ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Gaussian Process Regression for Transition State Search

Cite this: J. Chem. Theory Comput. 2018, 14, 11, 5777–5786
Publication Date (Web):October 23, 2018
https://doi.org/10.1021/acs.jctc.8b00708
Copyright © 2018 American Chemical Society

    Article Views

    1963

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We implemented a gradient-based algorithm for transition state search which uses Gaussian process regression. Besides a description of the algorithm, we provide a method to find the starting point for the optimization if only the reactant and product minima are known. We perform benchmarks on 27 test systems against the dimer method and partitioned rational function optimization as implemented in the DL-FIND library. We found the new optimizer to significantly decrease the number of required energy and gradient evaluations.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 45 publications.

    1. Akhil Shajan, Madushanka Manathunga, Andreas W. Götz, Kenneth M. Merz, Jr.. Geometry Optimization: A Comparison of Different Open-Source Geometry Optimizers. Journal of Chemical Theory and Computation 2023, 19 (21) , 7533-7541. https://doi.org/10.1021/acs.jctc.3c00188
    2. Yi-Fan Hou, Fuchun Ge, Pavlo O. Dral. Explicit Learning of Derivatives with the KREG and pKREG Models on the Example of Accurate Representation of Molecular Potential Energy Surfaces. Journal of Chemical Theory and Computation 2023, 19 (8) , 2369-2379. https://doi.org/10.1021/acs.jctc.2c01038
    3. Chong Teng, Yang Wang, Daniel Huang, Katherine Martin, Jean-Baptiste Tristan, Junwei Lucas Bao. Dual-Level Training of Gaussian Processes with Physically Inspired Priors for Geometry Optimizations. Journal of Chemical Theory and Computation 2022, 18 (9) , 5739-5754. https://doi.org/10.1021/acs.jctc.2c00546
    4. Yangqiu Liu, Hexiang Qi, Ming Lei. Elastic Image Pair Method for Finding Transition States on Potential Energy Surfaces Using Only First Derivatives. Journal of Chemical Theory and Computation 2022, 18 (8) , 5108-5115. https://doi.org/10.1021/acs.jctc.2c00137
    5. Jon Paul Janet . Data-Driven Mapping of Inorganic Chemical Space for the Design of Transition Metal Complexes and Metal-Organic Frameworks. , 127-179. https://doi.org/10.1021/bk-2022-1416.ch007
    6. Ganesh Sivaraman, Nicholas E. Jackson. Coarse-Grained Density Functional Theory Predictions via Deep Kernel Learning. Journal of Chemical Theory and Computation 2022, 18 (2) , 1129-1141. https://doi.org/10.1021/acs.jctc.1c01001
    7. Daniel Born, Johannes Kästner. Geometry Optimization in Internal Coordinates Based on Gaussian Process Regression: Comparison of Two Approaches. Journal of Chemical Theory and Computation 2021, 17 (9) , 5955-5967. https://doi.org/10.1021/acs.jctc.1c00517
    8. Aditya Nandy, Chenru Duan, Michael G. Taylor, Fang Liu, Adam H. Steeves, Heather J. Kulik. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chemical Reviews 2021, 121 (16) , 9927-10000. https://doi.org/10.1021/acs.chemrev.1c00347
    9. Ignacio Fdez. Galván, Gerardo Raggi, Roland Lindh. Restricted-Variance Constrained, Reaction Path, and Transition State Molecular Optimizations Using Gradient-Enhanced Kriging. Journal of Chemical Theory and Computation 2021, 17 (1) , 571-582. https://doi.org/10.1021/acs.jctc.0c01163
    10. Alexander Denzel, Johannes Kästner. Hessian Matrix Update Scheme for Transition State Search Based on Gaussian Process Regression. Journal of Chemical Theory and Computation 2020, 16 (8) , 5083-5089. https://doi.org/10.1021/acs.jctc.0c00348
    11. Gerardo Raggi, Ignacio Fdez. Galván, Christian L. Ritterhoff, Morgane Vacher, Roland Lindh. Restricted-Variance Molecular Geometry Optimization Based on Gradient-Enhanced Kriging. Journal of Chemical Theory and Computation 2020, 16 (6) , 3989-4001. https://doi.org/10.1021/acs.jctc.0c00257
    12. Pavlo O. Dral. Quantum Chemistry in the Age of Machine Learning. The Journal of Physical Chemistry Letters 2020, 11 (6) , 2336-2347. https://doi.org/10.1021/acs.jpclett.9b03664
    13. Olli-Pekka Koistinen, Vilhjálmur Ásgeirsson, Aki Vehtari, Hannes Jónsson. Minimum Mode Saddle Point Searches Using Gaussian Process Regression with Inverse-Distance Covariance Function. Journal of Chemical Theory and Computation 2020, 16 (1) , 499-509. https://doi.org/10.1021/acs.jctc.9b01038
    14. Alexander Denzel, Bernard Haasdonk, Johannes Kästner. Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. The Journal of Physical Chemistry A 2019, 123 (44) , 9600-9611. https://doi.org/10.1021/acs.jpca.9b08239
    15. Huijie Tian, Srinivas Rangarajan. Predicting Adsorption Energies Using Multifidelity Data. Journal of Chemical Theory and Computation 2019, 15 (10) , 5588-5600. https://doi.org/10.1021/acs.jctc.9b00336
    16. Frederic Rapp, Marco Roth. Quantum Gaussian process regression for Bayesian optimization. Quantum Machine Intelligence 2024, 6 (1) https://doi.org/10.1007/s42484-023-00138-9
    17. Selin Bac, Zhenzhuo Lan, Shaama Mallikarjun Sharada. Transition Structures, Reaction Paths, and Kinetics: Methods and Applications in Catalysis. 2024, 496-518. https://doi.org/10.1016/B978-0-12-821978-2.00006-4
    18. Chong Teng, Daniel Huang, Elizabeth Donahue, Junwei Lucas Bao. Exploring torsional conformer space with physical prior mean function-driven meta-Gaussian processes. The Journal of Chemical Physics 2023, 159 (21) https://doi.org/10.1063/5.0176709
    19. Lei Zhang, Pingwen Zhang, Xiangcheng Zheng. A model-free shrinking-dimer saddle dynamics for finding saddle point and solution landscape. Japan Journal of Industrial and Applied Mathematics 2023, 40 (3) , 1677-1693. https://doi.org/10.1007/s13160-023-00604-8
    20. You Lu, Kakali Sen, Chin Yong, David S. D. Gunn, John A. Purton, Jingcheng Guan, Alec Desmoutier, Jamal Abdul Nasir, Xingfan Zhang, Lei Zhu, Qing Hou, Joe Jackson-Masters, Sam Watts, Rowan Hanson, Harry N. Thomas, Omal Jayawardena, Andrew J. Logsdail, Scott M. Woodley, Hans M. Senn, Paul Sherwood, C. Richard A. Catlow, Alexey A. Sokol, Thomas W. Keal. Multiscale QM/MM modelling of catalytic systems with ChemShell. Physical Chemistry Chemical Physics 2023, 25 (33) , 21816-21835. https://doi.org/10.1039/D3CP00648D
    21. Johannes K. Krondorfer, Christian W. Binder, Andreas W. Hauser. Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials. The Journal of Chemical Physics 2023, 159 (1) https://doi.org/10.1063/5.0154989
    22. Gunnar Schmitz, Bastian Schnieder. Adaptive regularized Gaussian process regression for application in the context of hydrogen adsorption on graphene sheets. Journal of Computational Chemistry 2023, 44 (6) , 732-744. https://doi.org/10.1002/jcc.27035
    23. Yuxinxin Chen, Yanchi Ou, Peikun Zheng, Yaohuang Huang, Fuchun Ge, Pavlo O. Dral. Benchmark of general-purpose machine learning-based quantum mechanical method AIQM1 on reaction barrier heights. The Journal of Chemical Physics 2023, 158 (7) https://doi.org/10.1063/5.0137101
    24. Oskar Weser, Björn Hein‐Janke, Ricardo A. Mata. Automated handling of complex chemical structures in Z ‐matrix coordinates—The chemcoord library. Journal of Computational Chemistry 2023, 44 (5) , 710-726. https://doi.org/10.1002/jcc.27029
    25. Johannes T. Margraf, Hyunwook Jung, Christoph Scheurer, Karsten Reuter. Exploring catalytic reaction networks with machine learning. Nature Catalysis 2023, 6 (2) , 112-121. https://doi.org/10.1038/s41929-022-00896-y
    26. Chong Teng, Daniel Huang, Junwei Lucas Bao. A spur to molecular geometry optimization: Gradient-enhanced universal kriging with on-the-fly adaptive ab initio prior mean functions in curvilinear coordinates. The Journal of Chemical Physics 2023, 158 (2) https://doi.org/10.1063/5.0133675
    27. Roland Lindh, Ignacio Fdez. Galván. Molecular structure optimizations with Gaussian process regression. 2023, 391-428. https://doi.org/10.1016/B978-0-323-90049-2.00017-2
    28. Shuting Gu, Hongqiao Wang, Xiang Zhou. Active Learning for Saddle Point Calculation. Journal of Scientific Computing 2022, 93 (3) https://doi.org/10.1007/s10915-022-02040-1
    29. Cyrille Lavigne, Gabe Gomes, Robert Pollice, Alán Aspuru-Guzik. Guided discovery of chemical reaction pathways with imposed activation. Chemical Science 2022, 13 (46) , 13857-13871. https://doi.org/10.1039/D2SC05135D
    30. Daniel Huang, Chong Teng, Junwei Lucas Bao, Jean-Baptiste Tristan. mad-GP: automatic differentiation of Gaussian processes for molecules and materials. Journal of Mathematical Chemistry 2022, 60 (6) , 969-1000. https://doi.org/10.1007/s10910-022-01334-x
    31. Daniel Huang, Junwei Lucas Bao, Jean-Baptiste Tristan. Geometry meta-optimization. The Journal of Chemical Physics 2022, 156 (13) https://doi.org/10.1063/5.0087165
    32. Shusen Chen, Taylor Nielson, Elayna Zalit, Bastian Bjerkem Skjelstad, Braden Borough, William J. Hirschi, Spencer Yu, David Balcells, Daniel H. Ess. Automated Construction and Optimization Combined with Machine Learning to Generate Pt(II) Methane C–H Activation Transition States. Topics in Catalysis 2022, 65 (1-4) , 312-324. https://doi.org/10.1007/s11244-021-01506-0
    33. Max Pinheiro, Fuchun Ge, Nicolas Ferré, Pavlo O. Dral, Mario Barbatti. Choosing the right molecular machine learning potential. Chemical Science 2021, 12 (43) , 14396-14413. https://doi.org/10.1039/D1SC03564A
    34. Guan Zhang, Jin Li, Bo Long, Zongkuan Liu. Automated reaction mechanisms and kinetics based transition state search process AMK-gau_xtb and its application to the substitution reaction of the nitroso group in 2,4,6-trinitrotoluene by hydroxide anion in the aqueous phase. Physical Chemistry Chemical Physics 2021, 23 (41) , 23673-23683. https://doi.org/10.1039/D1CP02144C
    35. Julia Westermayr, Michael Gastegger, Kristof T. Schütt, Reinhard J. Maurer. Perspective on integrating machine learning into computational chemistry and materials science. The Journal of Chemical Physics 2021, 154 (23) https://doi.org/10.1063/5.0047760
    36. Pascal Friederich, Florian Häse, Jonny Proppe, Alán Aspuru-Guzik. Machine-learned potentials for next-generation matter simulations. Nature Materials 2021, 20 (6) , 750-761. https://doi.org/10.1038/s41563-020-0777-6
    37. Jiayan Xu, Xiao-Ming Cao, P. Hu. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis. Physical Chemistry Chemical Physics 2021, 23 (19) , 11155-11179. https://doi.org/10.1039/D1CP01349A
    38. Sami Kaappa, Estefanía Garijo del Río, Karsten Wedel Jacobsen. Global optimization of atomic structures with gradient-enhanced Gaussian process regression. Physical Review B 2021, 103 (17) https://doi.org/10.1103/PhysRevB.103.174114
    39. Mark C. Palenik. Initial estimate for minimum energy pathways and transition states using velocities in internal coordinates. Chemical Physics 2021, 542 , 111046. https://doi.org/10.1016/j.chemphys.2020.111046
    40. Estefanía Garijo del Río, Sami Kaappa, José A. Garrido Torres, Thomas Bligaard, Karsten Wedel Jacobsen. Machine learning with bond information for local structure optimizations in surface science. The Journal of Chemical Physics 2020, 153 (23) https://doi.org/10.1063/5.0033778
    41. Gunnar Schmitz, Emil Lund Klinting, Ove Christiansen. A Gaussian process regression adaptive density guided approach for potential energy surface construction. The Journal of Chemical Physics 2020, 153 (6) https://doi.org/10.1063/5.0015344
    42. Gabriel Laude, Danilo Calderini, Ralph Welsch, Jeremy O. Richardson. Calculations of quantum tunnelling rates for muonium reactions with methane, ethane and propane. Physical Chemistry Chemical Physics 2020, 22 (29) , 16843-16854. https://doi.org/10.1039/D0CP01346C
    43. Ralf Meyer, Andreas W. Hauser. Geometry optimization using Gaussian process regression in internal coordinate systems. The Journal of Chemical Physics 2020, 152 (8) https://doi.org/10.1063/1.5144603
    44. Masaru Kondo, H. D. P. Wathsala, Makoto Sako, Yutaro Hanatani, Kazunori Ishikawa, Satoshi Hara, Takayuki Takaai, Takashi Washio, Shinobu Takizawa, Hiroaki Sasai. Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut–Currier and [3+2] annulation sequence. Chemical Communications 2020, 56 (8) , 1259-1262. https://doi.org/10.1039/C9CC08526B
    45. Pavlo O. Dral. MLatom : A program package for quantum chemical research assisted by machine learning. Journal of Computational Chemistry 2019, 40 (26) , 2339-2347. https://doi.org/10.1002/jcc.26004

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect