ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches

Cite this: J. Chem. Theory Comput. 2018, 14, 11, 5725–5738
Publication Date (Web):October 9, 2018
https://doi.org/10.1021/acs.jctc.8b00842
Copyright © 2018 American Chemical Society

    Article Views

    2635

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The development of van der Waals density functional approximations (vdW-DFAs) has gained considerable interest over the past decade. While in a strictest sense, energy calculations with vdW-DFAs should be carried out fully self-consistently, we demonstrate conclusively for a total of 11 methods that such a strategy only increases the computational time effort without having any significant effect on energetic properties, electron densities, or orbital-energy differences. The strategy to apply a nonlocal vdW-DFA kernel as an additive correction to a fully converged conventional DFA result is therefore justified and more efficient. As part of our study, we utilize the extensive GMTKN55 database for general main-group thermochemistry, kinetics, and noncovalent interactions [Phys. Chem. Chem. Phys.2017, 19, 32184], which allows us to analyze the very promising B97M-V [J. Chem. Phys.2015, 142, 074111] and ωB97M-V [J. Chem. Phys.2016, 144, 214110] DFAs. We also present new DFT-D3(BJ) based counterparts of these two methods and of ωB97X-V [J. Chem. Theory Comput2013, 9, 263], which are faster variants with similar accuracy. Our study concludes with updated recommendations for the general method user, based on our current overview of 325 dispersion-corrected and -uncorrected DFA variants analyzed for GMTKN55. vdW-DFAs are the best representatives of the three highest rungs of Jacob’s Ladder, namely, B97M-V, ωB97M-V, and DSD-PBEP86-NL.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.8b00842.

    • WTMAD schemes, WTMAD-1 values of all assessed methods, WTMAD-2 values of the DFT-D3 methods optimized in this study, statistical results for all methods, ratios of mean absolute deviations, DFT-D3 parametrizations, comparison of B97M-V and ωB97M-V to the best meta-GGA and hybrid functionals, updated recommendations for GMTKN55 and its categories, average WTMAD values for the four highest rungs of Jacob’s ladder, grid-dependence study, and convergence problems. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 163 publications.

    1. Dominique A. Wappett, Lars Goerigk. Exploring CPS-Extrapolated DLPNO–CCSD(T1) Reference Values for Benchmarking DFT Methods on Enzymatically Catalyzed Reactions. The Journal of Physical Chemistry A 2024, 128 (1) , 62-72. https://doi.org/10.1021/acs.jpca.3c05086
    2. Peter Eastman, Raimondas Galvelis, Raúl P. Peláez, Charlles R. A. Abreu, Stephen E. Farr, Emilio Gallicchio, Anton Gorenko, Michael M. Henry, Frank Hu, Jing Huang, Andreas Krämer, Julien Michel, Joshua A. Mitchell, Vijay S. Pande, João PGLM Rodrigues, Jaime Rodriguez-Guerra, Andrew C. Simmonett, Sukrit Singh, Jason Swails, Philip Turner, Yuanqing Wang, Ivy Zhang, John D. Chodera, Gianni De Fabritiis, Thomas E. Markland. OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials. The Journal of Physical Chemistry B 2024, 128 (1) , 109-116. https://doi.org/10.1021/acs.jpcb.3c06662
    3. Saswata Dasgupta, Etienne Palos, Yuanhui Pan, Francesco Paesani. Balance between Physical Interpretability and Energetic Predictability in Widely Used Dispersion-Corrected Density Functionals. Journal of Chemical Theory and Computation 2024, 20 (1) , 49-67. https://doi.org/10.1021/acs.jctc.3c00903
    4. Susanne Fürst, Martin Kaupp, Artur Wodyński. Range-Separated Local Hybrid Functionals with Small Fractional-Charge and Fractional-Spin Errors: Escaping the Zero-Sum Game of DFT Functionals. Journal of Chemical Theory and Computation 2023, 19 (23) , 8639-8653. https://doi.org/10.1021/acs.jctc.3c00877
    5. Dominique A. Wappett, Lars Goerigk. Benchmarking Density Functional Theory Methods for Metalloenzyme Reactions: The Introduction of the MME55 Set. Journal of Chemical Theory and Computation 2023, 19 (22) , 8365-8383. https://doi.org/10.1021/acs.jctc.3c00558
    6. Mostafa Abedi, Jörg Behler, C. Franklin Goldsmith. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane. Journal of Chemical Theory and Computation 2023, 19 (21) , 7825-7832. https://doi.org/10.1021/acs.jctc.3c00469
    7. Alexander D. Roth, Christine E. Wamsley, Sarah M. Haynes, Dasan M. Thamattoor. Adamantylidenecarbene: Photochemical Generation, Trapping, and Theoretical Studies. The Journal of Organic Chemistry 2023, 88 (20) , 14413-14422. https://doi.org/10.1021/acs.joc.3c01399
    8. Charlene Harriswangler, Juan C. Frías, M. Teresa Albelda, Laura Valencia, Enrique García-España, David Esteban-Gómez, Carlos Platas-Iglesias. Donor Radii in Rare-Earth Complexes. Inorganic Chemistry 2023, 62 (41) , 17030-17040. https://doi.org/10.1021/acs.inorgchem.3c03126
    9. Morten Engsvang, Jakub Kubečka, Jonas Elm. Toward Modeling the Growth of Large Atmospheric Sulfuric Acid–Ammonia Clusters. ACS Omega 2023, 8 (38) , 34597-34609. https://doi.org/10.1021/acsomega.3c03521
    10. Cameron J. Mackie, Wenchao Lu, Jiashu Liang, Oleg Kostko, Biswajit Bandyopadhyay, Ishan Gupta, Musahid Ahmed, Martin Head-Gordon. Magic Numbers and Stabilities of Photoionized Water Clusters: Computational and Experimental Characterization of the Nanosolvated Hydronium Ion. The Journal of Physical Chemistry A 2023, 127 (29) , 5999-6011. https://doi.org/10.1021/acs.jpca.3c02230
    11. Pierpaolo Morgante, Jochen Autschbach. Strategies to Calculate Fukui Functions and Applications to Radicals with SOMO–HOMO Inversion. Journal of Chemical Theory and Computation 2023, 19 (13) , 3929-3942. https://doi.org/10.1021/acs.jctc.3c00256
    12. Susi Lehtola. Atomic Electronic Structure Calculations with Hermite Interpolating Polynomials. The Journal of Physical Chemistry A 2023, 127 (18) , 4180-4193. https://doi.org/10.1021/acs.jpca.3c00729
    13. Edoardo Spadetto, Pier Herman Theodoor Philipsen, Arno Förster, Lucas Visscher. Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. Journal of Chemical Theory and Computation 2023, 19 (5) , 1499-1516. https://doi.org/10.1021/acs.jctc.2c01201
    14. Susanne Fürst, Matthias Haasler, Robin Grotjahn, Martin Kaupp. Full Implementation, Optimization, and Evaluation of a Range-Separated Local Hybrid Functional with Wide Accuracy for Ground and Excited States. Journal of Chemical Theory and Computation 2023, 19 (2) , 488-502. https://doi.org/10.1021/acs.jctc.2c00782
    15. Golokesh Santra, Jan M.L. Martin. Performance of Localized-Orbital Coupled-Cluster Approaches for the Conformational Energies of Longer n-Alkane Chains. The Journal of Physical Chemistry A 2022, 126 (50) , 9375-9391. https://doi.org/10.1021/acs.jpca.2c06407
    16. Joonho Lee, Adam Rettig, Xintian Feng, Evgeny Epifanovsky, Martin Head-Gordon. Faster Exact Exchange for Solids via occ-RI-K: Application to Combinatorially Optimized Range-Separated Hybrid Functionals for Simple Solids with Pseudopotentials Near the Basis Set Limit. Journal of Chemical Theory and Computation 2022, 18 (12) , 7336-7349. https://doi.org/10.1021/acs.jctc.2c00742
    17. Andreas Buchgraitz Jensen, Jakub Kubečka, Gunnar Schmitz, Ove Christiansen, Jonas Elm. Massive Assessment of the Binding Energies of Atmospheric Molecular Clusters. Journal of Chemical Theory and Computation 2022, 18 (12) , 7373-7383. https://doi.org/10.1021/acs.jctc.2c00825
    18. Romit Chakraborty, Kurtis M. Carsch, David E. Jaramillo, Yuto Yabuuchi, Hiroyasu Furukawa, Jeffrey R. Long, Martin Head-Gordon. Prediction of Multiple Hydrogen Ligation at a Vanadium(II) Site in a Metal–Organic Framework. The Journal of Physical Chemistry Letters 2022, 13 (44) , 10471-10478. https://doi.org/10.1021/acs.jpclett.2c02844
    19. Antonio Di Sabato, Francesca D’Acunzo, Dario Filippini, Fabrizio Vetica, Antonio Brasiello, Davide Corinti, Enrico Bodo, Cinzia Michenzi, Edoardo Panzetta, Patrizia Gentili. Unusually Chemoselective Photocyclization of 2-(Hydroxyimino)aldehydes to Cyclobutanol Oximes: Synthetic, Stereochemical, and Mechanistic Aspects. The Journal of Organic Chemistry 2022, 87 (21) , 13803-13818. https://doi.org/10.1021/acs.joc.2c01503
    20. Artur Wodyński, Martin Kaupp. Local Hybrid Functional Applicable to Weakly and Strongly Correlated Systems. Journal of Chemical Theory and Computation 2022, 18 (10) , 6111-6123. https://doi.org/10.1021/acs.jctc.2c00795
    21. Eda Kilic, Zubeyir Elmazoglu, Toghrul Almammadov, Dilay Kepil, Thibaud Etienne, Antoine Marion, Gorkem Gunbas, Safacan Kolemen. Activity-Based Photosensitizers with Optimized Triplet State Characteristics Toward Cancer Cell Selective and Image Guided Photodynamic Therapy. ACS Applied Bio Materials 2022, 5 (6) , 2754-2767. https://doi.org/10.1021/acsabm.2c00202
    22. Jiashu Liang, Xintian Feng, Diptarka Hait, Martin Head-Gordon. Revisiting the Performance of Time-Dependent Density Functional Theory for Electronic Excitations: Assessment of 43 Popular and Recently Developed Functionals from Rungs One to Four. Journal of Chemical Theory and Computation 2022, 18 (6) , 3460-3473. https://doi.org/10.1021/acs.jctc.2c00160
    23. Sebastian Ehlert, Stefan Grimme, Andreas Hansen. Conformational Energy Benchmark for Longer n-Alkane Chains. The Journal of Physical Chemistry A 2022, 126 (22) , 3521-3535. https://doi.org/10.1021/acs.jpca.2c02439
    24. Zhenghai Yang, Chao He, Shane J. Goettl, Dababrata Paul, Ralf I. Kaiser, Mateus X. Silva, Breno R. L. Galvão. Gas-Phase Preparation of Silyl Cyanide (SiH3CN) via a Radical Substitution Mechanism. Journal of the American Chemical Society 2022, 144 (19) , 8649-8657. https://doi.org/10.1021/jacs.2c01349
    25. Bardi Benediktsson, Ragnar Bjornsson. Analysis of the Geometric and Electronic Structure of Spin-Coupled Iron–Sulfur Dimers with Broken-Symmetry DFT: Implications for FeMoco. Journal of Chemical Theory and Computation 2022, 18 (3) , 1437-1457. https://doi.org/10.1021/acs.jctc.1c00753
    26. Ping Wang, Chong Shu, Hexu Ye, Malgorzata Biczysko. Structural and Energetic Properties of Amino Acids and Peptides Benchmarked by Accurate Theoretical and Experimental Data. The Journal of Physical Chemistry A 2021, 125 (45) , 9826-9837. https://doi.org/10.1021/acs.jpca.1c06504
    27. Irena Efremenko, Jan M. L. Martin. Coupled Cluster Benchmark of New DFT and Local Correlation Methods: Mechanisms of Hydroarylation and Oxidative Coupling Catalyzed by Ru(II, III) Chloride Carbonyls. The Journal of Physical Chemistry A 2021, 125 (40) , 8987-8999. https://doi.org/10.1021/acs.jpca.1c05124
    28. Jett T. Janetzki, F. Zahra M. Zahir, Robert W. Gable, Wasinee Phonsri, Keith S. Murray, Lars Goerigk, Colette Boskovic. A Convenient DFT-Based Strategy for Predicting Transition Temperatures of Valence Tautomeric Molecular Switches. Inorganic Chemistry 2021, 60 (18) , 14475-14487. https://doi.org/10.1021/acs.inorgchem.1c02273
    29. Peter Kraus. Extrapolating DFT Toward the Complete Basis Set Limit: Lessons from the PBE Family of Functionals. Journal of Chemical Theory and Computation 2021, 17 (9) , 5651-5660. https://doi.org/10.1021/acs.jctc.1c00542
    30. Jayvic C. Jimenez, Zehao Zhou, Arnold L. Rheingold, Shane M. Parker, Geneviève Sauvé. Tuning the Properties of Azadipyrromethene-Based Near-Infrared Dyes Using Intramolecular BO Chelation and Peripheral Substitutions. Inorganic Chemistry 2021, 60 (17) , 13320-13331. https://doi.org/10.1021/acs.inorgchem.1c01597
    31. Martin Blaško, Lukáš F. Pašteka, Miroslav Urban. DFT Functionals for Modeling of Polyethylene Chains Cross-Linked by Metal Atoms. DLPNO–CCSD(T) Benchmark Calculations. The Journal of Physical Chemistry A 2021, 125 (34) , 7382-7395. https://doi.org/10.1021/acs.jpca.1c04793
    32. Dávid Mester, Mihály Kállay. Spin-Scaled Range-Separated Double-Hybrid Density Functional Theory for Excited States. Journal of Chemical Theory and Computation 2021, 17 (7) , 4211-4224. https://doi.org/10.1021/acs.jctc.1c00422
    33. Golokesh Santra, Minsik Cho, Jan M. L. Martin. Exploring Avenues beyond Revised DSD Functionals: I. Range Separation, with xDSD as a Special Case. The Journal of Physical Chemistry A 2021, 125 (21) , 4614-4627. https://doi.org/10.1021/acs.jpca.1c01294
    34. Golokesh Santra, Emmanouil Semidalas, Jan M. L. Martin. Exploring Avenues beyond Revised DSD Functionals: II. Random-Phase Approximation and Scaled MP3 Corrections. The Journal of Physical Chemistry A 2021, 125 (21) , 4628-4638. https://doi.org/10.1021/acs.jpca.1c01295
    35. Diptarka Hait, Martin Head-Gordon. Orbital Optimized Density Functional Theory for Electronic Excited States. The Journal of Physical Chemistry Letters 2021, 12 (19) , 4517-4529. https://doi.org/10.1021/acs.jpclett.1c00744
    36. Asim Najibi, Marcos Casanova-Páez, Lars Goerigk. Analysis of Recent BLYP- and PBE-Based Range-Separated Double-Hybrid Density Functional Approximations for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. The Journal of Physical Chemistry A 2021, 125 (18) , 4026-4035. https://doi.org/10.1021/acs.jpca.1c02549
    37. Nisha Mehta, Thomas Fellowes, Jonathan M. White, Lars Goerigk. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions?. Journal of Chemical Theory and Computation 2021, 17 (5) , 2783-2806. https://doi.org/10.1021/acs.jctc.1c00006
    38. Hanwei Li, Bernardino Tirri, Eric Brémond, Juan Carlos Sancho-García, Carlo Adamo. Beyond Chemical Accuracy for Alkane Thermochemistry: The DHthermo Approach. The Journal of Organic Chemistry 2021, 86 (8) , 5538-5545. https://doi.org/10.1021/acs.joc.1c00058
    39. Golokesh Santra, Jan M.L. Martin. What Types of Chemical Problems Benefit from Density-Corrected DFT? A Probe Using an Extensive and Chemically Diverse Test Suite. Journal of Chemical Theory and Computation 2021, 17 (3) , 1368-1379. https://doi.org/10.1021/acs.jctc.0c01055
    40. Susi Lehtola, Maria Dimitrova, Heike Fliegl, Dage Sundholm. Benchmarking Magnetizabilities with Recent Density Functionals. Journal of Chemical Theory and Computation 2021, 17 (3) , 1457-1468. https://doi.org/10.1021/acs.jctc.0c01190
    41. Kristian Kříž, Martin Nováček, Jan Řezáč. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. Journal of Chemical Theory and Computation 2021, 17 (3) , 1548-1561. https://doi.org/10.1021/acs.jctc.0c01341
    42. Claudia S. Cox, Valeria Cossich Galicia, Martina Lessio. Computational Insights into As(V) Removal from Water by the UiO-66 Metal–Organic Framework. The Journal of Physical Chemistry C 2021, 125 (5) , 3157-3168. https://doi.org/10.1021/acs.jpcc.0c09465
    43. Dávid Mester, Mihály Kállay. A Simple Range-Separated Double-Hybrid Density Functional Theory for Excited States. Journal of Chemical Theory and Computation 2021, 17 (2) , 927-942. https://doi.org/10.1021/acs.jctc.0c01135
    44. Adam Rettig, Diptarka Hait, Luke W. Bertels, Martin Head-Gordon. Third-Order Møller–Plesset Theory Made More Useful? The Role of Density Functional Theory Orbitals. Journal of Chemical Theory and Computation 2020, 16 (12) , 7473-7489. https://doi.org/10.1021/acs.jctc.0c00986
    45. Stefan Vuckovic, Kieron Burke. Quantifying and Understanding Errors in Molecular Geometries. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9957-9964. https://doi.org/10.1021/acs.jpclett.0c03034
    46. Jian-Qing Qi, Lei Jiao. DFT Study on the Mechanism of 4,4′-Bipyridine-Catalyzed Nitrobenzene Reduction by Diboron(4) Compounds. The Journal of Organic Chemistry 2020, 85 (21) , 13877-13885. https://doi.org/10.1021/acs.joc.0c01963
    47. Abhishek Sirohiwal, Frank Neese, Dimitrios A. Pantazis. Protein Matrix Control of Reaction Center Excitation in Photosystem II. Journal of the American Chemical Society 2020, 142 (42) , 18174-18190. https://doi.org/10.1021/jacs.0c08526
    48. Georgi Popov, Goran Bačić, Miika Mattinen, Toni Manner, Hannu Lindström, Heli Seppänen, Sami Suihkonen, Marko Vehkamäki, Marianna Kemell, Pasi Jalkanen, Kenichiro Mizohata, Jyrki Räisänen, Markku Leskelä, Hanna Maarit Koivula, Seán T. Barry, Mikko Ritala. Atomic Layer Deposition of PbS Thin Films at Low Temperatures. Chemistry of Materials 2020, 32 (19) , 8216-8228. https://doi.org/10.1021/acs.chemmater.0c01887
    49. Jan Řezáč. Non-Covalent Interactions Atlas Benchmark Data Sets 2: Hydrogen Bonding in an Extended Chemical Space. Journal of Chemical Theory and Computation 2020, 16 (10) , 6305-6316. https://doi.org/10.1021/acs.jctc.0c00715
    50. Abhishek Sirohiwal, Romain Berraud-Pache, Frank Neese, Róbert Izsák, Dimitrios A. Pantazis. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. The Journal of Physical Chemistry B 2020, 124 (40) , 8761-8771. https://doi.org/10.1021/acs.jpcb.0c05761
    51. Peter Kraus. Basis Set Extrapolations for Density Functional Theory. Journal of Chemical Theory and Computation 2020, 16 (9) , 5712-5722. https://doi.org/10.1021/acs.jctc.0c00684
    52. Emmanouil Semidalas, Jan M. L. Martin. Canonical and DLPNO-Based G4(MP2)XK-Inspired Composite Wave Function Methods Parametrized against Large and Chemically Diverse Training Sets: Are They More Accurate and/or Robust than Double-Hybrid DFT?. Journal of Chemical Theory and Computation 2020, 16 (7) , 4238-4255. https://doi.org/10.1021/acs.jctc.0c00189
    53. Alberto Fabrizio, Riccardo Petraglia, Clemence Corminboeuf. Balancing Density Functional Theory Interaction Energies in Charged Dimers Precursors to Organic Semiconductors. Journal of Chemical Theory and Computation 2020, 16 (6) , 3530-3542. https://doi.org/10.1021/acs.jctc.9b01193
    54. Benjamin G. Janesko, Pragya Verma, Giovanni Scalmani, Michael J. Frisch, Donald G. Truhlar. M11plus, a Range-Separated Hybrid Meta Functional Incorporating Nonlocal Rung-3.5 Correlation, Exhibits Broad Accuracy on Diverse Databases. The Journal of Physical Chemistry Letters 2020, 11 (8) , 3045-3050. https://doi.org/10.1021/acs.jpclett.0c00549
    55. Daniel S. Levine, Diptarka Hait, Norm M. Tubman, Susi Lehtola, K. Birgitta Whaley, Martin Head-Gordon. CASSCF with Extremely Large Active Spaces Using the Adaptive Sampling Configuration Interaction Method. Journal of Chemical Theory and Computation 2020, 16 (4) , 2340-2354. https://doi.org/10.1021/acs.jctc.9b01255
    56. Gunnar Schmitz, Jonas Elm. Assessment of the DLPNO Binding Energies of Strongly Noncovalent Bonded Atmospheric Molecular Clusters. ACS Omega 2020, 5 (13) , 7601-7612. https://doi.org/10.1021/acsomega.0c00436
    57. Josie Hendrix, Partha P. Bera, Timothy J. Lee, Martin Head-Gordon. Cation, Anion, and Radical Isomers of C4H4N: Computational Characterization and Implications for Astrophysical and Planetary Environments. The Journal of Physical Chemistry A 2020, 124 (10) , 2001-2013. https://doi.org/10.1021/acs.jpca.9b11305
    58. Diptarka Hait, Martin Head-Gordon. Excited State Orbital Optimization via Minimizing the Square of the Gradient: General Approach and Application to Singly and Doubly Excited States via Density Functional Theory. Journal of Chemical Theory and Computation 2020, 16 (3) , 1699-1710. https://doi.org/10.1021/acs.jctc.9b01127
    59. Diptarka Hait, Martin Head-Gordon. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn–Sham Approach. The Journal of Physical Chemistry Letters 2020, 11 (3) , 775-786. https://doi.org/10.1021/acs.jpclett.9b03661
    60. Dimitrios G. Liakos, Yang Guo, Frank Neese. Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems. The Journal of Physical Chemistry A 2020, 124 (1) , 90-100. https://doi.org/10.1021/acs.jpca.9b05734
    61. Holger Kruse, Jiří Šponer. Revisiting the Potential Energy Surface of the Stacked Cytosine Dimer: FNO-CCSD(T) Interaction Energies, SAPT Decompositions, and Benchmarking. The Journal of Physical Chemistry A 2019, 123 (42) , 9209-9222. https://doi.org/10.1021/acs.jpca.9b05940
    62. Dominique A. Wappett, Lars Goerigk. Toward a Quantum-Chemical Benchmark Set for Enzymatically Catalyzed Reactions: Important Steps and Insights. The Journal of Physical Chemistry A 2019, 123 (32) , 7057-7074. https://doi.org/10.1021/acs.jpca.9b05088
    63. Golokesh Santra, Nitai Sylvetsky, Jan M. L. Martin. Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. The Journal of Physical Chemistry A 2019, 123 (24) , 5129-5143. https://doi.org/10.1021/acs.jpca.9b03157
    64. Mark A. Iron, Trevor Janes. Evaluating Transition Metal Barrier Heights with the Latest Density Functional Theory Exchange–Correlation Functionals: The MOBH35 Benchmark Database. The Journal of Physical Chemistry A 2019, 123 (17) , 3761-3781. https://doi.org/10.1021/acs.jpca.9b01546
    65. Ezra L. Clark, Jonathan Wong, Alejandro J. Garza, Zhou Lin, Martin Head-Gordon, Alexis T. Bell. Explaining the Incorporation of Oxygen Derived from Solvent Water into the Oxygenated Products of CO Reduction over Cu. Journal of the American Chemical Society 2019, 141 (10) , 4191-4193. https://doi.org/10.1021/jacs.8b13201
    66. Holger Kruse, Pavel Banáš, Jiřı́ Šponer. Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects. Journal of Chemical Theory and Computation 2019, 15 (1) , 95-115. https://doi.org/10.1021/acs.jctc.8b00643
    67. Christoph Plett, Stefan Grimme, Andreas Hansen. Conformational energies of biomolecules in solution: Extending the MPCONF196 benchmark with explicit water molecules. Journal of Computational Chemistry 2024, 45 (7) , 419-429. https://doi.org/10.1002/jcc.27248
    68. Sara Villamizar-Mendoza, Jessica Reel, Ashleigh Kimberlin, James Taylor, Melanie Howe, Gerard Rowe, Monty Fetterolf. Changing absorption intensity ratios for methylene violet Bernthsen in normal alcohols and at different temperatures. Chemical Physics Letters 2024, 208 , 141167. https://doi.org/10.1016/j.cplett.2024.141167
    69. Ramil F. Fatykhov, Igor A. Khalymbadzha, Ainur D. Sharapov, Anastasia P. Potapova, Anton N. Tsmokalyuk, Vasiliy S. Gaviko. Heptafluorobutyric Acid Catalyzed Cross-Dehydrogenative Coupling of 7-Aminocoumarins with 1,2,4-Triazines: A Straightforward Pathway to 3-Triazinyl-7-aminocoumarins. Synthesis 2024, 228 https://doi.org/10.1055/s-0042-1751570
    70. T.S. Svalova, M.V. Medvedeva, A.V. Mazur, R.A. Drokin, I.I. Butorin, A.N. Tsmokalyuk, N.N. Malysheva, V.L. Rusinov, A.N. Kozitsina. Voltammetric determination of hemagglutinin using triazolotriazine derivatives as agents for the biomolecule recognition. Electrochimica Acta 2024, 481 , 143954. https://doi.org/10.1016/j.electacta.2024.143954
    71. Romit Chakraborty, Justin J. Talbot, Hengyuan Shen, Yuto Yabuuchi, Kurtis M. Carsch, Henry Z. H. Jiang, Hiroyasu Furukawa, Jeffrey R. Long, Martin Head-Gordon. Quantum chemical modeling of hydrogen binding in metal–organic frameworks: validation, insight, predictions and challenges. Physical Chemistry Chemical Physics 2024, 26 (8) , 6490-6511. https://doi.org/10.1039/D3CP05540J
    72. Yueyang Li, Ping Zeng, Qing Lou, Xiao Su, Wei Li, Xiaojian Wang. Prediction of 19F NMR chemical shifts for organic compounds with ORCA. Journal of Magnetic Resonance 2024, 358 , 107611. https://doi.org/10.1016/j.jmr.2023.107611
    73. Lars Goerigk. Benchmarking Modern Density Functionals for Broad Applications in Chemistry. 2024, 78-93. https://doi.org/10.1016/B978-0-12-821978-2.00123-9
    74. Amy C. Hancock, Lars Goerigk. Noncovalently bound excited-state dimers: a perspective on current time-dependent density functional theory approaches applied to aromatic excimer models. RSC Advances 2023, 13 (51) , 35964-35984. https://doi.org/10.1039/D3RA07381E
    75. Peter Eastman, Pavan Kumar Behara, David L. Dotson, Raimondas Galvelis, John E. Herr, Josh T. Horton, Yuezhi Mao, John D. Chodera, Benjamin P. Pritchard, Yuanqing Wang, Gianni De Fabritiis, Thomas E. Markland. SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials. Scientific Data 2023, 10 (1) https://doi.org/10.1038/s41597-022-01882-6
    76. Howard Z. Ma, Allan J. Canty, Richard A. J. O'Hair. Liberation of carbon monoxide from formic acid mediated by molybdenum oxyanions. Dalton Transactions 2023, 52 (43) , 15734-15746. https://doi.org/10.1039/D3DT01983G
    77. Xian He, Menghao Chen, Jiangbo Lv, Hang Xiao, Hao Wu, Rongtao Zhou, Jianghuai Hu, Ke Zeng, Gang Yang. A theoretical investigation on the chemical environment of pyrazine-2,3-dicarbonitrile and phthalonitrile: Density functional theory (DFT) calculation and experimental verification. Journal of Molecular Structure 2023, 1292 , 136117. https://doi.org/10.1016/j.molstruc.2023.136117
    78. Peter R. Spackman, Mark A. Spackman, Julian D. Gale. A transferable quantum mechanical energy model for intermolecular interactions using a single empirical parameter. IUCrJ 2023, 10 (6) , 754-765. https://doi.org/10.1107/S2052252523008941
    79. Khaoula Jaouadi, Mehdi Abdellaoui, Etienne Levernier, Pierre‐Adrien Payard, Etienne Derat, Thomas Le Saux, Cyril Ollivier, Stéphane Torelli, Ludovic Jullien, Raphaël Plasson, Louis Fensterbank, Laurence Grimaud. Regime Switch in the Dual‐Catalyzed Coupling of Alkyl Silicates with Aryl Bromides. Chemistry – A European Journal 2023, 29 (59) https://doi.org/10.1002/chem.202301780
    80. S. A. Durakov, K. T. Egiazaryan, R. S. Shamsiev, V. R. Flid. Palladium-catalyzed allylation of norbornadiene: Experimental and quantum chemical research. Fine Chemical Technologies 2023, 18 (4) , 355-380. https://doi.org/10.32362/2410-6593-2023-18-4-355-380
    81. Jeremy U. Davis, Caroline Chick Jarrold, Thomas Sommerfeld. Charge distribution in oxygen ⋅ fluorobenzene complex anions [O 2 ⋅ C 6 H 6 − n F n ] − ( n = 0–6). Chemical Physics 2023, 574 , 112023. https://doi.org/10.1016/j.chemphys.2023.112023
    82. Tarek Scheele, Tim Neudecker. Investigating the accuracy of density functional methods for molecules in electric fields. The Journal of Chemical Physics 2023, 159 (12) https://doi.org/10.1063/5.0164372
    83. Dorothea Illner, Manasvi Lingam, Roberto Peverati. On the importance and challenges of modelling extraterrestrial photopigments via density-functional theory. Molecular Physics 2023, 25 https://doi.org/10.1080/00268976.2023.2261563
    84. Jierui Zhang, Francesco Paesani, Martina Lessio. Computational insights into the interaction of water with the UiO-66 metal–organic framework and its functionalized derivatives. Journal of Materials Chemistry C 2023, 11 (30) , 10247-10258. https://doi.org/10.1039/D3TC01313H
    85. Robin Grotjahn, Martin Kaupp. A Look at Real‐World Transition‐Metal Thermochemistry and Kinetics with Local Hybrid Functionals. Israel Journal of Chemistry 2023, 63 (7-8) https://doi.org/10.1002/ijch.202200021
    86. Maya Khatun, Pratik Sarkar, Sunanda Panda, Lazumla T. Sherpa, Anakuthil Anoop. Nanoclusters and nanoalloys of group 13 elements (B, Al, and Ga): benchmarking of methods and analysis of their structures and energies. Physical Chemistry Chemical Physics 2023, 25 (29) , 19986-20000. https://doi.org/10.1039/D2CP05833B
    87. Giorgio Molteni, Alessandro Ponti. Is DFT Accurate Enough to Calculate Regioselectivity? The Case of 1,3‐Dipolar Cycloaddition of Azide to Alkynes and Alkenes. ChemPhysChem 2023, 24 (12) https://doi.org/10.1002/cphc.202300114
    88. Jiashu Liang, Xintian Feng, Xiao Liu, Martin Head-Gordon. Analytical harmonic vibrational frequencies with VV10-containing density functionals: Theory, efficient implementation, and benchmark assessments. The Journal of Chemical Physics 2023, 158 (20) https://doi.org/10.1063/5.0152838
    89. Jascha Bandemehr, Mihail Atanasov, Shashank Vittal Rao, Frank Neese, Clemens Pietzonka, Sergei I. Ivlev, Florian Kraus. Exchange Interactions and Magnetic Properties of a Molecular Mn 18 ‐Ring Complex. Chemistry – A European Journal 2023, 29 (30) https://doi.org/10.1002/chem.202203449
    90. Axel D. Becke, Golokesh Santra, Jan M. L. Martin. A double-hybrid density functional based on good local physics with outstanding performance on the GMTKN55 database. The Journal of Chemical Physics 2023, 158 (15) https://doi.org/10.1063/5.0141238
    91. K. T. Egiazaryan, R. S. Shamsiev, V. R. Flid. Enantioselectivity of norbornadiene allylation in the presence of Pd phosphine complexes: a quantum chemical prediction. Russian Chemical Bulletin 2023, 72 (4) , 838-846. https://doi.org/10.1007/s11172-023-3847-2
    92. Pierpaolo Morgante, Roberto Peverati. Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins. Molecules 2023, 28 (8) , 3487. https://doi.org/10.3390/molecules28083487
    93. Enrique M. Cabaleiro-Lago, Berta Fernández, Roberto Rodríguez-Fernández, Jesús Rodríguez-Otero, Saulo A. Vázquez. Functional group corrections to the GFN2-xTB and PM6 semiempirical methods for noncovalent interactions in alkanes and alkenes. The Journal of Chemical Physics 2023, 158 (12) https://doi.org/10.1063/5.0140668
    94. Elena R. Lopat’eva, Artem D. Kutykov, Igor B. Krylov, Alexander O. Terent’ev. 5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione—A New Lipophilic N-oxyl Radical Precursor. Molbank 2023, 2023 (1) , M1543. https://doi.org/10.3390/M1543
    95. Wessel W. A. van Ekeren, Marcelo Albuquerque, Gustav Ek, Ronnie Mogensen, William R. Brant, Luciano T. Costa, Daniel Brandell, Reza Younesi. A comparative analysis of the influence of hydrofluoroethers as diluents on solvation structure and electrochemical performance in non-flammable electrolytes. Journal of Materials Chemistry A 2023, 11 (8) , 4111-4125. https://doi.org/10.1039/D2TA08404J
    96. Daniel Roth, Thaddäus Thorwart, Clara Douglas, Lutz Greb. Bis(amidophenolato)phosphonium: Si−H Hydride Abstraction and Phosphorus‐Ligand Cooperative Activation of C−C Multiple Bonds. Chemistry – A European Journal 2023, 29 (8) https://doi.org/10.1002/chem.202203024
    97. Nikola Stamenković, Janez Cerkovnik, Nataša Poklar Ulrih. Inversion Theory Leveling as a New Methodological Approach to Antioxidant Thermodynamics: A Case Study on Phenol. Antioxidants 2023, 12 (2) , 282. https://doi.org/10.3390/antiox12020282
    98. Choon Wee Kee. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis—Challenges and Opportunities. Molecules 2023, 28 (4) , 1715. https://doi.org/10.3390/molecules28041715
    99. Stefano Ferrero, Stefano Pantaleone, Cecilia Ceccarelli, Piero Ugliengo, Mariona Sodupe, Albert Rimola. Where Does the Energy Go during the Interstellar NH 3 Formation on Water Ice? A Computational Study. The Astrophysical Journal 2023, 944 (2) , 142. https://doi.org/10.3847/1538-4357/acae8e
    100. Dale R. Lonsdale, Lars Goerigk. One-electron self-interaction error and its relationship to geometry and higher orbital occupation. The Journal of Chemical Physics 2023, 158 (4) https://doi.org/10.1063/5.0129820
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect