ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Mn(II)-Based MRI Contrast Agent Candidate for Vascular Imaging

  • Ferenc K. Kálmán
    Ferenc K. Kálmán
    Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
    Le Studium, Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
  • Viktória Nagy
    Viktória Nagy
    Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
  • Balázs Váradi
    Balázs Váradi
    Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
  • Zoltán Garda
    Zoltán Garda
    Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
  • Enikő Molnár
    Enikő Molnár
    Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
  • György Trencsényi
    György Trencsényi
    Division of Nuclear Medicine, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
  • János Kiss
    János Kiss
    Division of Nuclear Medicine, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
    More by János Kiss
  • Sandra Même
    Sandra Même
    Centre de Biophysique Moléculaire, CNRS-UPR 4301, Université d’Orléans, Rue Charles Sadron, CS 80054, 45071 Orléans, France
    More by Sandra Même
  • William Même
    William Même
    Centre de Biophysique Moléculaire, CNRS-UPR 4301, Université d’Orléans, Rue Charles Sadron, CS 80054, 45071 Orléans, France
  • Éva Tóth*
    Éva Tóth
    Centre de Biophysique Moléculaire, CNRS-UPR 4301, Université d’Orléans, Rue Charles Sadron, CS 80054, 45071 Orléans, France
    *Email: [email protected]
    More by Éva Tóth
  • , and 
  • Gyula Tircsó*
    Gyula Tircsó
    Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
    *Email: [email protected]
Cite this: J. Med. Chem. 2020, 63, 11, 6057–6065
Publication Date (Web):May 6, 2020
https://doi.org/10.1021/acs.jmedchem.0c00197
Copyright © 2020 American Chemical Society

    Article Views

    1700

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Toxicity concerns related to Gd(III)-based magnetic resonance imaging (MRI) agents prompted an intensive research toward their replacement by complexes of essential metal ions, like Mn(II). Here, we report a macrocyclic chelate, [Mn(PC2A-BP)], which possesses high thermodynamic stability (log KMnL = 14.86 and pMn=8.35) and kinetic inertness (t1/2pH=7.4 = 286.2 h) as well as as remarkable relaxivity (r1p = 23.5 mM–1 s–1, 0.49 T, 37 °C) in the presence of human serum albumin, allowing a significant MRI signal intensity increase in the vasculature even at low dose (25 μmol/kg) of the complex.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00197.

    • Additional experimental details (including 1H- and 13C NMR spectra, HPLC trace, and so forth for PC2A-BP ligand); a scheme illustrating the dissociation mechanism of a Mn(II) chelate; determination of relaxivity at 0.49 and 7 T, pH-profile of the relaxivity; determination of the binding constant for the HSA adduct and binding constants of other Mn(II) chelates; determination of the number of bound water molecules in [Mn(PC2A-BP)] chelate; NMRD profiles obtained in the absence and presence of HSA; equations used during the fitting of 1H- and 17O-relaxometric data; and additional results of phantom and in vivo (DCE) MRI studies (PDF)

    • Molecular formula strings (CSV)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 33 publications.

    1. Nadège Hamon, Lucile Bridou, Margaux Roux, Olivier Maury, Raphaël Tripier, Maryline Beyler. Design of Bifunctional Pyclen-Based Lanthanide Luminescent Bioprobes for Targeted Two-Photon Imaging. The Journal of Organic Chemistry 2023, 88 (13) , 8286-8299. https://doi.org/10.1021/acs.joc.3c00287
    2. Daouda Ndiaye, Patrick Cieslik, Hubert Wadepohl, Agnès Pallier, Sandra Même, Peter Comba, Éva Tóth. Mn2+ Bispidine Complex Combining Exceptional Stability, Inertness, and MRI Efficiency. Journal of the American Chemical Society 2022, 144 (48) , 22212-22220. https://doi.org/10.1021/jacs.2c10108
    3. Nivin N. Nyström, Hanlin Liu, Francisco M. Martinez, Xiao-an Zhang, Timothy J. Scholl, John A. Ronald. Gadolinium-free Magnetic Resonance Imaging of the Liver via an Oatp1-Targeted Manganese(III) Porphyrin. Journal of Medicinal Chemistry 2022, 65 (14) , 9846-9857. https://doi.org/10.1021/acs.jmedchem.2c00500
    4. Ah Rum Baek, Hee-Kyung Kim, Soyeon Kim, Ji-ung Yang, Min-Kyoung Kang, Jae Jun Lee, Bokyung Sung, Hyeji Lee, Minsup Kim, Art E. Cho, Ji-Ae Park, Yongmin Chang. Effect of Structural Fine-Tuning on Chelate Stability and Liver Uptake of Anionic MRI Contrast Agents. Journal of Medicinal Chemistry 2022, 65 (8) , 6313-6324. https://doi.org/10.1021/acs.jmedchem.2c00291
    5. Ryan C. Hall, Jingcan Qin, Victoria Laney, Nadia Ayat, Zheng-Rong Lu. Manganese(II) EOB-Pyclen Diacetate for Liver-Specific MRI. ACS Applied Bio Materials 2022, 5 (2) , 451-458. https://doi.org/10.1021/acsabm.1c01259
    6. Riya Mallik, Muktashree Saha, Chandan Mukherjee. Porous Silica Nanospheres with a Confined Mono(aquated) Mn(II)-Complex: A Potential T1–T2 Dual Contrast Agent for Magnetic Resonance Imaging. ACS Applied Bio Materials 2021, 4 (12) , 8356-8367. https://doi.org/10.1021/acsabm.1c00937
    7. Zoltán Garda, Enikő Molnár, Nadège Hamon, José Luis Barriada, David Esteban-Gómez, Balázs Váradi, Viktória Nagy, Kristof Pota, Ferenc Krisztián Kálmán, Imre Tóth, Norbert Lihi, Carlos Platas-Iglesias, Éva Tóth, Raphaël Tripier, Gyula Tircsó. Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorganic Chemistry 2021, 60 (2) , 1133-1148. https://doi.org/10.1021/acs.inorgchem.0c03276
    8. Fuxian Wan, Luna Wu, Xiuxue Chen, Yuanhong Zhang, Lin Jiang. Research progress on manganese complexes as contrast agents for magnetic resonance imaging. Polyhedron 2023, 242 , 116489. https://doi.org/10.1016/j.poly.2023.116489
    9. Balázs Váradi, Károly Brezovcsik, Zoltán Garda, Enikő Madarasi, Horea Szedlacsek, Rodica-Aura Badea, Andrei-Mihai Vasilescu, Adina-Gabriela Puiu, Aura Elena Ionescu, Livia-Elena Sima, Cristian V. A. Munteanu, Simona Călăraş, Adrienn Vágner, Dezső Szikra, Ngô Minh Toàn, Tibor Nagy, Zoltán Szűcs, Stefan Szedlacsek, Gábor Nagy, Gyula Tircsó. Synthesis and characterization of a novel [ 52 Mn]Mn-labelled affibody based radiotracer for HER2+ targeting. Inorganic Chemistry Frontiers 2023, 10 (16) , 4734-4745. https://doi.org/10.1039/D3QI00356F
    10. Jie Lv, Shubham Roy, Miao Xie, Xiulan Yang, Bing Guo. Contrast Agents of Magnetic Resonance Imaging and Future Perspective. Nanomaterials 2023, 13 (13) , 2003. https://doi.org/10.3390/nano13132003
    11. Marie Pražáková, Daouda Ndiaye, Éva Tóth, Bohuslav Drahoš. A seven-coordinate Mn( ii ) complex with a pyridine-based 15-membered macrocyclic ligand containing one acetate pendant arm: structure, stability and relaxation properties. Dalton Transactions 2023, 52 (23) , 7936-7947. https://doi.org/10.1039/D3DT00701D
    12. Ram Nayan Gautam, Ananya Tiwari, Seema Gupta, M.K. Bharty, Vellaichamy Ganesan, Sundeep Kumar, P. Bharati, R.J. Butcher. Mn(II) complexes of 1-(4-methoxybenzoyl)-4-phenyl-3-thiosemicarbazide containing o-phenanthroline and 2,2-bipyridine as co-ligands: Synthesis, crystal structure, spectral characterization, photoluminescence and electrochemical studies. Journal of Molecular Structure 2023, 1278 , 134907. https://doi.org/10.1016/j.molstruc.2023.134907
    13. Chiranjeevi Korupalli, Chia-Cheng Kuo, Girum Getachew, Worku Batu Dirersa, Aswandi Wibrianto, Akash S. Rasal, Jia-Yaw Chang. Multifunctional Manganese Oxide-based Nanocomposite Theranostic Agent with Glucose/Light-Responsive Singlet Oxygen Generation and Dual-Modal Imaging for Cancer Treatment. Journal of Colloid and Interface Science 2023, 24 https://doi.org/10.1016/j.jcis.2023.04.049
    14. Loredana Leone, Annasofia Anemone, Antonella Carella, Elena Botto, Dario Livio Longo, Lorenzo Tei. A Neutral and Stable Macrocyclic Mn(II) Complex for MRI Tumor Visualization. ChemMedChem 2022, 17 (24) https://doi.org/10.1002/cmdc.202200508
    15. Shan-Shan Xue, Yingbo Pan, Wei Pan, Shujie Liu, Na Li, Bo Tang. Bioimaging agents based on redox-active transition metal complexes. Chemical Science 2022, 13 (33) , 9468-9484. https://doi.org/10.1039/D2SC02587F
    16. Daquan Wang, Ning Zhang, Tingting Yang, Yun Zhang, Xunan Jing, Yu Zhou, Jiangang Long, Lingjie Meng. Amino acids and doxorubicin as building blocks for metal ion‐driven self‐assembly of biodegradable polyprodrugs for tumor theranostics. Acta Biomaterialia 2022, 147 , 245-257. https://doi.org/10.1016/j.actbio.2022.04.034
    17. Rouqiao Zheng, Junru Guo, Xinyi Cai, Lianjie Bin, Chengyu Lu, Amita Singh, Manoj Trivedi, Abhinav Kumar, Jianqiang Liu. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids and Surfaces B: Biointerfaces 2022, 213 , 112432. https://doi.org/10.1016/j.colsurfb.2022.112432
    18. Chuanda Zhu, Qiang Ma, Lidong Gong, Shiming Di, Jingjing Gong, Yuanyuan Wang, Sheng Xiao, Liang Zhang, Qiang Zhang, Ji-jun Fu, Dan Lu, Zhiqiang Lin. Manganese-based multifunctional nanoplatform for dual-modal imaging and synergistic therapy of breast cancer. Acta Biomaterialia 2022, 141 , 429-439. https://doi.org/10.1016/j.actbio.2022.01.019
    19. Thavasilingam Nagendraraj, S. Senthil Kumaran, Ramasamy Mayilmurugan. Mn(II) complexes of phenylenediamine based macrocyclic ligands as T1-MRI contrast agents. Journal of Inorganic Biochemistry 2022, 228 , 111684. https://doi.org/10.1016/j.jinorgbio.2021.111684
    20. Richárd Botár, Enikő Molnár, Zoltán Garda, Enikő Madarasi, György Trencsényi, János Kiss, Ferenc K. Kálmán, Gyula Tircsó. Synthesis and characterization of a stable and inert Mn II -based Zn II responsive MRI probe for molecular imaging of glucose stimulated zinc secretion (GSZS). Inorganic Chemistry Frontiers 2022, 9 (3) , 577-583. https://doi.org/10.1039/D1QI00501D
    21. Weibing Xu, Jia Zhang, Zhijie Yang, Minzhi Zhao, Haitao Long, Qingfeng Wu, Fang Nian. Tannin–Mn coordination polymer coated carbon quantum dots nanocomposite for fluorescence and magnetic resonance bimodal imaging. Journal of Materials Science: Materials in Medicine 2022, 33 (2) https://doi.org/10.1007/s10856-021-06629-0
    22. Tibor Csupász, Dániel Szücs, Ferenc Krisztián Kálmán, Oldamur Hollóczki, Anikó Fekete, Dezső Szikra, Éva Tóth, Imre Tóth, Gyula Tircsó. A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies. Molecules 2022, 27 (2) , 371. https://doi.org/10.3390/molecules27020371
    23. Nicola Panza, Giorgio Tseberlidis, Alessandro Caselli, Rubén Vicente. . Dalton Transactions 2022, 10635. https://doi.org/10.1039/D2DT00597B
    24. Susmita Mondal, Ria Ghosh, Aniruddha Adhikari, Uttam Pal, Dipanjan Mukherjee, Pritam Biswas, Soumendra Darbar, Soumendra Singh, Surajit Bose, Tanusri Saha‐Dasgupta, Samir Kumar Pal. In vitro and Microbiological Assay of Functionalized Hybrid Nanomaterials To Validate Their Efficacy in Nanotheranostics: A Combined Spectroscopic and Computational Study. ChemMedChem 2021, 16 (24) , 3739-3749. https://doi.org/10.1002/cmdc.202100494
    25. Jiali Li, Shichao Li, Yang Li, Guanjie Yuan, Yaqi Shen, Yang Peng, Li Kong, Conglian Yang, Zhiping Zhang, Zhen Li. A magnetic resonance nanoprobe with STING activation character collaborates with platinum-based drug for enhanced tumor immunochemotherapy. Journal of Nanobiotechnology 2021, 19 (1) https://doi.org/10.1186/s12951-021-01158-y
    26. Rocío Uzal-Varela, Daniela Lalli, Isabel Brandariz, Aurora Rodríguez-Rodríguez, Carlos Platas-Iglesias, Mauro Botta, David Esteban-Gómez. Rigid versions of PDTA 4− incorporating a 1,3-diaminocyclobutyl spacer for Mn 2+ complexation: stability, water exchange dynamics and relaxivity. Dalton Transactions 2021, 50 (44) , 16290-16303. https://doi.org/10.1039/D1DT02498A
    27. Sellamuthu Anbu, Sabrina H. L. Hoffmann, Fabio Carniato, Lawrence Kenning, Thomas W. Price, Timothy J. Prior, Mauro Botta, Andre F. Martins, Graeme J. Stasiuk. A Single‐Pot Template Reaction Towards a Manganese‐Based T 1 Contrast Agent. Angewandte Chemie International Edition 2021, 60 (19) , 10736-10744. https://doi.org/10.1002/anie.202100885
    28. Sellamuthu Anbu, Sabrina H. L. Hoffmann, Fabio Carniato, Lawrence Kenning, Thomas W. Price, Timothy J. Prior, Mauro Botta, Andre F. Martins, Graeme J. Stasiuk. A Single‐Pot Template Reaction Towards a Manganese‐Based T 1 Contrast Agent. Angewandte Chemie 2021, 133 (19) , 10831-10839. https://doi.org/10.1002/ange.202100885
    29. Neha Choudhary, Kendall E. Barrett, Manja Kubeil, Valery Radchenko, Jonathan W. Engle, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. Metal ion size profoundly affects H 3 glyox chelate chemistry. RSC Advances 2021, 11 (26) , 15663-15674. https://doi.org/10.1039/D1RA01793D
    30. Célia S. Bonnet, Éva Tóth. Metal-based environment-sensitive MRI contrast agents. Current Opinion in Chemical Biology 2021, 61 , 154-169. https://doi.org/10.1016/j.cbpa.2021.01.013
    31. Ferenc K. Kálmán, Viktória Nagy, Rocío Uzal-Varela, Paulo Pérez-Lourido, David Esteban-Gómez, Zoltán Garda, Kristof Pota, Roland Mezei, Agnès Pallier, Éva Tóth, Carlos Platas-Iglesias, Gyula Tircsó. Expanding the Ligand Classes Used for Mn(II) Complexation: Oxa-aza Macrocycles Make the Difference. Molecules 2021, 26 (6) , 1524. https://doi.org/10.3390/molecules26061524
    32. Sara Lacerda, Daouda Ndiaye, Éva Tóth. MRI relaxation agents based on transition metals. 2021, 109-142. https://doi.org/10.1016/bs.adioch.2021.06.001
    33. Rinu Shrestha, Paul H. Teesdale‐Spittle, Andrew R. Lewis, Phillip M. Rendle. Gadolinium Complexes Attached to Poly Ethoxy Ethyl Glycinamide (PEE‐G) Dendrons: Magnetic Resonance Imaging Contrast Agents with Increased Relaxivity. ChemPlusChem 2020, 85 (8) , 1881-1892. https://doi.org/10.1002/cplu.202000409

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect