ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

GNE-781, A Highly Advanced Potent and Selective Bromodomain Inhibitor of Cyclic Adenosine Monophosphate Response Element Binding Protein, Binding Protein (CBP)

View Author Information
Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
Wuxi Apptec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
§ Constellation Pharmaceuticals, Inc., 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
*For F.A.R. phone, (858) 349-6055; E-mail, [email protected]
*For S.M. E-mail, [email protected]
Cite this: J. Med. Chem. 2017, 60, 22, 9162–9183
Publication Date (Web):September 11, 2017
https://doi.org/10.1021/acs.jmedchem.7b00796
Copyright © 2017 American Chemical Society
Article Views
6309
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (6 MB)
Supporting Info (2)»

Abstract

Abstract Image

Inhibition of the bromodomain of the transcriptional regulator CBP/P300 is an especially interesting new therapeutic approach in oncology. We recently disclosed in vivo chemical tool 1 (GNE-272) for the bromodomain of CBP that was moderately potent and selective over BRD4(1). In pursuit of a more potent and selective CBP inhibitor, we used structure-based design. Constraining the aniline of 1 into a tetrahydroquinoline motif maintained potency and increased selectivity 2-fold. Structure–activity relationship studies coupled with further structure-based design targeting the LPF shelf, BC loop, and KAc regions allowed us to significantly increase potency and selectivity, resulting in the identification of non-CNS penetrant 19 (GNE-781, TR-FRET IC50 = 0.94 nM, BRET IC50 = 6.2 nM; BRD4(1) IC50 = 5100 nΜ) that maintained good in vivo PK properties in multiple species. Compound 19 displays antitumor activity in an AML tumor model and was also shown to decrease Foxp3 transcript levels in a dose dependent manner.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.7b00796.

  • Full experimental details and characterization for all reported compounds, BromoScan data for 10 and 19, Cerep off-target screening data for 19, Invitrogen kinase data for 19, ab initio torsion scan data for 8, PK/PD data for 19, crystallography methods for 3-CBP, 8-CBP, 17-CBP, 10-CBP, 19-CBP, and 19-BRD4(1) (PDF)

  • Molecular formula strings (CSV)

Accession Codes

PDB codes for the structures of the CBP bromodomain in complex with 3, 8, 17, 10, and 19 are 5W0F, 5W0I, 5W0L, 5W0Q, and 5W0E, respectively. PDB code for the structure of the BRD4(1) in complex with 19 is 5VZS. Authors will release the atomic coordinates and experimental data upon article publication.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 51 publications.

  1. Pancham Lal Gupta, Heather A. Carlson. Cosolvent Simulations with Fragment-Bound Proteins Identify Hot Spots to Direct Lead Growth. Journal of Chemical Theory and Computation 2022, 18 (6) , 3829-3844. https://doi.org/10.1021/acs.jctc.1c01054
  2. Ashley E. Modell, Frank Marrone, III, Nihar R. Panigrahi, Yingkai Zhang, Paramjit S. Arora. Peptide Tethering: Pocket-Directed Fragment Screening for Peptidomimetic Inhibitor Discovery. Journal of the American Chemical Society 2022, 144 (3) , 1198-1204. https://doi.org/10.1021/jacs.1c09666
  3. Qiuping Xiang, Chao Wang, Tianbang Wu, Cheng Zhang, Qingqing Hu, Guolong Luo, Jiankang Hu, Xiaoxi Zhuang, Lingjiao Zou, Hui Shen, Xishan Wu, Yan Zhang, Xiangqian Kong, Jinsong Liu, Yong Xu. Design, Synthesis, and Biological Evaluation of 1-(Indolizin-3-yl)ethan-1-ones as CBP Bromodomain Inhibitors for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry 2022, 65 (1) , 785-810. https://doi.org/10.1021/acs.jmedchem.1c01864
  4. Miguel M. Vaidergorn, Flavio da Silva Emery, A. Ganesan. From Hit Seeking to Magic Bullets: The Successful Union of Epigenetic and Fragment Based Drug Discovery (EPIDD + FBDD). Journal of Medicinal Chemistry 2021, 64 (19) , 13980-14010. https://doi.org/10.1021/acs.jmedchem.1c00787
  5. Michael Brand, James Clayton, Mustafa Moroglu, Matthias Schiedel, Sarah Picaud, Joseph P. Bluck, Anna Skwarska, Hannah Bolland, Anthony K. N. Chan, Corentine M. C. Laurin, Amy R. Scorah, Larissa See, Timothy P. C. Rooney, Katrina H. Andrews, Oleg Fedorov, Gabriella Perell, Prakriti Kalra, Kayla B. Vinh, Wilian A. Cortopassi, Pascal Heitel, Kirsten E. Christensen, Richard I. Cooper, Robert S. Paton, William C. K. Pomerantz, Philip C. Biggin, Ester M. Hammond, Panagis Filippakopoulos, Stuart J. Conway. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. Journal of Medicinal Chemistry 2021, 64 (14) , 10102-10123. https://doi.org/10.1021/acs.jmedchem.1c00348
  6. Irena Hlushchuk, Heikki Ruskoaho, Andrii Domanskyi, Mikko Airavaara, Mika J. Välimäki. Domain-Independent Inhibition of CBP/p300 Attenuates α-Synuclein Aggregation. ACS Chemical Neuroscience 2021, 12 (13) , 2273-2279. https://doi.org/10.1021/acschemneuro.1c00215
  7. Alex Muthengi, Virangika K. Wimalasena, Hailemichael O. Yosief, Melissa J. Bikowitz, Logan H. Sigua, Tingjian Wang, Deyao Li, Zied Gaieb, Gagan Dhawan, Shuai Liu, Jon Erickson, Rommie E. Amaro, Ernst Schönbrunn, Jun Qi, Wei Zhang. Development of Dimethylisoxazole-Attached Imidazo[1,2-a]pyridines as Potent and Selective CBP/P300 Inhibitors. Journal of Medicinal Chemistry 2021, 64 (9) , 5787-5801. https://doi.org/10.1021/acs.jmedchem.0c02232
  8. Paul N. Mortenson, Daniel A. Erlanson, Iwan J. P. de Esch, Wolfgang Jahnke, Christopher N. Johnson. Fragment-to-Lead Medicinal Chemistry Publications in 2017. Journal of Medicinal Chemistry 2019, 62 (8) , 3857-3872. https://doi.org/10.1021/acs.jmedchem.8b01472
  9. Jian Zhu, Jing Dong, Laurent Batiste, Andrea Unzue, Aymeric Dolbois, Vlad Pascanu, Paweł Śledź, Cristina Nevado, Amedeo Caflisch. Binding Motifs in the CBP Bromodomain: An Analysis of 20 Crystal Structures of Complexes with Small Molecules. ACS Medicinal Chemistry Letters 2018, 9 (9) , 929-934. https://doi.org/10.1021/acsmedchemlett.8b00286
  10. Laurent Batiste, Andrea Unzue, Aymeric Dolbois, Fabrice Hassler, Xuan Wang, Nicholas Deerain, Jian Zhu, Dimitrios Spiliotopoulos, Cristina Nevado, and Amedeo Caflisch . Chemical Space Expansion of Bromodomain Ligands Guided by in Silico Virtual Couplings (AutoCouple). ACS Central Science 2018, 4 (2) , 180-188. https://doi.org/10.1021/acscentsci.7b00401
  11. Sarah M. Bronner, Jeremy Murray, F. Anthony Romero, Kwong Wah Lai, Vickie Tsui, Patrick Cyr, Maureen H. Beresini, Gladys de leon Boenig, Zhongguo Chen, Edna F. Choo, Kevin R. Clark, Terry D. Crawford, Hariharan Jayaram, Susan Kaufman, Ruina Li, Yingjie Li, Jiangpeng Liao, Xiaorong Liang, Wenfeng Liu, Justin Ly, Jonathan Maher, John Wai, Fei Wang, Aijun Zheng, Xiaoyu Zhu, and Steven Magnuson . A Unique Approach to Design Potent and Selective Cyclic Adenosine Monophosphate Response Element Binding Protein, Binding Protein (CBP) Inhibitors. Journal of Medicinal Chemistry 2017, 60 (24) , 10151-10171. https://doi.org/10.1021/acs.jmedchem.7b01372
  12. Hongrui Xu, Guolong Luo, Tianbang Wu, Jiankang Hu, Chao Wang, Xishan Wu, Yan Zhang, Yong Xu, Qiuping Xiang. Structural insights revealed by the cocrystal structure of CCS1477 in complex with CBP bromodomain. Biochemical and Biophysical Research Communications 2022, 623 , 17-22. https://doi.org/10.1016/j.bbrc.2022.07.021
  13. Ruiqi Liu, Hong Yang, Zonglong Chen, Kaixin Zhou, Qiongyu Shi, Jiayi Li, Yuting Huang, Xun Huang, Yingxia Li. Design, synthesis and biological evaluation of (R)-5-methylpyrrolidin-2-ones as p300 bromodomain inhibitors with Anti-Tumor activities in multiple tumor lines. Bioorganic Chemistry 2022, 124 , 105803. https://doi.org/10.1016/j.bioorg.2022.105803
  14. Zonglong Chen, Jiayi Li, Hong Yang, Yulong He, Qiongyu Shi, Qi Chang, Ruiqi Liu, Xun Huang, Yingxia Li. Discovery of novel benzimidazole derivatives as potent p300 bromodomain inhibitors with anti-proliferative activity in multiple cancer cells. Bioorganic & Medicinal Chemistry 2022, 66 , 116784. https://doi.org/10.1016/j.bmc.2022.116784
  15. Zi-Yu Jiang, Zhe-Yao Huang, Hong Yang, Lin Zhou, Qing-Han Li, Zhi-Gang Zhao. Cs 2 CO 3 catalyzed direct aza-Michael addition of azoles to α,β-unsaturated malonates. RSC Advances 2022, 12 (30) , 19265-19269. https://doi.org/10.1039/D2RA02314H
  16. Christopher A. French, Michael L. Cheng, Glenn J. Hanna, Steven G. DuBois, Nicole G. Chau, Christine L. Hann, Simone Storck, Ravi Salgia, Matteo Trucco, Jennifer Tseng, Anastasios Stathis, Richard Piekarz, Ulrich M. Lauer, Christophe Massard, Kelly Bennett, Shodeinde Coker, Ulrike Tontsch-Grunt, Martin L. Sos, Sida Liao, Catherine J. Wu, Kornelia Polyak, Sarina A. Piha-Paul, Geoffrey I. Shapiro. Report of the First International Symposium on NUT Carcinoma. Clinical Cancer Research 2022, 28 (12) , 2493-2505. https://doi.org/10.1158/1078-0432.CCR-22-0591
  17. Birgitta Lindqvist, Bianca B. Jütte, Luca Love, Wlaa Assi, Julie Roux, Anders Sönnerborg, Tugsan Tezil, Eric Verdin, J. Peter Svensson, . T cell stimulation remodels the latently HIV-1 infected cell population by differential activation of proviral chromatin. PLOS Pathogens 2022, 18 (6) , e1010555. https://doi.org/10.1371/journal.ppat.1010555
  18. Thomas Webb, Conner Craigon, Alessio Ciulli. Targeting epigenetic modulators using PROTAC degraders: Current status and future perspective. Bioorganic & Medicinal Chemistry Letters 2022, 63 , 128653. https://doi.org/10.1016/j.bmcl.2022.128653
  19. Hong Ding, Yuan Pei, Yuanqing Li, Wen Xu, Lianghe Mei, Zeng Hou, Yiman Guang, Liyuan Cao, Peizhuo Li, Haijing Cao, Jinlei Bian, Kaixian Chen, Cheng Luo, Bing Zhou, Ting Zhang, Zhiyu Li, Yaxi Yang. Design, synthesis and biological evaluation of a novel spiro oxazolidinedione as potent p300/CBP HAT inhibitor for the treatment of ovarian cancer. Bioorganic & Medicinal Chemistry 2021, 52 , 116512. https://doi.org/10.1016/j.bmc.2021.116512
  20. Samantha Carrera, Amanda O’Donnell, Yaoyong Li, Karol Nowicki-Osuch, Shen-Hsi Yang, Syed Murtuza Baker, David Spiller, Andrew D Sharrocks. Complexities in the role of acetylation dynamics in modifying inducible gene activation parameters. Nucleic Acids Research 2021, 18 https://doi.org/10.1093/nar/gkab1176
  21. Qianqian Wang, Xiaomin Shao, Elaine Lai Han Leung, Yingqing Chen, Xiaojun Yao. Selectively targeting individual bromodomain: Drug discovery and molecular mechanisms. Pharmacological Research 2021, 172 , 105804. https://doi.org/10.1016/j.phrs.2021.105804
  22. Aaron Waddell, Iqbal Mahmud, Haocheng Ding, Zhiguang Huo, Daiqing Liao. Pharmacological Inhibition of CBP/p300 Blocks Estrogen Receptor Alpha (ERα) Function through Suppressing Enhancer H3K27 Acetylation in Luminal Breast Cancer. Cancers 2021, 13 (11) , 2799. https://doi.org/10.3390/cancers13112799
  23. Aaron R. Waddell, Haojie Huang, Daiqing Liao. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers 2021, 13 (12) , 2872. https://doi.org/10.3390/cancers13122872
  24. Martin G. Jaeger, Georg E. Winter. Fast-acting chemical tools to delineate causality in transcriptional control. Molecular Cell 2021, 81 (8) , 1617-1630. https://doi.org/10.1016/j.molcel.2021.02.015
  25. Raghu Vannam, Jan Sayilgan, Samuel Ojeda, Barbara Karakyriakou, Eileen Hu, Johannes Kreuzer, Robert Morris, Xcanda Ixchel Herrera Lopez, Sumit Rai, Wilhelm Haas, Michael Lawrence, Christopher J. Ott. Targeted degradation of the enhancer lysine acetyltransferases CBP and p300. Cell Chemical Biology 2021, 28 (4) , 503-514.e12. https://doi.org/10.1016/j.chembiol.2020.12.004
  26. S.L. Wu, J. Zhao, H.B. Sun, H.Y. Li, Y.Y. Yin, L.L. Zhang. Insights into interaction mechanism of inhibitors E3T, E3H and E3B with CREB binding protein by using molecular dynamics simulations and MM-GBSA calculations. SAR and QSAR in Environmental Research 2021, 32 (3) , 221-246. https://doi.org/10.1080/1062936X.2021.1887351
  27. Kyle P. Eagen, Christopher A. French. Supercharging BRD4 with NUT in carcinoma. Oncogene 2021, 40 (8) , 1396-1408. https://doi.org/10.1038/s41388-020-01625-0
  28. Zhang-Xu He, Bing-Fei Wei, Xin Zhang, Yun-Peng Gong, Li-Ying Ma, Wen Zhao. Current development of CBP/p300 inhibitors in the last decade. European Journal of Medicinal Chemistry 2021, 209 , 112861. https://doi.org/10.1016/j.ejmech.2020.112861
  29. Eleni Pitsillou, Julia Liang, Andrew Hung, Tom C. Karagiannis. The circadian machinery links metabolic disorders and depression: A review of pathways, proteins and potential pharmacological interventions. Life Sciences 2021, 265 , 118809. https://doi.org/10.1016/j.lfs.2020.118809
  30. Sweta Sikder, Stephanie Kaypee, Tapas K Kundu. Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences 2020, 45 (1) https://doi.org/10.1007/s12038-019-9974-3
  31. Ya Zhang, Xin Wang. Targeting the Wnt/β-catenin signaling pathway in cancer. Journal of Hematology & Oncology 2020, 13 (1) https://doi.org/10.1186/s13045-020-00990-3
  32. Ying Xiong, Mingming Zhang, Yingxia Li. Recent Advances in the Development of CBP/p300 Bromodomain Inhibitors. Current Medicinal Chemistry 2020, 27 (33) , 5583-5598. https://doi.org/10.2174/0929867326666190731141055
  33. Hong Lin, Juan I. Luengo. Exploiting binding-site arginines in drug design: Recent examples. Bioorganic & Medicinal Chemistry Letters 2020, 30 (19) , 127442. https://doi.org/10.1016/j.bmcl.2020.127442
  34. Yu Chen, Xiaoyang Bi, Fengcai Zhang, Zhongya Sun, Pan Xu, Hao Jiang, Wenchao Lu, Tian Lu, Hong Ding, Naixia Zhang, Hualiang Jiang, Kaixian Chen, Bing Zhou, Cheng Luo. Design, synthesis, and biological evaluation of tetrahydroquinolin derivatives as potent inhibitors of CBP bromodomain. Bioorganic Chemistry 2020, 101 , 103991. https://doi.org/10.1016/j.bioorg.2020.103991
  35. Zhipeng A. Wang, Philip A. Cole. The Chemical Biology of Reversible Lysine Post-translational Modifications. Cell Chemical Biology 2020, 27 (8) , 953-969. https://doi.org/10.1016/j.chembiol.2020.07.002
  36. Alessandra Cipriano, Gianluca Sbardella, Alessio Ciulli. Targeting epigenetic reader domains by chemical biology. Current Opinion in Chemical Biology 2020, 57 , 82-94. https://doi.org/10.1016/j.cbpa.2020.05.006
  37. Chevaun D. Morrison-Smith, Tatiana M. Knox, Ivona Filic, Kara M. Soroko, Benjamin K. Eschle, Margaret K. Wilkens, Prafulla C. Gokhale, Francis Giles, Andrew Griffin, Bill Brown, Geoffrey I. Shapiro, Beth E. Zucconi, Philip A. Cole, Madeleine E. Lemieux, Christopher A. French. Combined Targeting of the BRD4–NUT–p300 Axis in NUT Midline Carcinoma by Dual Selective Bromodomain Inhibitor, NEO2734. Molecular Cancer Therapeutics 2020, 19 (7) , 1406-1414. https://doi.org/10.1158/1535-7163.MCT-20-0087
  38. Paula Katavolos, Gary Cain, Cindy Farman, F. Anthony Romero, Steven Magnuson, Justin Q. Ly, Edna F. Choo, Anand Kumar Katakam, Roxanne Andaya, Jonathan Maher. Preclinical Safety Assessment of a Highly Selective and Potent Dual Small-Molecule Inhibitor of CBP/P300 in Rats and Dogs. Toxicologic Pathology 2020, 48 (3) , 465-480. https://doi.org/10.1177/0192623319898469
  39. Birgitta Lindqvist, Sara Svensson Akusjärvi, Anders Sönnerborg, Marios Dimitriou, J. Peter Svensson, . Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells. PLOS Pathogens 2020, 16 (1) , e1008264. https://doi.org/10.1371/journal.ppat.1008264
  40. Dahong Yao, Jin Zhang, Jinhui Wang, Dabo Pan, Zhendan He. Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. Journal of Enzyme Inhibition and Medicinal Chemistry 2020, 35 (1) , 713-725. https://doi.org/10.1080/14756366.2020.1740924
  41. Qin Wu, David Heidenreich, Stanley Zhou, Suzanne Ackloo, Andreas Krämer, Kiran Nakka, Evelyne Lima-Fernandes, Genevieve Deblois, Shili Duan, Ravi N. Vellanki, Fengling Li, Masoud Vedadi, Jeffrey Dilworth, Mathieu Lupien, Paul E. Brennan, Cheryl H. Arrowsmith, Susanne Müller, Oleg Fedorov, Panagis Filippakopoulos, Stefan Knapp. A chemical toolbox for the study of bromodomains and epigenetic signaling. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09672-2
  42. Andrea G. Cochran, Andrew R. Conery, Robert J. Sims. Bromodomains: a new target class for drug development. Nature Reviews Drug Discovery 2019, 18 (8) , 609-628. https://doi.org/10.1038/s41573-019-0030-7
  43. Joseph Castillo, Esther Wu, Christopher Lowe, Shrividhya Srinivasan, Ron McCord, Marie-Claire Wagle, Sangeeta Jayakar, Melissa Gonzalez Edick, Jeffrey Eastham-Anderson, Bonnie Liu, Katherine E. Hutchinson, Wendell Jones, Matthew P. Stokes, Somayeh S. Tarighat, Thomas Holcomb, Andrew Glibicky, F. Anthony Romero, Steven Magnuson, Shih-Min A. Huang, Vicki Plaks, Jennifer M. Giltnane, Mark R. Lackner, Zineb Mounir. CBP/p300 Drives the Differentiation of Regulatory T Cells through Transcriptional and Non-Transcriptional Mechanisms. Cancer Research 2019, 79 (15) , 3916-3927. https://doi.org/10.1158/0008-5472.CAN-18-3622
  44. Timothy R. Bishop, Yuxiang Zhang, Michael A. Erb. Pharmacological Modulation of Transcriptional Coregulators in Cancer. Trends in Pharmacological Sciences 2019, 40 (6) , 388-402. https://doi.org/10.1016/j.tips.2019.04.004
  45. Denise E. de Almeida Nagata, Eugene Y. Chiang, Suchit Jhunjhunwala, Patrick Caplazi, Vidhyalakshmi Arumugam, Zora Modrusan, Emily Chan, Mark Merchant, Lingyan Jin, David Arnott, F. Anthony Romero, Steven Magnuson, Karen E. Gascoigne, Jane L. Grogan. Regulation of Tumor-Associated Myeloid Cell Activity by CBP/EP300 Bromodomain Modulation of H3K27 Acetylation. Cell Reports 2019, 27 (1) , 269-281.e4. https://doi.org/10.1016/j.celrep.2019.03.008
  46. Michael A. Clegg, Nicholas C. O. Tomkinson, Rab K. Prinjha, Philip G. Humphreys. Advancements in the Development of non‐BET Bromodomain Chemical Probes. ChemMedChem 2019, 14 (4) , 362-385. https://doi.org/10.1002/cmdc.201800738
  47. William G. Kerr, John D. Chisholm. The Next Generation of Immunotherapy for Cancer: Small Molecules Could Make Big Waves. The Journal of Immunology 2019, 202 (1) , 11-19. https://doi.org/10.4049/jimmunol.1800991
  48. Meghan E Breen, Anna K Mapp. Modulating the masters: chemical tools to dissect CBP and p300 function. Current Opinion in Chemical Biology 2018, 45 , 195-203. https://doi.org/10.1016/j.cbpa.2018.06.005
  49. Matthias Schiedel, Stuart J Conway. Small molecules as tools to study the chemical epigenetics of lysine acetylation. Current Opinion in Chemical Biology 2018, 45 , 166-178. https://doi.org/10.1016/j.cbpa.2018.06.015
  50. Ryan Raisner, Samir Kharbanda, Lingyan Jin, Edwin Jeng, Emily Chan, Mark Merchant, Peter M. Haverty, Russell Bainer, Tommy Cheung, David Arnott, E. Megan Flynn, F. Anthony Romero, Steven Magnuson, Karen E. Gascoigne. Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. Cell Reports 2018, 24 (7) , 1722-1729. https://doi.org/10.1016/j.celrep.2018.07.041
  51. Qianqian Wang, Xiaoli An, Jiahui Xu, Yuwei Wang, Liang Liu, Elaine Lai-Han Leung, Xiaojun Yao. Classical molecular dynamics and metadynamics simulations decipher the mechanism of CBP30 selectively inhibiting CBP/p300 bromodomains. Organic & Biomolecular Chemistry 2018, 16 (35) , 6521-6530. https://doi.org/10.1039/C8OB01526K

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE