ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Docking Screens for Novel Ligands Conferring New Biology

Miniperspective

View Author Information
Department of Pharmaceutical Chemistry and QB3 Institute, University of California—San Francisco, San Francisco, California 94158, United States
*J.J.I.: phone, 415-514-4127; e-mail, [email protected]
*B.K.S.; phone, 415-514-4126; e-mail, [email protected]
Cite this: J. Med. Chem. 2016, 59, 9, 4103–4120
Publication Date (Web):February 25, 2016
https://doi.org/10.1021/acs.jmedchem.5b02008
Copyright © 2016 American Chemical Society

    Article Views

    6091

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)

    Abstract

    Abstract Image

    It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking’s greatest impact over the next few years.

    Cited By

    This article is cited by 188 publications.

    1. Daniel P. McDougal, Harinda Rajapaksha, Jordan L. Pederick, John B. Bruning. warpDOCK: Large-Scale Virtual Drug Discovery Using Cloud Infrastructure. ACS Omega 2023, 8 (32) , 29143-29149. https://doi.org/10.1021/acsomega.3c02249
    2. Hui Zhu, Jincai Yang, Niu Huang. Assessment of the Generalization Abilities of Machine-Learning Scoring Functions for Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 2022, 62 (22) , 5485-5502. https://doi.org/10.1021/acs.jcim.2c01149
    3. Min Xu, Cheng Shen, Jincai Yang, Qing Wang, Niu Huang. Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual Screening. ACS Omega 2022, 7 (43) , 39417-39428. https://doi.org/10.1021/acsomega.2c05826
    4. Lara A. Patel, Phuong Chau, Serena Debesai, Leah Darwin, Chris Neale. Drug Discovery by Automated Adaptation of Chemical Structure and Identity. Journal of Chemical Theory and Computation 2022, 18 (8) , 5006-5024. https://doi.org/10.1021/acs.jctc.1c01271
    5. Chao Yang, Yingkai Zhang. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein–Ligand Scoring Functions. Journal of Chemical Information and Modeling 2022, 62 (11) , 2696-2712. https://doi.org/10.1021/acs.jcim.2c00485
    6. Heesung Shim, Hyojin Kim, Jonathan E. Allen, Heike Wulff. Pose Classification Using Three-Dimensional Atomic Structure-Based Neural Networks Applied to Ion Channel–Ligand Docking. Journal of Chemical Information and Modeling 2022, 62 (10) , 2301-2315. https://doi.org/10.1021/acs.jcim.1c01510
    7. Kate A. Stafford, Brandon M. Anderson, Jon Sorenson, Henry van den Bedem. AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High-Throughput Screens. Journal of Chemical Information and Modeling 2022, 62 (5) , 1178-1189. https://doi.org/10.1021/acs.jcim.1c01250
    8. Anat Levit Kaplan, Ryan T. Strachan, Joao M. Braz, Veronica Craik, Samuel Slocum, Thomas Mangano, Vanessa Amabo, Henry O’Donnell, Parnian Lak, Allan I. Basbaum, Bryan L. Roth, Brian K. Shoichet. Structure-Based Design of a Chemical Probe Set for the 5-HT5A Serotonin Receptor. Journal of Medicinal Chemistry 2022, 65 (5) , 4201-4217. https://doi.org/10.1021/acs.jmedchem.1c02031
    9. Brajesh K. Rai, Vishnu Sresht, Qingyi Yang, Ray Unwalla, Meihua Tu, Alan M. Mathiowetz, Gregory A. Bakken. TorsionNet: A Deep Neural Network to Rapidly Predict Small-Molecule Torsional Energy Profiles with the Accuracy of Quantum Mechanics. Journal of Chemical Information and Modeling 2022, 62 (4) , 785-800. https://doi.org/10.1021/acs.jcim.1c01346
    10. Andreas Luttens, Hjalmar Gullberg, Eldar Abdurakhmanov, Duy Duc Vo, Dario Akaberi, Vladimir O. Talibov, Natalia Nekhotiaeva, Laura Vangeel, Steven De Jonghe, Dirk Jochmans, Janina Krambrich, Ali Tas, Bo Lundgren, Ylva Gravenfors, Alexander J. Craig, Yoseph Atilaw, Anja Sandström, Lindon W. K. Moodie, Åke Lundkvist, Martijn J. van Hemert, Johan Neyts, Johan Lennerstrand, Jan Kihlberg, Kristian Sandberg, U. Helena Danielson, Jens Carlsson. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the American Chemical Society 2022, 144 (7) , 2905-2920. https://doi.org/10.1021/jacs.1c08402
    11. Ying Yang, Kun Yao, Matthew P. Repasky, Karl Leswing, Robert Abel, Brian K. Shoichet, Steven V. Jerome. Efficient Exploration of Chemical Space with Docking and Deep Learning. Journal of Chemical Theory and Computation 2021, 17 (11) , 7106-7119. https://doi.org/10.1021/acs.jctc.1c00810
    12. Aayush Gupta, Huan-Xiang Zhou. Machine Learning-Enabled Pipeline for Large-Scale Virtual Drug Screening. Journal of Chemical Information and Modeling 2021, 61 (9) , 4236-4244. https://doi.org/10.1021/acs.jcim.1c00710
    13. Chao Yang, Yingkai Zhang. Lin_F9: A Linear Empirical Scoring Function for Protein–Ligand Docking. Journal of Chemical Information and Modeling 2021, 61 (9) , 4630-4644. https://doi.org/10.1021/acs.jcim.1c00737
    14. Francois Berenger, Ashutosh Kumar, Kam Y. J. Zhang, Yoshihiro Yamanishi. Lean-Docking: Exploiting Ligands’ Predicted Docking Scores to Accelerate Molecular Docking. Journal of Chemical Information and Modeling 2021, 61 (5) , 2341-2352. https://doi.org/10.1021/acs.jcim.0c01452
    15. Reed M. Stein, Ying Yang, Trent E. Balius, Matt J. O’Meara, Jiankun Lyu, Jennifer Young, Khanh Tang, Brian K. Shoichet, John J. Irwin. Property-Unmatched Decoys in Docking Benchmarks. Journal of Chemical Information and Modeling 2021, 61 (2) , 699-714. https://doi.org/10.1021/acs.jcim.0c00598
    16. Hao Liang, Hongbo Liu, Yi Kuang, Limin Chen, Min Ye, Luhua Lai. Discovery of Targeted Covalent Natural Products against PLK1 by Herb-Based Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4350-4358. https://doi.org/10.1021/acs.jcim.0c00074
    17. Mariia Radaeva, Xuesen Dong, Artem Cherkasov. The Use of Methods of Computer-Aided Drug Discovery in the Development of Topoisomerase II Inhibitors: Applications and Future Directions. Journal of Chemical Information and Modeling 2020, 60 (8) , 3703-3721. https://doi.org/10.1021/acs.jcim.0c00325
    18. Daniel A. Greenfield, Hayden R. Schmidt, Meredith A. Skiba, Michael D. Mandler, Jacob R. Anderson, Piotr Sliz, Andrew C. Kruse. Virtual Screening for Ligand Discovery at the σ1 Receptor. ACS Medicinal Chemistry Letters 2020, 11 (8) , 1555-1561. https://doi.org/10.1021/acsmedchemlett.9b00314
    19. Flavio Ballante, Axel Rudling, Alexey Zeifman, Andreas Luttens, Duy Duc Vo, John J. Irwin, Jan Kihlberg, Jose Brea, Maria Isabel Loza, Jens Carlsson. Docking Finds GPCR Ligands in Dark Chemical Matter. Journal of Medicinal Chemistry 2020, 63 (2) , 613-620. https://doi.org/10.1021/acs.jmedchem.9b01560
    20. Xin-Qiu Yao, Donald Hamelberg. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis. Accounts of Chemical Research 2019, 52 (12) , 3455-3464. https://doi.org/10.1021/acs.accounts.9b00485
    21. Jianing Lu, Xuben Hou, Cheng Wang, Yingkai Zhang. Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions. Journal of Chemical Information and Modeling 2019, 59 (11) , 4540-4549. https://doi.org/10.1021/acs.jcim.9b00645
    22. W. Patrick Walters, , Renxiao Wang. New Trends in Virtual Screening. Journal of Chemical Information and Modeling 2019, 59 (9) , 3603-3604. https://doi.org/10.1021/acs.jcim.9b00728
    23. Kelly L. Damm-Ganamet, Nidhi Arora, Stephane Becart, James P. Edwards, Alec D. Lebsack, Heather M. McAllister, Marina I. Nelen, Navin L. Rao, Lori Westover, John J. M. Wiener, Taraneh Mirzadegan. Accelerating Lead Identification by High Throughput Virtual Screening: Prospective Case Studies from the Pharmaceutical Industry. Journal of Chemical Information and Modeling 2019, 59 (5) , 2046-2062. https://doi.org/10.1021/acs.jcim.8b00941
    24. Natalie J. Tatum, Fernanda Duarte, Shina C. L. Kamerlin, Ehmke Pohl. Relative Binding Energies Predict Crystallographic Binding Modes of Ethionamide Booster Lead Compounds. The Journal of Physical Chemistry Letters 2019, 10 (9) , 2244-2249. https://doi.org/10.1021/acs.jpclett.9b00741
    25. Andrea Basciu, Giuliano Malloci, Fabio Pietrucci, Alexandre M. J. J. Bonvin, Attilio V. Vargiu. Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape. Journal of Chemical Information and Modeling 2019, 59 (4) , 1515-1528. https://doi.org/10.1021/acs.jcim.8b00730
    26. Youtian Hu, Lu Wang, Xu Han, Yueyang Zhou, Tonghui Zhang, Li Wang, Ting Hong, Wei Zhang, Xun-Xiang Guo, Jielin Sun, Yingxin Qi, Jing Yu, Hong Liu, Fang Wu. Discovery of a Bioactive Inhibitor with a New Scaffold for Cystathionine γ-Lyase. Journal of Medicinal Chemistry 2019, 62 (3) , 1677-1683. https://doi.org/10.1021/acs.jmedchem.8b01720
    27. Jiaye Guo, Stephen Collins, W. Todd Miller, Robert C. Rizzo. Identification of a Water-Coordinating HER2 Inhibitor by Virtual Screening Using Similarity-Based Scoring. Biochemistry 2018, 57 (32) , 4934-4951. https://doi.org/10.1021/acs.biochem.8b00524
    28. Dahlia R. Weiss, Joel Karpiak, Xi-Ping Huang, Maria F. Sassano, Jiankun Lyu, Bryan L. Roth, Brian K. Shoichet. Selectivity Challenges in Docking Screens for GPCR Targets and Antitargets. Journal of Medicinal Chemistry 2018, 61 (15) , 6830-6845. https://doi.org/10.1021/acs.jmedchem.8b00718
    29. Andrey V. Bogolyubsky, Olena Savych, Anton V. Zhemera, Sergey E. Pipko, Alexander V. Grishchenko, Anzhelika I. Konovets, Roman O. Doroshchuk, Dmytro N. Khomenko, Volodymyr S. Brovarets, Yurii S. Moroz, Mykhailo Vybornyi. Facile One-Pot Parallel Synthesis of 3-Amino-1,2,4-triazoles. ACS Combinatorial Science 2018, 20 (7) , 461-466. https://doi.org/10.1021/acscombsci.8b00060
    30. Mariama Jaiteh, Alexey Zeifman, Marcus Saarinen, Per Svenningsson, Jose Bréa, Maria Isabel Loza, Jens Carlsson. Docking Screens for Dual Inhibitors of Disparate Drug Targets for Parkinson’s Disease. Journal of Medicinal Chemistry 2018, 61 (12) , 5269-5278. https://doi.org/10.1021/acs.jmedchem.8b00204
    31. Ryo Kunimoto and Jürgen Bajorath . Combining Similarity Searching and Network Analysis for the Identification of Active Compounds. ACS Omega 2018, 3 (4) , 3768-3777. https://doi.org/10.1021/acsomega.8b00344
    32. John J. Irwin, Garrett Gaskins, Teague Sterling, Michael M. Mysinger, and Michael J. Keiser . Predicted Biological Activity of Purchasable Chemical Space. Journal of Chemical Information and Modeling 2018, 58 (1) , 148-164. https://doi.org/10.1021/acs.jcim.7b00316
    33. Jean-Rémy Marchand, Andrea Dalle Vedove, Graziano Lolli, and Amedeo Caflisch . Discovery of Inhibitors of Four Bromodomains by Fragment-Anchored Ligand Docking. Journal of Chemical Information and Modeling 2017, 57 (10) , 2584-2597. https://doi.org/10.1021/acs.jcim.7b00336
    34. Haresh Ajani, Adam Pecina, Saltuk M. Eyrilmez, Jindřich Fanfrlík, Susanta Haldar, Jan Řezáč, Pavel Hobza, and Martin Lepšík . Superior Performance of the SQM/COSMO Scoring Functions in Native Pose Recognition of Diverse Protein–Ligand Complexes in Cognate Docking. ACS Omega 2017, 2 (7) , 4022-4029. https://doi.org/10.1021/acsomega.7b00503
    35. Andrew Anighoro and Jürgen Bajorath . Compound Ranking Based on Fuzzy Three-Dimensional Similarity Improves the Performance of Docking into Homology Models of G-Protein-Coupled Receptors. ACS Omega 2017, 2 (6) , 2583-2592. https://doi.org/10.1021/acsomega.7b00330
    36. Fuqiang Ban, Kush Dalal, Huifang Li, Eric LeBlanc, Paul S. Rennie, and Artem Cherkasov . Best Practices of Computer-Aided Drug Discovery: Lessons Learned from the Development of a Preclinical Candidate for Prostate Cancer with a New Mechanism of Action. Journal of Chemical Information and Modeling 2017, 57 (5) , 1018-1028. https://doi.org/10.1021/acs.jcim.7b00137
    37. Weilin Zhang, Jianfeng Pei, and Luhua Lai . Computational Multitarget Drug Design. Journal of Chemical Information and Modeling 2017, 57 (3) , 403-412. https://doi.org/10.1021/acs.jcim.6b00491
    38. Joshua Pottel and Nicolas Moitessier . Customizable Generation of Synthetically Accessible, Local Chemical Subspaces. Journal of Chemical Information and Modeling 2017, 57 (3) , 454-467. https://doi.org/10.1021/acs.jcim.6b00648
    39. Adam Pecina, Susanta Haldar, Jindřich Fanfrlík, René Meier, Jan Řezáč, Martin Lepšík, and Pavel Hobza . SQM/COSMO Scoring Function at the DFTB3-D3H4 Level: Unique Identification of Native Protein–Ligand Poses. Journal of Chemical Information and Modeling 2017, 57 (2) , 127-132. https://doi.org/10.1021/acs.jcim.6b00513
    40. Manish Sud . MayaChemTools: An Open Source Package for Computational Drug Discovery. Journal of Chemical Information and Modeling 2016, 56 (12) , 2292-2297. https://doi.org/10.1021/acs.jcim.6b00505
    41. Eelke B. Lenselink, Willem Jespers, Herman W. T. van Vlijmen, Adriaan P. IJzerman, and Gerard J. P. van Westen . Interacting with GPCRs: Using Interaction Fingerprints for Virtual Screening. Journal of Chemical Information and Modeling 2016, 56 (10) , 2053-2060. https://doi.org/10.1021/acs.jcim.6b00314
    42. Andrey Tolmachev, Andrey V. Bogolubsky, Sergey E. Pipko, Alexander V. Grishchenko, Dmytro V. Ushakov, Anton V. Zhemera, Oleksandr O. Viniychuk, Anzhelika I. Konovets, Olga A. Zaporozhets, Pavel K. Mykhailiuk, and Yurii S. Moroz . Expanding Synthesizable Space of Disubstituted 1,2,4-Oxadiazoles. ACS Combinatorial Science 2016, 18 (10) , 616-624. https://doi.org/10.1021/acscombsci.6b00103
    43. Kelly L. Damm-Ganamet, Scott D. Bembenek, Jennifer W. Venable, Glenda G. Castro, Lieve Mangelschots, Daniëlle C. G. Peeters, Heather M. Mcallister, James P. Edwards, Daniel Disepio, and Taraneh Mirzadegan . A Prospective Virtual Screening Study: Enriching Hit Rates and Designing Focus Libraries To Find Inhibitors of PI3Kδ and PI3Kγ. Journal of Medicinal Chemistry 2016, 59 (9) , 4302-4313. https://doi.org/10.1021/acs.jmedchem.5b01974
    44. Trent E. Balius, Y. Stanley Tan, Mayukh Chakrabarti. DOCK 6: Incorporating hierarchical traversal through precomputed ligand conformations to enable large‐scale docking. Journal of Computational Chemistry 2024, 45 (1) , 47-63. https://doi.org/10.1002/jcc.27218
    45. Aliki Drakontaeidi, Eleni Pontiki. A Review on Molecular Docking on HDAC Isoforms: Novel Tool for Designing Selective Inhibitors. Pharmaceuticals 2023, 16 (12) , 1639. https://doi.org/10.3390/ph16121639
    46. Hongyan Du, Dejun Jiang, Odin Zhang, Zhenxing Wu, Junbo Gao, Xujun Zhang, Xiaorui Wang, Yafeng Deng, Yu Kang, Dan Li, Peichen Pan, Chang-Yu Hsieh, Tingjun Hou. A flexible data-free framework for structure-based de novo drug design with reinforcement learning. Chemical Science 2023, 14 (43) , 12166-12181. https://doi.org/10.1039/D3SC04091G
    47. Nicholas Casetti, Javier E. Alfonso‐Ramos, Connor W. Coley, Thijs Stuyver. Combining Molecular Quantum Mechanical Modeling and Machine Learning for Accelerated Reaction Screening and Discovery. Chemistry – A European Journal 2023, 29 (60) https://doi.org/10.1002/chem.202301957
    48. Tadeja Gao, Jiri Damborsky, Yves L. Janin, Martin Marek. Deciphering Enzyme Mechanisms with Engineered Ancestors and Substrate Analogues. ChemCatChem 2023, 15 (19) https://doi.org/10.1002/cctc.202300745
    49. Said Moshawih, Hui Poh Goh, Nurolaini Kifli, Mohammed Abd ElFattah Darwesh, Chrismawan Ardianto, Khang Wen Goh, Long Chiau Ming. Identification and optimization of TDP1 inhibitors from anthraquinone and chalcone derivatives: consensus scoring virtual screening and molecular simulations. Journal of Biomolecular Structure and Dynamics 2023, 384 , 1-25. https://doi.org/10.1080/07391102.2023.2256870
    50. Viviane Corrêa Santos, Paulo Gaio Leite, Lucianna Helene Santos, Pedro Geraldo Pascutti, Peter Kolb, Fabiana Simão Machado, Rafaela Salgado Ferreira. Structure-based discovery of novel cruzain inhibitors with distinct trypanocidal activity profiles. European Journal of Medicinal Chemistry 2023, 257 , 115498. https://doi.org/10.1016/j.ejmech.2023.115498
    51. Mateus Sá Magalhães Serafim, Simone Queiroz Pantaleão, Elany Barbosa da Silva, James H. McKerrow, Anthony J. O’Donoghue, Bruno Eduardo Fernandes Mota, Kathia Maria Honorio, Vinícius Gonçalves Maltarollo. The importance of good practices and false hits for QSAR-driven virtual screening real application: a SARS-CoV-2 main protease (Mpro) case study. Frontiers in Drug Discovery 2023, 3 https://doi.org/10.3389/fddsv.2023.1237655
    52. Malte Korn, Christiane Ehrt, Fiorella Ruggiu, Marcus Gastreich, Matthias Rarey. Navigating large chemical spaces in early-phase drug discovery. Current Opinion in Structural Biology 2023, 80 , 102578. https://doi.org/10.1016/j.sbi.2023.102578
    53. Periyannan Velu, Thirumalaisamy Rathinavel, Suresh Kumarasamy, Muhammad Nasir Iqbal, Hasnat Noor, Ayesha Ikram, Karthika Rajamanickam, Gnanendra Shanmugam. Whole genome analysis and homology modeling of SARS-CoV-2 Indian isolate reveals potent FDA approved drug choice for treating COVID-19. Journal of Biomolecular Structure and Dynamics 2023, 41 (7) , 2772-2788. https://doi.org/10.1080/07391102.2022.2038272
    54. Joanna Matalińska, Piotr F.J. Lipiński. Docking is not enough: 17-trifluoromethylphenyl trinor PGF2α is only a very weak ligand of neurokinin-1 receptor. Experimental and Molecular Pathology 2023, 129 , 104849. https://doi.org/10.1016/j.yexmp.2022.104849
    55. Kemal Yelekçi, Safiye Sağ Erdem. Computational Chemistry and Molecular Modeling of Reversible MAO Inhibitors. 2023, 221-252. https://doi.org/10.1007/978-1-0716-2643-6_17
    56. Susan Miller, Walter Moos, Barbara Munk, Stephen Munk, Charles Hart, David Spellmeyer. Drug discovery: Standing on the shoulders of giants. 2023, 207-338. https://doi.org/10.1016/B978-0-12-824304-6.00001-8
    57. Angus E. McMillan, Wilson W. X. Wu, Paula L. Nichols, Benedikt M. Wanner, Jeffrey W. Bode. A vending machine for drug-like molecules – automated synthesis of virtual screening hits. Chemical Science 2022, 13 (48) , 14292-14299. https://doi.org/10.1039/D2SC05182F
    58. Neeraj Kumar, Vishal Acharya. Machine intelligence-driven framework for optimized hit selection in virtual screening. Journal of Cheminformatics 2022, 14 (1) https://doi.org/10.1186/s13321-022-00630-7
    59. Hui Zhu, Yulin Zhang, Wei Li, Niu Huang. A Comprehensive Survey of Prospective Structure-Based Virtual Screening for Early Drug Discovery in the Past Fifteen Years. International Journal of Molecular Sciences 2022, 23 (24) , 15961. https://doi.org/10.3390/ijms232415961
    60. Anat Levit Kaplan, Danielle N. Confair, Kuglae Kim, Ximena Barros-Álvarez, Ramona M. Rodriguiz, Ying Yang, Oh Sang Kweon, Tao Che, John D. McCorvy, David N. Kamber, James P. Phelan, Luan Carvalho Martins, Vladimir M. Pogorelov, Jeffrey F. DiBerto, Samuel T. Slocum, Xi-Ping Huang, Jain Manish Kumar, Michael J. Robertson, Ouliana Panova, Alpay B. Seven, Autumn Q. Wetsel, William C. Wetsel, John J. Irwin, Georgios Skiniotis, Brian K. Shoichet, Bryan L. Roth, Jonathan A. Ellman. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 2022, 610 (7932) , 582-591. https://doi.org/10.1038/s41586-022-05258-z
    61. Timothy R. Stachowski, Murugendra Vanarotti, Jayaraman Seetharaman, Karlo Lopez, Marcus Fischer. Water Networks Repopulate Protein–Ligand Interfaces with Temperature. Angewandte Chemie 2022, 134 (31) https://doi.org/10.1002/ange.202112919
    62. Timothy R. Stachowski, Murugendra Vanarotti, Jayaraman Seetharaman, Karlo Lopez, Marcus Fischer. Water Networks Repopulate Protein–Ligand Interfaces with Temperature. Angewandte Chemie International Edition 2022, 61 (31) https://doi.org/10.1002/anie.202112919
    63. Yalikunjiang Aizezi, Yinpeng Xie, Hongwei Guo, Kai Jiang. New Wine in an Old Bottle: Utilizing Chemical Genetics to Dissect Apical Hook Development. Life 2022, 12 (8) , 1285. https://doi.org/10.3390/life12081285
    64. Liangzhen Zheng, Jintao Meng, Kai Jiang, Haidong Lan, Zechen Wang, Mingzhi Lin, Weifeng Li, Hongwei Guo, Yanjie Wei, Yuguang Mu. Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term. Briefings in Bioinformatics 2022, 23 (3) https://doi.org/10.1093/bib/bbac051
    65. Viviane Corrêa Santos, Augusto César Broilo Campos, Birgit J. Waldner, Klaus R. Liedl, Rafaela Salgado Ferreira. Impact of different protonation states on virtual screening performance against cruzain. Chemical Biology & Drug Design 2022, 99 (5) , 703-716. https://doi.org/10.1111/cbdd.14008
    66. Pinku Halder, Upamanyu Pal, Pranab Paladhi, Saurav Dutta, Pallab Paul, Samudra Pal, Debasmita Das, Agnish Ganguly, Ishita Dutta, Sayarneel Mandal, Anirban Ray, Sujay Ghosh. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis. Journal of Ayurveda and Integrative Medicine 2022, 13 (2) , 100449. https://doi.org/10.1016/j.jaim.2021.05.003
    67. Siba Shanak, Najlaa Bassalat, Ahmad Barghash, Sleman Kadan, Mahmoud Ardah, Hilal Zaid, . Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. Evidence-Based Complementary and Alternative Medicine 2022, 2022 , 1-42. https://doi.org/10.1155/2022/2832889
    68. Qinfang Sun, Avik Biswas, R. S. K. Vijayan, Pierrick Craveur, Stefano Forli, Arthur J. Olson, Andres Emanuelli Castaner, Karen A. Kirby, Stefan G. Sarafianos, Nanjie Deng, Ronald Levy. Structure-based virtual screening workflow to identify antivirals targeting HIV-1 capsid. Journal of Computer-Aided Molecular Design 2022, 36 (3) , 193-203. https://doi.org/10.1007/s10822-022-00446-5
    69. Weichen Bo, Dongya Qin, Xin Zheng, Yue Wang, Botian Ding, Yinghong Li, Guizhao Liang. Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network. Food Research International 2022, 153 , 110974. https://doi.org/10.1016/j.foodres.2022.110974
    70. Min-Jeong Kim, Sarita Pandit, Jun-Goo Jee. Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments. Pharmaceuticals 2022, 15 (2) , 236. https://doi.org/10.3390/ph15020236
    71. Arman A. Sadybekov, Anastasiia V. Sadybekov, Yongfeng Liu, Christos Iliopoulos-Tsoutsouvas, Xi-Ping Huang, Julie Pickett, Blake Houser, Nilkanth Patel, Ngan K. Tran, Fei Tong, Nikolai Zvonok, Manish K. Jain, Olena Savych, Dmytro S. Radchenko, Spyros P. Nikas, Nicos A. Petasis, Yurii S. Moroz, Bryan L. Roth, Alexandros Makriyannis, Vsevolod Katritch. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 2022, 601 (7893) , 452-459. https://doi.org/10.1038/s41586-021-04220-9
    72. Sai L. Vankayala, Luke C. Warrensford, Amanda R. Pittman, Benjamin C. Pollard, Fiona L. Kearns, Joseph D. Larkin, H. Lee Woodcock. CIFDock : A novel CHARMM ‐based flexible receptor–flexible ligand docking protocol. Journal of Computational Chemistry 2022, 43 (2) , 84-95. https://doi.org/10.1002/jcc.26759
    73. Christian Bustamante, Carlos Muskus, Rodrigo Ochoa. Rational computational approaches to predict novel drug candidates against leishmaniasis. 2022, 137-187. https://doi.org/10.1016/bs.armc.2022.08.005
    74. Yves L Janin. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein Journal of Organic Chemistry 2022, 18 , 1355-1378. https://doi.org/10.3762/bjoc.18.141
    75. Marion Sisquellas, Marco Cecchini. PrepFlow: A Toolkit for Chemical Library Preparation and Management for Virtual Screening. Molecular Informatics 2021, 40 (12) https://doi.org/10.1002/minf.202100139
    76. Ghita Ghislat, Taufiq Rahman, Pedro J. Ballester. Recent progress on the prospective application of machine learning to structure-based virtual screening. Current Opinion in Chemical Biology 2021, 65 , 28-34. https://doi.org/10.1016/j.cbpa.2021.04.009
    77. Chao Shen, Xueping Hu, Junbo Gao, Xujun Zhang, Haiyang Zhong, Zhe Wang, Lei Xu, Yu Kang, Dongsheng Cao, Tingjun Hou. The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction. Journal of Cheminformatics 2021, 13 (1) https://doi.org/10.1186/s13321-021-00560-w
    78. Jacopo Manigrasso, Marco Marcia, Marco De Vivo. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 2021, 7 (11) , 2965-2988. https://doi.org/10.1016/j.chempr.2021.05.021
    79. Fan Liu, Jing Yu, Yan‐Xia Zhang, Fangzheng Li, Qi Liu, Yueyang Zhou, Shengshuo Huang, Houqin Fang, Zhuping Xiao, Lujian Liao, Jinyi Xu, Xin‐Yan Wu, Fang Wu. High‐throughput tandem‐microwell assay for ammonia repositions FDA‐Approved drugs to inhibit Helicobacter pylori urease. The FASEB Journal 2021, 35 (11) https://doi.org/10.1096/fj.202100465RR
    80. Yibo Li, Jianfeng Pei, Luhua Lai. Structure-based de novo drug design using 3D deep generative models. Chemical Science 2021, 12 (41) , 13664-13675. https://doi.org/10.1039/D1SC04444C
    81. Brian J. Bender, Stefan Gahbauer, Andreas Luttens, Jiankun Lyu, Chase M. Webb, Reed M. Stein, Elissa A. Fink, Trent E. Balius, Jens Carlsson, John J. Irwin, Brian K. Shoichet. A practical guide to large-scale docking. Nature Protocols 2021, 16 (10) , 4799-4832. https://doi.org/10.1038/s41596-021-00597-z
    82. Flavio Ballante, Albert J Kooistra, Stefanie Kampen, Chris de Graaf, Jens Carlsson, . Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You?. Pharmacological Reviews 2021, 73 (4) , 1698-1736. https://doi.org/10.1124/pharmrev.120.000246
    83. Jonathan Dickerhoff, Kassandra R. Warnecke, Kaibo Wang, Nanjie Deng, Danzhou Yang. Evaluating Molecular Docking Software for Small Molecule Binding to G-Quadruplex DNA. International Journal of Molecular Sciences 2021, 22 (19) , 10801. https://doi.org/10.3390/ijms221910801
    84. Anna S. Kamenik, Isha Singh, Parnian Lak, Trent E. Balius, Klaus R. Liedl, Brian K. Shoichet. Energy penalties enhance flexible receptor docking in a model cavity. Proceedings of the National Academy of Sciences 2021, 118 (36) https://doi.org/10.1073/pnas.2106195118
    85. Kasper P. Lundquist, Vipul Panchal, Charlotte H. Gotfredsen, Ruth Brenk, Mads H. Clausen. Fragment‐Based Drug Discovery for RNA Targets. ChemMedChem 2021, 16 (17) , 2588-2603. https://doi.org/10.1002/cmdc.202100324
    86. Shanshan Y. C. Bradford, Léa El Khoury, Yunhui Ge, Meghan Osato, David L. Mobley, Marcus Fischer. Temperature artifacts in protein structures bias ligand-binding predictions. Chemical Science 2021, 12 (34) , 11275-11293. https://doi.org/10.1039/D1SC02751D
    87. Vojtech Dvorak, Tabea Wiedmer, Alvaro Ingles-Prieto, Patrick Altermatt, Helena Batoulis, Felix Bärenz, Eckhard Bender, Daniela Digles, Franz Dürrenberger, Laura H. Heitman, Adriaan P. IJzerman, Douglas B. Kell, Stefanie Kickinger, Daniel Körzö, Philipp Leippe, Thomas Licher, Vania Manolova, Riccardo Rizzetto, Francesca Sassone, Lia Scarabottolo, Avner Schlessinger, Vanessa Schneider, Hubert J. Sijben, Anna-Lena Steck, Hanna Sundström, Sara Tremolada, Maria Wilhelm, Marina Wright Muelas, Diana Zindel, Claire M. Steppan, Giulio Superti-Furga. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.722889
    88. Ilya Yu. Titov, Viktor S. Stroylov, PolinaV. Rusina, Igor V. Svitanko. Preliminary modelling as the first stage of targeted organic synthesis. Russian Chemical Reviews 2021, 90 (7) , 831-867. https://doi.org/10.1070/RCR5012
    89. David E. Graff, Eugene I. Shakhnovich, Connor W. Coley. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chemical Science 2021, 12 (22) , 7866-7881. https://doi.org/10.1039/D0SC06805E
    90. Julio Caballero. The latest automated docking technologies for novel drug discovery. Expert Opinion on Drug Discovery 2021, 16 (6) , 625-645. https://doi.org/10.1080/17460441.2021.1858793
    91. Sekhar Talluri. Molecular Docking and Virtual Screening Based Prediction of Drugs for COVID-19. Combinatorial Chemistry & High Throughput Screening 2021, 24 (5) , 716-728. https://doi.org/10.2174/1386207323666200814132149
    92. Jon Kapla, Ismael Rodríguez-Espigares, Flavio Ballante, Jana Selent, Jens Carlsson, . Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models?. PLOS Computational Biology 2021, 17 (5) , e1008936. https://doi.org/10.1371/journal.pcbi.1008936
    93. Francesca Spyrakis, Aurijit Sarkar, Glen E. Kellogg. Docking, Scoring, and Virtual Screening in Drug Discovery. 2021, 1-102. https://doi.org/10.1002/0471266949.bmc301
    94. David S. Goodsell, Michel F. Sanner, Arthur J. Olson, Stefano Forli. The AutoDock suite at 30. Protein Science 2021, 30 (1) , 31-43. https://doi.org/10.1002/pro.3934
    95. Hongjian Li, Kam‐Heung Sze, Gang Lu, Pedro J. Ballester. Machine‐learning scoring functions for structure‐based virtual screening. WIREs Computational Molecular Science 2021, 11 (1) https://doi.org/10.1002/wcms.1478
    96. Andrea Scarpino, György G. Ferenczy, György M. Keserű. Binding Mode Prediction and Virtual Screening Applications by Covalent Docking. 2021, 73-88. https://doi.org/10.1007/978-1-0716-1209-5_4
    97. Kalpana K. Bhanumathy, Omar Abuhussein, Frederick S. Vizeacoumar, Andrew Freywald, Franco J. Vizeacoumar, Christopher P. Phenix, Eric W. Price, Ran Cao. Computational Prediction of Chemical Tools for Identification and Validation of Synthetic Lethal Interaction Networks. 2021, 333-358. https://doi.org/10.1007/978-1-0716-1740-3_18
    98. Giulio Poli, Claudiu T. Supuran, Tiziano Tuccinardi. Carbonic Anhydrase Inhibitors: Identifying Therapeutic Cancer Agents Through Virtual Screening. 2021, 237-252. https://doi.org/10.1007/978-3-030-79511-5_11
    99. Agostino Bruno, Gabriele Costantino. Molecular docking studies and virtual drug screening of chemosensitizers. 2021, 169-183. https://doi.org/10.1016/B978-0-12-820701-7.00013-0
    100. Mohammad Rejaur Rahman, Anik Banik, Ishtiak Malique Chowdhury, Emran Hossain Sajib, Sanchita Sarkar. Identification of potential antivirals against SARS-CoV-2 using virtual screening method. Informatics in Medicine Unlocked 2021, 23 , 100531. https://doi.org/10.1016/j.imu.2021.100531
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect