Zhang, Wansong Zong, Jiemin Cheng. A neglected pathway for the accretion products formation in the atmosphere. Science of The Total Environment 2022, 848 , 157494. https://doi.org/10.1016/j.scitotenv.2022.157494
- Zakaria Bouchouireb, Rossana Sussarellu, Sabine Stachowski-Haberkorn, Jérôme Graton, Jean-Yves Le Questel. Conformation and structural features of diuron and irgarol: Insights from quantum chemistry calculations. Computational and Theoretical Chemistry 2022, 1216 , 113844. https://doi.org/10.1016/j.comptc.2022.113844
- Chris Ringrose, Joshua T. Horton, Lee-Ping Wang, Daniel J. Cole. Exploration and validation of force field design protocols through QM-to-MM mapping. Physical Chemistry Chemical Physics 2022, 24
(28)
, 17014-17027. https://doi.org/10.1039/D2CP02864F
- Vincenzo Barone, Silvia Alessandrini, Malgorzata Biczysko, James R. Cheeseman, David C. Clary, Anne B. McCoy, Ryan J. DiRisio, Frank Neese, Mattia Melosso, Cristina Puzzarini. Computational molecular spectroscopy. Nature Reviews Methods Primers 2021, 1
(1)
https://doi.org/10.1038/s43586-021-00034-1
- Viki Kumar Prasad, Alberto Otero-de-la-Roza, Gino A DiLabio. Performance of small basis set Hartree–Fock methods for modeling non-covalent interactions. Electronic Structure 2021, 3
(3)
, 034007. https://doi.org/10.1088/2516-1075/ac22b8
- Miroslav Smola, Ondrej Gutten, Milan Dejmek, Milan Kožíšek, Thomas Evangelidis, Zahra Aliakbar Tehrani, Barbora Novotná, Radim Nencka, Gabriel Birkuš, Lubomír Rulíšek, Evzen Boura. Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angewandte Chemie 2021, 133
(18)
, 10260-10266. https://doi.org/10.1002/ange.202016805
- Miroslav Smola, Ondrej Gutten, Milan Dejmek, Milan Kožíšek, Thomas Evangelidis, Zahra Aliakbar Tehrani, Barbora Novotná, Radim Nencka, Gabriel Birkuš, Lubomír Rulíšek, Evzen Boura. Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angewandte Chemie International Edition 2021, 60
(18)
, 10172-10178. https://doi.org/10.1002/anie.202016805
- Mudong Feng, Michael K. Gilson. Mechanistic analysis of light-driven overcrowded alkene-based molecular motors by multiscale molecular simulations. Physical Chemistry Chemical Physics 2021, 23
(14)
, 8525-8540. https://doi.org/10.1039/D0CP06685K
- Ondrej Gutten, Petr Jurečka, Zahra Aliakbar Tehrani, Miloš Buděšínský, Jan Řezáč, Lubomír Rulíšek. Conformational energies and equilibria of cyclic dinucleotides
in vacuo
and in solution: computational chemistry
vs.
NMR experiments. Physical Chemistry Chemical Physics 2021, 23
(12)
, 7280-7294. https://doi.org/10.1039/D0CP05993E
- Stefan Grimme, Andreas Hansen, Sebastian Ehlert, Jan-Michael Mewes. r2SCAN-3c: A “Swiss army knife” composite electronic-structure method. The Journal of Chemical Physics 2021, 154
(6)
https://doi.org/10.1063/5.0040021
- Markus Bursch, Andreas Hansen, Philipp Pracht, Julia T. Kohn, Stefan Grimme. Theoretical study on conformational energies of transition metal complexes. Physical Chemistry Chemical Physics 2021, 23
(1)
, 287-299. https://doi.org/10.1039/D0CP04696E
- Dakota Folmsbee, Geoffrey Hutchison. Assessing conformer energies using electronic structure and machine learning methods. International Journal of Quantum Chemistry 2021, 121
(1)
https://doi.org/10.1002/qua.26381
- Minho Kim, Tim Gould, Dario Rocca, Sébastien Lebègue. Establishing the accuracy of density functional approaches for the description of noncovalent interactions in biomolecules. Physical Chemistry Chemical Physics 2020, 22
(38)
, 21685-21695. https://doi.org/10.1039/D0CP04137H
- Wanqing Li, Marcos D Battistel, Hannah Reeves, Lisa Oh, Hai Yu, Xi Chen, Lee-Ping Wang, Darón I Freedberg. A combined NMR, MD and DFT conformational analysis of 9-
O
-acetyl sialic acid-containing GM3 ganglioside glycan and its 9-
N-
acetyl mimic. Glycobiology 2020, 30
(10)
, 787-801. https://doi.org/10.1093/glycob/cwaa040
- Chong Shu, Zhongming Jiang, Malgorzata Biczysko. Toward accurate prediction of amino acid derivatives structure and energetics from DFT: glycine conformers and their interconversions. Journal of Molecular Modeling 2020, 26
(6)
https://doi.org/10.1007/s00894-020-4342-7
- Philipp Pracht, Fabian Bohle, Stefan Grimme. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Physical Chemistry Chemical Physics 2020, 22
(14)
, 7169-7192. https://doi.org/10.1039/C9CP06869D
- Matthew Habgood, Tim James, Alexander Heifetz. Conformational Searching with Quantum Mechanics. 2020, 207-229. https://doi.org/10.1007/978-1-0716-0282-9_14
- Victoria T. Lim, David F. Hahn, Gary Tresadern, Christopher I. Bayly, David L. Mobley. Benchmark assessment of molecular geometries and energies from small molecule force fields. F1000Research 2020, 9 , 1390. https://doi.org/10.12688/f1000research.27141.1
- Roman Zubatyuk, Justin S. Smith, Jerzy Leszczynski, Olexandr Isayev. Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network. Science Advances 2019, 5
(8)
https://doi.org/10.1126/sciadv.aav6490
- Viki Kumar Prasad, Alberto Otero-de-la-Roza, Gino A. DiLabio. PEPCONF, a diverse data set of peptide conformational energies. Scientific Data 2019, 6
(1)
https://doi.org/10.1038/sdata.2018.310
- Shu R. Huang, Yang Liu, František Tureček. Non-covalent complexes of the peptide fragment Gly-Asn-Asn-Gln-Gln-Asn-Tyr in the gas-phase. Photodissociative cross-linking, Born–Oppenheimer molecular dynamics, and
ab initio
computational binding study. Physical Chemistry Chemical Physics 2019, 21
(4)
, 2046-2056. https://doi.org/10.1039/C8CP06893C
- Dmitry I. Sharapa, Alexander Genaev, Luigi Cavallo, Yury Minenkov. A Robust and Cost‐Efficient Scheme for Accurate Conformational Energies of Organic Molecules. ChemPhysChem 2019, 20
(1)
, 92-102. https://doi.org/10.1002/cphc.201801063
- Oleksandr A. Loboda, Grygoriy A. Dolgonos, A. Daniel Boese. Towards hybrid density functional calculations of molecular crystals via fragment-based methods. The Journal of Chemical Physics 2018, 149
(12)
https://doi.org/10.1063/1.5046908