ACS Publications. Most Trusted. Most Cited. Most Read
Thermofield Theory for Finite-Temperature Coupled Cluster
My Activity

Figure 1Loading Img
    Article

    Thermofield Theory for Finite-Temperature Coupled Cluster
    Click to copy article linkArticle link copied!

    Other Access Options

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2019, 15, 11, 6127–6136
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.9b00744
    Published September 19, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present a coupled cluster and linear response theory to compute properties of many-electron systems at nonzero temperatures. For this purpose, we make use of the thermofield dynamics, which allows for a compact wave function representation of the thermal density matrix, and extend our recently developed framework ( J. Chem. Phys. 2019, 150, 154109, DOI: 10.1063/1.5089560) to parametrize the so-called thermal state using an exponential ansatz with cluster operators that create thermal quasiparticle excitations on a mean-field reference. As benchmark examples, we apply this method to both model (one-dimensional Hubbard and Pairing) and ab initio (atomic Beryllium and molecular Hydrogen) systems, while comparing with exact results.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 38 publications.

    1. So Hirata. New Dimension in Ab Initio Electronic Structure Theory: Temperature, Pressure, and Chemical Potential. The Journal of Physical Chemistry Letters 2025, 16 (15) , 3632-3645. https://doi.org/10.1021/acs.jpclett.5c00631
    2. William Z. Van Benschoten, James J. Shepherd. Removing Basis Set Incompleteness Error in Finite-Temperature Electronic Structure Calculations: Two-Electron Systems. The Journal of Physical Chemistry A 2024, 128 (49) , 10659-10672. https://doi.org/10.1021/acs.jpca.4c03769
    3. Hideaki Takahashi, Raffaele Borrelli. Tensor-Train Format Hierarchical Equations of Motion Formalism: Charge Transfer in Organic Semiconductors via Dissipative Holstein Models. Journal of Chemical Theory and Computation 2024, 20 (16) , 7052-7064. https://doi.org/10.1021/acs.jctc.4c00711
    4. Songhao Bao, Neil Raymond, Tao Zeng, Marcel Nooijen. Vibrational Electronic-Thermofield Coupled Cluster (VE-TFCC) Theory for Quantum Simulations of Vibronic Coupling Systems at Thermal Equilibrium. Journal of Chemical Theory and Computation 2024, 20 (14) , 5882-5900. https://doi.org/10.1021/acs.jctc.4c00338
    5. Gaurav Harsha, Thomas M. Henderson, Gustavo E. Scuseria. Thermofield Theory for Finite-Temperature Electronic Structure. The Journal of Physical Chemistry A 2023, 127 (14) , 3063-3071. https://doi.org/10.1021/acs.jpca.2c08418
    6. Felix Hummel. On the Chemical Potential of Many-Body Perturbation Theory in Extended Systems. Journal of Chemical Theory and Computation 2023, 19 (5) , 1568-1581. https://doi.org/10.1021/acs.jctc.2c01043
    7. Hayley R. Petras, William Z. Van Benschoten, Sai Kumar Ramadugu, James J. Shepherd. The Sign Problem in Density Matrix Quantum Monte Carlo. Journal of Chemical Theory and Computation 2021, 17 (10) , 6036-6052. https://doi.org/10.1021/acs.jctc.1c00078
    8. Lipeng Chen, Raffaele Borrelli, Dmitrii V. Shalashilin, Yang Zhao, Maxim F. Gelin. Simulation of Time- and Frequency-Resolved Four-Wave-Mixing Signals at Finite Temperatures: A Thermo-Field Dynamics Approach. Journal of Chemical Theory and Computation 2021, 17 (7) , 4359-4373. https://doi.org/10.1021/acs.jctc.1c00259
    9. Raffaele Borrelli, Sergey Dolgov. Expanding the Range of Hierarchical Equations of Motion by Tensor-Train Implementation. The Journal of Physical Chemistry B 2021, 125 (20) , 5397-5407. https://doi.org/10.1021/acs.jpcb.1c02724
    10. Tomislav Begušić, Jiří Vaníček. Finite-Temperature, Anharmonicity, and Duschinsky Effects on the Two-Dimensional Electronic Spectra from Ab Initio Thermo-Field Gaussian Wavepacket Dynamics. The Journal of Physical Chemistry Letters 2021, 12 (11) , 2997-3005. https://doi.org/10.1021/acs.jpclett.1c00123
    11. Yuan Liu, Tong Shen, Hang Zhang, Brenda Rubenstein. Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo. Journal of Chemical Theory and Computation 2020, 16 (7) , 4298-4314. https://doi.org/10.1021/acs.jctc.0c00288
    12. Hayley R. Petras, Sai Kumar Ramadugu, Fionn D. Malone, James J. Shepherd. Using Density Matrix Quantum Monte Carlo for Calculating Exact-on-Average Energies for ab Initio Hamiltonians in a Finite Basis Set. Journal of Chemical Theory and Computation 2020, 16 (2) , 1029-1038. https://doi.org/10.1021/acs.jctc.9b01080
    13. Alec F. White, Garnet Kin-Lic Chan. Time-Dependent Coupled Cluster Theory on the Keldysh Contour for Nonequilibrium Systems. Journal of Chemical Theory and Computation 2019, 15 (11) , 6137-6153. https://doi.org/10.1021/acs.jctc.9b00750
    14. Cian C. Reeves, Gaurav Harsha, Avijit Shee, Yuanran Zhu, Thomas Blommel, Chao Yang, K. Birgitta Whaley, Dominika Zgid, Vojtěch Vlček. Performance of wave function and Green's function methods for non-equilibrium many-body dynamics. Physical Review Research 2025, 7 (2) https://doi.org/10.1103/PhysRevResearch.7.023002
    15. Songhao Bao, Marcel Nooijen. Exploring thermal cluster cumulant approaches for the finite temperature electronic structure problem. Molecular Physics 2025, 8 https://doi.org/10.1080/00268976.2025.2468832
    16. Jannes Nys, Zakari Denis, Giuseppe Carleo. Real-time quantum dynamics of thermal states with neural thermofields. Physical Review B 2024, 109 (23) https://doi.org/10.1103/PhysRevB.109.235120
    17. Zhan Tong Zhang, Jiří J. L. Vaníček. Finite-temperature vibronic spectra from the split-operator coherence thermofield dynamics. The Journal of Chemical Physics 2024, 160 (8) https://doi.org/10.1063/5.0187823
    18. Benedicte Sverdrup Ofstad, Einar Aurbakken, Øyvind Sigmundson Schøyen, Håkon Emil Kristiansen, Simen Kvaal, Thomas Bondo Pedersen. Time‐dependent coupled‐cluster theory. WIREs Computational Molecular Science 2023, 13 (5) https://doi.org/10.1002/wcms.1666
    19. Yang Zhao. The hierarchy of Davydov’s Ansätze: From guesswork to numerically “exact” many-body wave functions. The Journal of Chemical Physics 2023, 158 (8) https://doi.org/10.1063/5.0140002
    20. James M. Callahan, John Sous, Timothy C. Berkelbach. Normal state of attractive Fermi gases from coupled-cluster theory. Physical Review A 2022, 106 (3) https://doi.org/10.1103/PhysRevA.106.033303
    21. Carlos L. Benavides-Riveros, Lipeng Chen, Christian Schilling, Sebastián Mantilla, Stefano Pittalis. Excitations of Quantum Many-Body Systems via Purified Ensembles: A Unitary-Coupled-Cluster-Based Approach. Physical Review Letters 2022, 129 (6) https://doi.org/10.1103/PhysRevLett.129.066401
    22. Yang Zhao, Kewei Sun, Lipeng Chen, Maxim Gelin. The hierarchy of Davydov's Ansätze and its applications. WIREs Computational Molecular Science 2022, 12 (4) https://doi.org/10.1002/wcms.1589
    23. Kritanjan Polley, Roger F. Loring. Two-dimensional vibronic spectroscopy with semiclassical thermofield dynamics. The Journal of Chemical Physics 2022, 156 (12) https://doi.org/10.1063/5.0083868
    24. Gaurav Harsha, Yi Xu, Thomas M. Henderson, Gustavo E. Scuseria. Thermal coupled cluster theory for SU(2) systems. Physical Review B 2022, 105 (4) https://doi.org/10.1103/PhysRevB.105.045125
    25. Marcel Nooijen, Songhao Bao. Normal ordered exponential approach to thermal properties and time-correlation functions: general theory and simple examples. Molecular Physics 2021, 119 (21-22) https://doi.org/10.1080/00268976.2021.1980832
    26. Junzi Liu, Lan Cheng. Relativistic coupled‐cluster and equation‐of‐motion coupled‐cluster methods. WIREs Computational Molecular Science 2021, 11 (6) https://doi.org/10.1002/wcms.1536
    27. Raffaele Borrelli, Maxim F. Gelin. Finite temperature quantum dynamics of complex systems: Integrating thermo‐field theories and tensor‐train methods. WIREs Computational Molecular Science 2021, 11 (6) https://doi.org/10.1002/wcms.1539
    28. Eric W. Fischer, Peter Saalfrank. A thermofield-based multilayer multiconfigurational time-dependent Hartree approach to non-adiabatic quantum dynamics at finite temperature. The Journal of Chemical Physics 2021, 155 (13) https://doi.org/10.1063/5.0064013
    29. So Hirata. Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles. The Journal of Chemical Physics 2021, 155 (9) https://doi.org/10.1063/5.0061384
    30. Ruojing Peng, Alec F. White, Huanchen Zhai, Garnet Kin-Lic Chan. Conservation laws in coupled cluster dynamics at finite temperature. The Journal of Chemical Physics 2021, 155 (4) https://doi.org/10.1063/5.0059257
    31. Tong Shen, Yuan Liu, Yang Yu, Brenda M. Rubenstein. Finite temperature auxiliary field quantum Monte Carlo in the canonical ensemble. The Journal of Chemical Physics 2020, 153 (20) https://doi.org/10.1063/5.0026606
    32. Joseph E. Lawrence, David E. Manolopoulos. Confirming the role of nuclear tunneling in aqueous ferrous–ferric electron transfer. The Journal of Chemical Physics 2020, 153 (15) https://doi.org/10.1063/5.0022678
    33. Gaurav Harsha, Thomas M. Henderson, Gustavo E. Scuseria. Wave function methods for canonical ensemble thermal averages in correlated many-fermion systems. The Journal of Chemical Physics 2020, 153 (12) https://doi.org/10.1063/5.0022702
    34. Nicholas H. Stair, Francesco A. Evangelista. Exploring Hilbert space on a budget: Novel benchmark set and performance metric for testing electronic structure methods in the regime of strong correlation. The Journal of Chemical Physics 2020, 153 (10) https://doi.org/10.1063/5.0014928
    35. Tomislav Begušić, Jiří Vaníček. On-the-fly ab initio semiclassical evaluation of vibronic spectra at finite temperature. The Journal of Chemical Physics 2020, 153 (2) https://doi.org/10.1063/5.0013677
    36. So Hirata, Punit K. Jha. Finite-temperature many-body perturbation theory in the grand canonical ensemble. The Journal of Chemical Physics 2020, 153 (1) https://doi.org/10.1063/5.0009679
    37. Alec F. White, Garnet Kin-Lic Chan. Finite-temperature coupled cluster: Efficient implementation and application to prototypical systems. The Journal of Chemical Physics 2020, 152 (22) https://doi.org/10.1063/5.0009845
    38. Philip Shushkov, Thomas F. Miller. Real-time density-matrix coupled-cluster approach for closed and open systems at finite temperature. The Journal of Chemical Physics 2019, 151 (13) https://doi.org/10.1063/1.5121749

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2019, 15, 11, 6127–6136
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jctc.9b00744
    Published September 19, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    854

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.