ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics

  • Joseph A. Gauthier
    Joseph A. Gauthier
    SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
    SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
  • Colin F. Dickens
    Colin F. Dickens
    SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
    SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
  • Hendrik H. Heenen
    Hendrik H. Heenen
    Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
  • Sudarshan Vijay
    Sudarshan Vijay
    Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
  • Stefan Ringe
    Stefan Ringe
    SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
    SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
    More by Stefan Ringe
  • , and 
  • Karen Chan*
    Karen Chan
    Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
    *E-mail: [email protected]
    More by Karen Chan
Cite this: J. Chem. Theory Comput. 2019, 15, 12, 6895–6906
Publication Date (Web):November 5, 2019
https://doi.org/10.1021/acs.jctc.9b00717
Copyright © 2019 American Chemical Society

Article Views

3548

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Abstract Image

One of the major open challenges in ab initio simulations of the electrochemical interface is the determination of electrochemical barriers under a constant driving force. Existing methods to do so include extrapolation techniques based on fully explicit treatments of the electrolyte, as well as implicit solvent models which allow for a continuous variation in electrolyte charge. Emerging hybrid continuum models have the potential to revolutionize the field, since they account for the electrolyte with little computational cost while retaining some explicit electrolyte, representing a “best of both worlds” method. In this work, we present a unified approach to determine reaction energetics from fully explicit, implicit, and hybrid treatments of the electrolyte based on a new multicapacitor model of the electrochemical interface. A given electrode potential can be achieved by a variety of interfacial structures; a crucial insight from this work is that the effective surface charge gives a good proxy of the local potential, the true driving force of electrochemical processes. In contrast, we show that the traditionally considered work function gives rise to multivalued functions depending on the simulation cell size. Furthermore, we show that the reaction energetics are largely insensitive to the countercharge distribution chosen in hybrid implicit/explicit models, which means that any of the myriad implicit electrolyte models can be equivalently applied. This work thus paves the way for the accurate treatment of ab initio reaction energetics of general surface electrochemical processes using both implicit and explicit electrolytes.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.9b00717.

  • Further explanation of topics in the paper; raw data to reproduce the figures found in the main text, including computational simulation input files (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 71 publications.

  1. Nawras Abidi, Stephan N. Steinmann. An Electrostatically Embedded QM/MM Scheme for Electrified Interfaces. ACS Applied Materials & Interfaces 2023, 15 (20) , 25009-25017. https://doi.org/10.1021/acsami.3c01430
  2. Dong Luan, Jianping Xiao. Adaptive Electric Fields Embedded Electrochemical Barrier Calculations. The Journal of Physical Chemistry Letters 2023, 14 (3) , 685-693. https://doi.org/10.1021/acs.jpclett.2c03588
  3. Phillips Hutchison, Robert E. Warburton, Yogesh Surendranath, Sharon Hammes-Schiffer. Correlation between Electronic Descriptor and Proton-Coupled Electron Transfer Thermodynamics in Doped Graphite-Conjugated Catalysts. The Journal of Physical Chemistry Letters 2022, 13 (48) , 11216-11222. https://doi.org/10.1021/acs.jpclett.2c03278
  4. Hongyan Zhao, Hao Cao, Zisheng Zhang, Yang-Gang Wang. Modeling the Potential-Dependent Kinetics of CO2 Electroreduction on Single-Nickel Atom Catalysts with Explicit Solvation. ACS Catalysis 2022, 12 (18) , 11380-11390. https://doi.org/10.1021/acscatal.2c02383
  5. Phillips Hutchison, Peter S. Rice, Robert E. Warburton, Simone Raugei, Sharon Hammes-Schiffer. Multilevel Computational Studies Reveal the Importance of Axial Ligand for Oxygen Reduction Reaction on Fe–N–C Materials. Journal of the American Chemical Society 2022, 144 (36) , 16524-16534. https://doi.org/10.1021/jacs.2c05779
  6. Paige Brimley, Hussain Almajed, Yousef Alsunni, Abdulaziz W. Alherz, Zachary J. L. Bare, Wilson A. Smith, Charles B. Musgrave. Electrochemical CO2 Reduction over Metal-/Nitrogen-Doped Graphene Single-Atom Catalysts Modeled Using the Grand-Canonical Density Functional Theory. ACS Catalysis 2022, 12 (16) , 10161-10171. https://doi.org/10.1021/acscatal.2c01832
  7. John J. Karnes, Stephen E. Weitzner, Sneha A. Akhade, Sarah E. Baker, Eric B. Duoss, Joel B. Varley. A Hybrid Quantum–Classical Study of Ion Adsorption at the Copper Electrode. The Journal of Physical Chemistry C 2022, 126 (30) , 12413-12423. https://doi.org/10.1021/acs.jpcc.2c00592
  8. Sudarshan Vijay, Georg Kastlunger, Joseph A. Gauthier, Anjli Patel, Karen Chan. Force-Based Method to Determine the Potential Dependence in Electrochemical Barriers. The Journal of Physical Chemistry Letters 2022, 13 (25) , 5719-5725. https://doi.org/10.1021/acs.jpclett.2c01367
  9. Stefan Ringe, Nicolas G. Hörmann, Harald Oberhofer, Karsten Reuter. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews 2022, 122 (12) , 10777-10820. https://doi.org/10.1021/acs.chemrev.1c00675
  10. Robert E. Warburton, Alexander V. Soudackov, Sharon Hammes-Schiffer. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chemical Reviews 2022, 122 (12) , 10599-10650. https://doi.org/10.1021/acs.chemrev.1c00929
  11. Justin C. Bui, Eric W. Lees, Lalit M. Pant, Iryna V. Zenyuk, Alexis T. Bell, Adam Z. Weber. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chemical Reviews 2022, 122 (12) , 11022-11084. https://doi.org/10.1021/acs.chemrev.1c00901
  12. Ravishankar Sundararaman, Derek Vigil-Fowler, Kathleen Schwarz. Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chemical Reviews 2022, 122 (12) , 10651-10674. https://doi.org/10.1021/acs.chemrev.1c00800
  13. Simeon D. Beinlich, Nicolas G. Hörmann, Karsten Reuter. Field Effects at Protruding Defect Sites in Electrocatalysis at Metal Electrodes?. ACS Catalysis 2022, 12 (10) , 6143-6148. https://doi.org/10.1021/acscatal.2c00997
  14. Joseph A. Gauthier, Zhou Lin, Martin Head-Gordon, Alexis T. Bell. Pathways for the Formation of C2+ Products under Alkaline Conditions during the Electrochemical Reduction of CO2. ACS Energy Letters 2022, 7 (5) , 1679-1686. https://doi.org/10.1021/acsenergylett.2c00167
  15. Naiwrit Karmodak, Sudarshan Vijay, Georg Kastlunger, Karen Chan. Computational Screening of Single and Di-Atom Catalysts for Electrochemical CO2 Reduction. ACS Catalysis 2022, 12 (9) , 4818-4824. https://doi.org/10.1021/acscatal.1c05750
  16. Aoni Xu, Nitish Govindarajan, Georg Kastlunger, Sudarshan Vijay, Karen Chan. Theories for Electrolyte Effects in CO2 Electroreduction. Accounts of Chemical Research 2022, 55 (4) , 495-503. https://doi.org/10.1021/acs.accounts.1c00679
  17. Xiangcheng Shi, Xiaoyun Lin, Ran Luo, Shican Wu, Lulu Li, Zhi-Jian Zhao, Jinlong Gong. Dynamics of Heterogeneous Catalytic Processes at Operando Conditions. JACS Au 2021, 1 (12) , 2100-2120. https://doi.org/10.1021/jacsau.1c00355
  18. Qiang Deng, Xiang Li, Ruijie Gao, Jun Wang, Zheling Zeng, Ji-Jun Zou, Shuguang Deng, Shik Chi Edman Tsang. Hydrogen-Catalyzed Acid Transformation for the Hydration of Alkenes and Epoxy Alkanes over Co–N Frustrated Lewis Pair Surfaces. Journal of the American Chemical Society 2021, 143 (50) , 21294-21301. https://doi.org/10.1021/jacs.1c08259
  19. Phillips Hutchison, Robert E. Warburton, Alexander V. Soudackov, Sharon Hammes-Schiffer. Multicapacitor Approach to Interfacial Proton-Coupled Electron Transfer Thermodynamics at Constant Potential. The Journal of Physical Chemistry C 2021, 125 (40) , 21891-21901. https://doi.org/10.1021/acs.jpcc.1c04464
  20. Jia-Xin Zhu, Jia-Bo Le, Marc T. M. Koper, Katharina Doblhoff-Dier, Jun Cheng. Effects of Adsorbed OH on Pt(100)/Water Interfacial Structures and Potential. The Journal of Physical Chemistry C 2021, 125 (39) , 21571-21579. https://doi.org/10.1021/acs.jpcc.1c04895
  21. Sneha A. Akhade, Buddhinie S. Jayathilake, Stephen E. Weitzner, Hannah V. Eshelman, Julie Hamilton, Jeremy T. Feaster, David W. Wakerley, Lei Wang, Sarah Lamaison, Dong Un Lee, Christopher Hahn, Thomas F. Jaramillo, Eric B. Duoss, Sarah E. Baker, Joel B. Varley. Electrolyte-Guided Design of Electroreductive CO Coupling on Copper Surfaces. ACS Applied Energy Materials 2021, 4 (8) , 8201-8210. https://doi.org/10.1021/acsaem.1c01427
  22. Xunhua Zhao, Yuanyue Liu. Origin of Selective Production of Hydrogen Peroxide by Electrochemical Oxygen Reduction. Journal of the American Chemical Society 2021, 143 (25) , 9423-9428. https://doi.org/10.1021/jacs.1c02186
  23. Anjli M. Patel, Sudarshan Vijay, Georg Kastlunger, Jens Kehlet Nørskov, Karen Chan. Generalizable Trends in Electrochemical Protonation Barriers. The Journal of Physical Chemistry Letters 2021, 12 (21) , 5193-5200. https://doi.org/10.1021/acs.jpclett.1c00800
  24. Francisco W. S. Lucas, R. Gary Grim, Sean A. Tacey, Courtney A. Downes, Joseph Hasse, Alex M. Roman, Carrie A. Farberow, Joshua A. Schaidle, Adam Holewinski. Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters 2021, 6 (4) , 1205-1270. https://doi.org/10.1021/acsenergylett.0c02692
  25. Nicolas G. Hörmann, Karsten Reuter. Thermodynamic Cyclic Voltammograms Based on Ab Initio Calculations: Ag(111) in Halide-Containing Solutions. Journal of Chemical Theory and Computation 2021, 17 (3) , 1782-1794. https://doi.org/10.1021/acs.jctc.0c01166
  26. Vasyl Stotskyi, Ulrich Aschauer. Water Oxidation Catalysis on the Nitrogen-Deficient SrNbO2N(001) Surface. The Journal of Physical Chemistry C 2021, 125 (4) , 2424-2430. https://doi.org/10.1021/acs.jpcc.0c09445
  27. Robert E. Warburton, Phillips Hutchison, Megan N. Jackson, Michael L. Pegis, Yogesh Surendranath, Sharon Hammes-Schiffer. Interfacial Field-Driven Proton-Coupled Electron Transfer at Graphite-Conjugated Organic Acids. Journal of the American Chemical Society 2020, 142 (49) , 20855-20864. https://doi.org/10.1021/jacs.0c10632
  28. Thomas Ludwig, Joseph A. Gauthier, Colin F. Dickens, Kristopher S. Brown, Stefan Ringe, Karen Chan, Jens K. Nørskov. Atomistic Insight into Cation Effects on Binding Energies in Cu-Catalyzed Carbon Dioxide Reduction. The Journal of Physical Chemistry C 2020, 124 (45) , 24765-24775. https://doi.org/10.1021/acs.jpcc.0c07004
  29. Sudarshan Vijay, Joseph A. Gauthier, Hendrik H. Heenen, Vanessa J. Bukas, Henrik H. Kristoffersen, Karen Chan. Dipole-Field Interactions Determine the CO2 Reduction Activity of 2D Fe–N–C Single-Atom Catalysts. ACS Catalysis 2020, 10 (14) , 7826-7835. https://doi.org/10.1021/acscatal.0c01375
  30. Aimin Ge, Georg Kastlunger, Jinhui Meng, Per Lindgren, Jia Song, Qiliang Liu, Alexander Zaslavsky, Tianquan Lian, Andrew A. Peterson. On the Coupling of Electron Transfer to Proton Transfer at Electrified Interfaces. Journal of the American Chemical Society 2020, 142 (27) , 11829-11834. https://doi.org/10.1021/jacs.0c03472
  31. Stephen E. Weitzner, Sneha A. Akhade, Joel B. Varley, Brandon C. Wood, Minoru Otani, Sarah E. Baker, Eric B. Duoss. Toward Engineering of Solution Microenvironments for the CO2 Reduction Reaction: Unraveling pH and Voltage Effects from a Combined Density-Functional–Continuum Theory. The Journal of Physical Chemistry Letters 2020, 11 (10) , 4113-4118. https://doi.org/10.1021/acs.jpclett.0c00957
  32. Ananth Govind Rajan, John Mark P. Martirez, Emily A. Carter. Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials. Journal of the American Chemical Society 2020, 142 (7) , 3600-3612. https://doi.org/10.1021/jacs.9b13708
  33. Stefan Ringe. The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37929-4
  34. Xi Chen, Muammar El Khatib, Per Lindgren, Adam Willard, Andrew J. Medford, Andrew A. Peterson. Atomistic learning in the electronically grand-canonical ensemble. npj Computational Materials 2023, 9 (1) https://doi.org/10.1038/s41524-023-01007-6
  35. Fabiola Domínguez-Flores, Marko M. Melander. Approximating constant potential DFT with canonical DFT and electrostatic corrections. The Journal of Chemical Physics 2023, 158 (14) , 144701. https://doi.org/10.1063/5.0138197
  36. Shoufu Cao, Hongyu Chen, Yuying Hu, Jiao Li, Chunyu Yang, Zengxuan Chen, Shuxian Wei, Siyuan Liu, Zhaojie Wang, Daofeng Sun, Xiaoqing Lu. MXene-based single atom catalysts for efficient CO2RR towards CO: A novel strategy for high-throughput catalyst design and screening. Chemical Engineering Journal 2023, 461 , 141936. https://doi.org/10.1016/j.cej.2023.141936
  37. Laura Braunwarth, Christoph Jung, Timo Jacob. Potential‐Dependent Pt(111)/Water Interface: Tackling the Challenge of a Consistent Treatment of Electrochemical Interfaces**. ChemPhysChem 2023, 24 (1) https://doi.org/10.1002/cphc.202200336
  38. Jack. J. Hinsch, Yun. Wang. DFT and simulation of solid-liquid interface properties and processes. 2023https://doi.org/10.1016/B978-0-323-85669-0.00101-X
  39. Simone Pezzotti, Alessandra Serva, Christopher J. Stein, Martina Havenith. Adsorption of ions and solutes at electrified metal-aqueous interfaces: insights from THz spectroscopy and simulations. 2023https://doi.org/10.1016/B978-0-323-85669-0.00092-1
  40. Boyang Li, Edward F. Holby, Guofeng Wang. Mechanistic insights into metal, nitrogen doped carbon catalysts for oxygen reduction: progress in computational modeling. Journal of Materials Chemistry A 2022, 10 (45) , 23959-23972. https://doi.org/10.1039/D2TA05991F
  41. Henrik H. Kristoffersen. Modeling Electrochemical Proton Adsorption at Constant Potential with Explicit Charging. ChemCatChem 2022, 14 (20) https://doi.org/10.1002/cctc.202200826
  42. Hendrik H. Heenen, Haeun Shin, Georg Kastlunger, Sean Overa, Joseph A. Gauthier, Feng Jiao, Karen Chan. The mechanism for acetate formation in electrochemical CO (2) reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy & Environmental Science 2022, 15 (9) , 3978-3990. https://doi.org/10.1039/D2EE01485H
  43. Sheng‐Nan Sun, Long‐Zhang Dong, Jia‐Ru Li, Jing‐Wen Shi, Jiang Liu, Yi‐Rong Wang, Qing Huang, Ya‐Qian Lan. Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO 2 Reduction. Angewandte Chemie 2022, 134 (34) https://doi.org/10.1002/ange.202207282
  44. Sheng‐Nan Sun, Long‐Zhang Dong, Jia‐Ru Li, Jing‐Wen Shi, Jiang Liu, Yi‐Rong Wang, Qing Huang, Ya‐Qian Lan. Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO 2 Reduction. Angewandte Chemie International Edition 2022, 61 (34) https://doi.org/10.1002/anie.202207282
  45. Tianwei He, Kai S. Exner. Computational electrochemistry focusing on nanostructured catalysts: challenges and opportunities. Materials Today Energy 2022, 28 , 101083. https://doi.org/10.1016/j.mtener.2022.101083
  46. Yu Liu, Xinlong Ding, Mohan Chen, Shenzhen Xu. A caveat of the charge-extrapolation scheme for modeling electrochemical reactions on semiconductor surfaces: an issue induced by a discontinuous Fermi level change. Physical Chemistry Chemical Physics 2022, 24 (25) , 15511-15521. https://doi.org/10.1039/D2CP00642A
  47. Min Liu, Ying Jin, Jinshan Pan. Relevance of implicit and explicit solvent in density-functional theory study of adsorption at electrochemical NaCl/Al interface. Materials Today Communications 2022, 31 , 103425. https://doi.org/10.1016/j.mtcomm.2022.103425
  48. Chongyi Ling, Yu Cui, Shuaihua Lu, Xiaowan Bai, Jinlan Wang. How computations accelerate electrocatalyst discovery. Chem 2022, 8 (6) , 1575-1610. https://doi.org/10.1016/j.chempr.2022.03.015
  49. Alex Aziz, Javier Carrasco. Modeling magnesium surfaces and their dissolution in an aqueous environment using an implicit solvent model. The Journal of Chemical Physics 2022, 156 (17) , 174702. https://doi.org/10.1063/5.0087683
  50. Xu Zhang, An Chen, Letian Chen, Zhen Zhou. 2D Materials Bridging Experiments and Computations for Electro/Photocatalysis. Advanced Energy Materials 2022, 12 (4) , 2003841. https://doi.org/10.1002/aenm.202003841
  51. Nitish Govindarajan, Georg Kastlunger, Hendrik H. Heenen, Karen Chan. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go?. Chemical Science 2021, 13 (1) , 14-26. https://doi.org/10.1039/D1SC04775B
  52. Hector Prats, Karen Chan. The determination of the HOR/HER reaction mechanism from experimental kinetic data. Physical Chemistry Chemical Physics 2021, 23 (48) , 27150-27158. https://doi.org/10.1039/D1CP04134G
  53. Alexandra C. Dávila López, Thorben Eggert, Karsten Reuter, Nicolas G. Hörmann. Static and dynamic water structures at interfaces: A case study with focus on Pt(111). The Journal of Chemical Physics 2021, 155 (19) , 194702. https://doi.org/10.1063/5.0067106
  54. Xu Hu, Sai Yao, Letian Chen, Xu Zhang, Menggai Jiao, Zhengyu Lu, Zhen Zhou. Understanding the role of axial O in CO 2 electroreduction on NiN 4 single-atom catalysts via simulations in realistic electrochemical environment. Journal of Materials Chemistry A 2021, 9 (41) , 23515-23521. https://doi.org/10.1039/D1TA07791K
  55. Xueping Qin, Tejs Vegge, Heine Anton Hansen. CO 2 activation at Au(110)–water interfaces: An ab initio molecular dynamics study. The Journal of Chemical Physics 2021, 155 (13) , 134703. https://doi.org/10.1063/5.0066196
  56. Arthur Hagopian, Aurélie Falcone, Mouna Ben Yahia, Jean-Sébastien Filhol. Ab initio modelling of interfacial electrochemical properties: beyond implicit solvation limitations. Journal of Physics: Condensed Matter 2021, 33 (30) , 304001. https://doi.org/10.1088/1361-648X/ac0207
  57. Sharon Hammes-Schiffer, Giulia Galli. Integration of theory and experiment in the modelling of heterogeneous electrocatalysis. Nature Energy 2021, 6 (7) , 700-705. https://doi.org/10.1038/s41560-021-00827-4
  58. Nicolas Georg Hörmann, Karsten Reuter. Thermodynamic cyclic voltammograms: peak positions and shapes. Journal of Physics: Condensed Matter 2021, 33 (26) , 264004. https://doi.org/10.1088/1361-648X/abf7a1
  59. Ruijie Gao, Jian Wang, Zhen-Feng Huang, Rongrong Zhang, Wei Wang, Lun Pan, Junfeng Zhang, Weikang Zhu, Xiangwen Zhang, Chengxiang Shi, Jongwoo Lim, Ji-Jun Zou. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nature Energy 2021, 6 (6) , 614-623. https://doi.org/10.1038/s41560-021-00826-5
  60. Zachary K. Goldsmith, Marcos F. Calegari Andrade, Annabella Selloni. Effects of applied voltage on water at a gold electrode interface from ab initio molecular dynamics. Chemical Science 2021, 12 (16) , 5865-5873. https://doi.org/10.1039/D1SC00354B
  61. Felix Studt. Grand Challenges in Computational Catalysis. Frontiers in Catalysis 2021, 1 https://doi.org/10.3389/fctls.2021.658965
  62. Saber Naserifar, Yalu Chen, Soonho Kwon, Hai Xiao, William A. Goddard. Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next-Generation Electrocatalysts. Matter 2021, 4 (1) , 195-216. https://doi.org/10.1016/j.matt.2020.11.010
  63. Stefan Ringe, Carlos G. Morales-Guio, Leanne D. Chen, Meredith Fields, Thomas F. Jaramillo, Christopher Hahn, Karen Chan. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-13777-z
  64. Karen Chan. A few basic concepts in electrochemical carbon dioxide reduction. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19369-6
  65. Nicolas G. Hörmann, Nicola Marzari, Karsten Reuter. Electrosorption at metal surfaces from first principles. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-00394-4
  66. Ken Sakaushi, Tomoaki Kumeda, Sharon Hammes-Schiffer, Marko M. Melander, Osamu Sugino. Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Physical Chemistry Chemical Physics 2020, 22 (35) , 19401-19442. https://doi.org/10.1039/D0CP02741C
  67. Geun Ho Gu, Changhyeok Choi, Yeunhee Lee, Andres B. Situmorang, Juhwan Noh, Yong‐Hyun Kim, Yousung Jung. Progress in Computational and Machine‐Learning Methods for Heterogeneous Small‐Molecule Activation. Advanced Materials 2020, 32 (35) , 1907865. https://doi.org/10.1002/adma.201907865
  68. Qiang Li, Yixin Ouyang, Shuaihua Lu, Xiaowan Bai, Yehui Zhang, Li Shi, Chongyi Ling, Jinlan Wang. Perspective on theoretical methods and modeling relating to electro-catalysis processes. Chemical Communications 2020, 56 (69) , 9937-9949. https://doi.org/10.1039/D0CC02998J
  69. Kathleen Schwarz, Ravishankar Sundararaman. The electrochemical interface in first-principles calculations. Surface Science Reports 2020, 75 (2) , 100492. https://doi.org/10.1016/j.surfrep.2020.100492
  70. Hendrik H. Heenen, Joseph A. Gauthier, Henrik H. Kristoffersen, Thomas Ludwig, Karen Chan. Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches. The Journal of Chemical Physics 2020, 152 (14) , 144703. https://doi.org/10.1063/1.5144912
  71. Joseph A. Gauthier, Leanne D. Chen, Michal Bajdich, Karen Chan. Implications of the fractional charge of hydroxide at the electrochemical interface. Physical Chemistry Chemical Physics 2020, 22 (13) , 6964-6969. https://doi.org/10.1039/C9CP05952K

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect