ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Discovery of 1,5-Diphenylpyrazole-3-Carboxamide Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors

View Author Information
§ Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
Graduate School in Chemistry, University of Trieste, 34127 Trieste, Italy
Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
Department of Molecular Science and Nanosystems, Ca’ Foscari Università di Venezia, 30172 Venezia-Mestre, Italy
Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Firenze, 50139 Firenze, Italy
# Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
*E-mail: [email protected]. Phone: +39-050-2219595. Fax: +39-050-2210680.
Cite this: J. Med. Chem. 2018, 61, 3, 1340–1354
Publication Date (Web):January 8, 2018
https://doi.org/10.1021/acs.jmedchem.7b01845
Copyright © 2018 American Chemical Society

    Article Views

    2983

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays an important role in the degradation of the endocannabinoid neurotransmitter 2-arachidonoylglycerol, which is implicated in many physiological processes. Beyond the possible utilization of MAGL inhibitors as anti-inflammatory, antinociceptive, and anticancer agents, their application has encountered obstacles due to the unwanted effects caused by the irreversible inhibition of this enzyme. The possible application of reversible MAGL inhibitors has only recently been explored, mainly due to the deficiency of known compounds possessing efficient reversible inhibitory activities. In this work, we report a new series of reversible MAGL inhibitors. Among them, compound 26 showed to be a potent MAGL inhibitor (IC50 = 0.51 μM, Ki = 412 nM) with a good selectivity versus fatty acid amide hydrolase (FAAH), α/β-hydrolase domain-containing 6 (ABHD6), and 12 (ABHD12). Interestingly, this compound also possesses antiproliferative activities against two different cancer cell lines and relieves the neuropathic hypersensitivity induced in vivo by oxaliplatin.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.7b01845.

    • General binding hypothesis for the design of diphenylpyrazole MAGL inhibitors, LC-MS/MS quantification of endocannabinoids and other metabolites, and HPLC chromatograms of the final compounds (PDF)

    • Molecular formula strings (CSV)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Giulia Bononi, Miriana Di Stefano, Giulio Poli, Gabriella Ortore, Philip Meier, Francesca Masetto, Isabella Caligiuri, Flavio Rizzolio, Marco Macchia, Andrea Chicca, Amir Avan, Elisa Giovannetti, Chiara Vagaggini, Annalaura Brai, Elena Dreassi, Massimo Valoti, Filippo Minutolo, Carlotta Granchi, Jürg Gertsch, Tiziano Tuccinardi. Reversible Monoacylglycerol Lipase Inhibitors: Discovery of a New Class of Benzylpiperidine Derivatives. Journal of Medicinal Chemistry 2022, 65 (10) , 7118-7140. https://doi.org/10.1021/acs.jmedchem.1c01806
    2. Yingfang He, Matthias Schild, Uwe Grether, Jörg Benz, Lea Leibrock, Dominik Heer, Andreas Topp, Ludovic Collin, Bernd Kuhn, Matthias Wittwer, Claudia Keller, Luca C. Gobbi, Roger Schibli, Linjing Mu. Development of High Brain-Penetrant and Reversible Monoacylglycerol Lipase PET Tracers for Neuroimaging. Journal of Medicinal Chemistry 2022, 65 (3) , 2191-2207. https://doi.org/10.1021/acs.jmedchem.1c01706
    3. Jian Rong, Wakana Mori, Xiaotian Xia, Michael A. Schafroth, Chunyu Zhao, Richard S. Van, Tomoteru Yamasaki, Jiahui Chen, Zhiwei Xiao, Ahmed Haider, Daisuke Ogasawara, Atsuto Hiraishi, Tuo Shao, Yiding Zhang, Zhen Chen, Fuwen Pang, Kuan Hu, Lin Xie, Masayuki Fujinaga, Katsushi Kumata, Yuancheng Gou, Yang Fang, Shuyin Gu, Huiyi Wei, Liang Bao, Hao Xu, Thomas L. Collier, Yihan Shao, Richard E. Carson, Benjamin F. Cravatt, Lu Wang, Ming-Rong Zhang, Steven H. Liang. Novel Reversible-Binding PET Ligands for Imaging Monoacylglycerol Lipase Based on the Piperazinyl Azetidine Scaffold. Journal of Medicinal Chemistry 2021, 64 (19) , 14283-14298. https://doi.org/10.1021/acs.jmedchem.1c00747
    4. Shuhei Ikeda, Hideyuki Sugiyama, Hidekazu Tokuhara, Masataka Murakami, Minoru Nakamura, Yuya Oguro, Jumpei Aida, Nao Morishita, Satoshi Sogabe, Douglas R. Dougan, Sean C. Gay, Ling Qin, Naoto Arimura, Yasuko Takahashi, Masako Sasaki, Yusuke Kamada, Kazunobu Aoyama, Kouya Kimoto, Makoto Kamata. Design and Synthesis of Novel Spiro Derivatives as Potent and Reversible Monoacylglycerol Lipase (MAGL) Inhibitors: Bioisosteric Transformation from 3-Oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl Moiety. Journal of Medicinal Chemistry 2021, 64 (15) , 11014-11044. https://doi.org/10.1021/acs.jmedchem.1c00432
    5. Zhuoer Zhi, Wenting Zhang, Jingchun Yao, Yanguo Shang, Qingjing Hao, Zhong Liu, Yushan Ren, Jie Li, Guimin Zhang, Jinxin Wang. Discovery of Aryl Formyl Piperidine Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase Inhibitors. Journal of Medicinal Chemistry 2020, 63 (11) , 5783-5796. https://doi.org/10.1021/acs.jmedchem.9b02137
    6. Carlotta Granchi, Margherita Lapillo, Sandra Glasmacher, Giulia Bononi, Cristina Licari, Giulio Poli, Maguie el Boustani, Isabella Caligiuri, Flavio Rizzolio, Jürg Gertsch, Marco Macchia, Filippo Minutolo, Tiziano Tuccinardi, Andrea Chicca. Optimization of a Benzoylpiperidine Class Identifies a Highly Potent and Selective Reversible Monoacylglycerol Lipase (MAGL) Inhibitor. Journal of Medicinal Chemistry 2019, 62 (4) , 1932-1958. https://doi.org/10.1021/acs.jmedchem.8b01483
    7. Jumpei Aida, Makoto Fushimi, Tomokazu Kusumoto, Hideyuki Sugiyama, Naoto Arimura, Shuhei Ikeda, Masako Sasaki, Satoshi Sogabe, Kazunobu Aoyama, Tatsuki Koike. Design, Synthesis, and Evaluation of Piperazinyl Pyrrolidin-2-ones as a Novel Series of Reversible Monoacylglycerol Lipase Inhibitors. Journal of Medicinal Chemistry 2018, 61 (20) , 9205-9217. https://doi.org/10.1021/acs.jmedchem.8b00824
    8. Laura A. McAllister, Christopher R. Butler, Scot Mente, Steven V. O’Neil, Kari R. Fonseca, Justin R. Piro, Julie A. Cianfrogna, Timothy L. Foley, Adam M. Gilbert, Anthony R. Harris, Christopher J. Helal, Douglas S. Johnson, Justin I. Montgomery, Deane M. Nason, Stephen Noell, Jayvardhan Pandit, Bruce N. Rogers, Tarek A. Samad, Christopher L. Shaffer, Rafael G. da Silva, Daniel P. Uccello, Damien Webb, Michael A. Brodney. Discovery of Trifluoromethyl Glycol Carbamates as Potent and Selective Covalent Monoacylglycerol Lipase (MAGL) Inhibitors for Treatment of Neuroinflammation. Journal of Medicinal Chemistry 2018, 61 (7) , 3008-3026. https://doi.org/10.1021/acs.jmedchem.8b00070
    9. Kamal S. Abdelrahman, Heba A. Hassan, Salah A. Abdel-Aziz, Adel A. Marzouk, Raef Shams, Keima Osawa, Mohamed Abdel-Aziz, Hiroyuki Konno. Development and Assessment of 1,5–Diarylpyrazole/Oxime Hybrids Targeting EGFR and JNK–2 as Antiproliferative Agents: A Comprehensive Study through Synthesis, Molecular Docking, and Evaluation. Molecules 2023, 28 (18) , 6521. https://doi.org/10.3390/molecules28186521
    10. Chen Xuecheng, Xiong Yanpeng, Luo Yue, Peng Yalan, Chen Zhong, Yu Zhijian, Han Shiqing. Derivatization of Dihydropyrrolidone-Thiadiazole Heterocyclic Compounds and an Evaluation of their Antibacterial and Anti-Biofilm Activities. Synthesis 2023, 55 (13) , 2099-2108. https://doi.org/10.1055/a-2023-0028
    11. Kanwal Asif, Muhammad Adeel, Md. Mahbubur Rahman, Isabella Caligiuri, Tiziana Perin, Maja Cemazar, Vincenzo Canzonieri, Flavio Rizzolio. Iron nitroprusside as a chemodynamic agent and inducer of ferroptosis for ovarian cancer therapy. Journal of Materials Chemistry B 2023, 11 (14) , 3124-3135. https://doi.org/10.1039/D2TB02691K
    12. Shivani Jaiswal, Akhilesh, Vinod Tiwari, Senthil Raja Ayyannan. Anti-nociceptive potential of an isatin-derived dual fatty acid amide hydrolase-monoacylglycerol lipase inhibitor. Pharmacological Reports 2023, 9 https://doi.org/10.1007/s43440-023-00468-2
    13. Kanwal Asif, Muhammad Adeel, Md. Mahbubur Rahman, Andrea Augusto Sfriso, Michele Bartoletti, Vincenzo Canzonieri, Flavio Rizzolio, Isabella Caligiuri. Silver nitroprusside as an efficient chemodynamic therapeutic agent and a peroxynitrite nanogenerator for targeted cancer therapies. Journal of Advanced Research 2023, 58 https://doi.org/10.1016/j.jare.2023.03.005
    14. Abhishek Kashyap, Suresh Kumar, Rohit Dutt. A Review on Structurally Diversified Synthesized Molecules as Monoacylglycerol Lipase Inhibitors and their Therapeutic uses. Current Drug Research Reviews 2022, 14 (2) , 96-115. https://doi.org/10.2174/2589977514666220301111457
    15. Daniele Piomelli, Alex Mabou Tagne. Endocannabinoid-Based Therapies. Annual Review of Pharmacology and Toxicology 2022, 62 (1) , 483-507. https://doi.org/10.1146/annurev-pharmtox-052220-021800
    16. Spyridon Dimitrakis, Efthymios-Spyridon Gavriil, Athanasios Pousias, Nikolaos Lougiakis, Panagiotis Marakos, Nicole Pouli, Katerina Gioti, Roxane Tenta. Novel Substituted Purine Isosteres: Synthesis, Structure-Activity Relationships and Cytotoxic Activity Evaluation. Molecules 2022, 27 (1) , 247. https://doi.org/10.3390/molecules27010247
    17. Giulia Bononi, Giacomo Tonarini, Giulio Poli, Ivana Barravecchia, Isabella Caligiuri, Marco Macchia, Flavio Rizzolio, Gian Carlo Demontis, Filippo Minutolo, Carlotta Granchi, Tiziano Tuccinardi. Monoacylglycerol lipase (MAGL) inhibitors based on a diphenylsulfide-benzoylpiperidine scaffold. European Journal of Medicinal Chemistry 2021, 223 , 113679. https://doi.org/10.1016/j.ejmech.2021.113679
    18. Anca Zanfirescu, Anca Ungurianu, Dragos Paul Mihai, Denise Radulescu, George Mihai Nitulescu. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules 2021, 26 (18) , 5668. https://doi.org/10.3390/molecules26185668
    19. Qing‐Hu Teng, Gui‐Xia Sun, Shu‐Ying Luo, Kai Wang, Fu‐Pei Liang. Design, syntheses and antitumor activities evaluation of 1,5‐diaryl substituted pyrazole secnidazole ester derivatives. Journal of Heterocyclic Chemistry 2021, 58 (8) , 1656-1664. https://doi.org/10.1002/jhet.4302
    20. Shivani Jaiswal, Senthil Raja Ayyannan. Anticancer Potential of Small‐Molecule Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase. ChemMedChem 2021, 16 (14) , 2172-2187. https://doi.org/10.1002/cmdc.202100120
    21. C. J. Fowler. The endocannabinoid system – current implications for drug development. Journal of Internal Medicine 2021, 290 (1) , 2-26. https://doi.org/10.1111/joim.13229
    22. Zhen Chen, Wakana Mori, Jian Rong, Michael A. Schafroth, Tuo Shao, Richard S. Van, Daisuke Ogasawara, Tomoteru Yamasaki, Atsuto Hiraishi, Akiko Hatori, Jiahui Chen, Yiding Zhang, Kuan Hu, Masayuki Fujinaga, Jiyun Sun, Qingzhen Yu, Thomas L. Collier, Yihan Shao, Benjamin F. Cravatt, Lee Josephson, Ming-Rong Zhang, Steven H. Liang. Development of a highly-specific 18F-labeled irreversible positron emission tomography tracer for monoacylglycerol lipase mapping. Acta Pharmaceutica Sinica B 2021, 11 (6) , 1686-1695. https://doi.org/10.1016/j.apsb.2021.01.021
    23. Fengmin Xiong, Xiaoyu Ding, Hao Zhang, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, Cheng Luo, Heng Xu. Discovery of novel reversible monoacylglycerol lipase inhibitors via docking-based virtual screening. Bioorganic & Medicinal Chemistry Letters 2021, 41 , 127986. https://doi.org/10.1016/j.bmcl.2021.127986
    24. Jiqing Ye, Lin Lin, Jinyi Xu, Paul Kay-sheung Chan, Xiao Yang, Cong Ma. Design, Synthesis, Biological Evaluation and In Silico Studies of Pyrazole-Based NH2-Acyl Oseltamivir Analogues as Potent Neuraminidase Inhibitors. Pharmaceuticals 2021, 14 (4) , 371. https://doi.org/10.3390/ph14040371
    25. C. Manera. Meet Our Editorial Board Member. Mini-Reviews in Medicinal Chemistry 2021, 21 (6) , 659-659. https://doi.org/10.2174/138955752106210215090504
    26. Carlotta Granchi, Giulia Bononi, Rebecca Ferrisi, Eleonora Gori, Giulia Mantini, Sandra Glasmacher, Giulio Poli, Stefano Palazzolo, Isabella Caligiuri, Flavio Rizzolio, Vincenzo Canzonieri, Tiziana Perin, Jürg Gertsch, Andrea Sodi, Elisa Giovannetti, Marco Macchia, Filippo Minutolo, Tiziano Tuccinardi, Andrea Chicca. Design, synthesis and biological evaluation of second-generation benzoylpiperidine derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry 2021, 209 , 112857. https://doi.org/10.1016/j.ejmech.2020.112857
    27. Nicolás Montesdeoca, Marta López, Xavier Ariza, Laura Herrero, Kamil Makowski. Inhibitors of lipogenic enzymes as a potential therapy against cancer. The FASEB Journal 2020, 34 (9) , 11355-11381. https://doi.org/10.1096/fj.202000705R
    28. Bin Zhu, Peter J. Connolly, Yue-Mei Zhang, Mark E. McDonnell, Haiyan Bian, Shu-Chen Lin, Li Liu, Sui-Po Zhang, Kristen M. Chevalier, Michael R. Brandt, Cynthia M. Milligan, Christopher M. Flores, Mark J. Macielag. The discovery of azetidine-piperazine di-amides as potent, selective and reversible monoacylglycerol lipase (MAGL) inhibitors. Bioorganic & Medicinal Chemistry Letters 2020, 30 (14) , 127243. https://doi.org/10.1016/j.bmcl.2020.127243
    29. Bin Zhu, Peter J. Connolly, Sui-Po Zhang, Kristen M. Chevalier, Cynthia M. Milligan, Christopher M. Flores, Mark J. Macielag. The discovery of diazetidinyl diamides as potent and reversible inhibitors of monoacylglycerol lipase (MAGL). Bioorganic & Medicinal Chemistry Letters 2020, 30 (12) , 127198. https://doi.org/10.1016/j.bmcl.2020.127198
    30. Jian Shao, Pu-Zhen Huang, Qiu-Yun Chen, Qing-Lin Zheng. Nano adamantane-conjugated BODIPY for lipase affinity and light driven antibacterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 234 , 118252. https://doi.org/10.1016/j.saa.2020.118252
    31. Hui Deng, Weimin Li. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharmaceutica Sinica B 2020, 10 (4) , 582-602. https://doi.org/10.1016/j.apsb.2019.10.006
    32. Ryan M. Wyatt, Ian Fraser, Natalie Welty, Brian Lord, Michelle Wennerholm, Steven Sutton, Michael K. Ameriks, Christine Dugovic, Sujin Yun, Allison White, Leslie Nguyen, Tatiana Koudriakova, Gaochao Tian, Javier Suarez, Lawrence Szewczuk, William Bonnette, Kay Ahn, Brahma Ghosh, Christopher M. Flores, Peter J. Connolly, Bin Zhu, Mark J. Macielag, Michael R. Brandt, Kristen Chevalier, Sui-Po Zhang, Timothy Lovenberg, Pascal Bonaventure. Pharmacologic Characterization of JNJ-42226314, [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone, a Reversible, Selective, and Potent Monoacylglycerol Lipase Inhibitor. Journal of Pharmacology and Experimental Therapeutics 2020, 372 (3) , 339-353. https://doi.org/10.1124/jpet.119.262139
    33. Florian M. Dato, Jörg-Martin Neudörfl, Michael Gütschow, Bernd Goldfuss, Markus Pietsch. ω-Quinazolinonylalkyl aryl ureas as reversible inhibitors of monoacylglycerol lipase. Bioorganic Chemistry 2020, 94 , 103352. https://doi.org/10.1016/j.bioorg.2019.103352
    34. Luke J. Ney, Allison Matthews, Raimondo Bruno, Kim L. Felmingham. Cannabinoid interventions for PTSD: Where to next?. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019, 93 , 124-140. https://doi.org/10.1016/j.pnpbp.2019.03.017
    35. Nikolai S. Li-Zhulanov, Irina V. Il’ina, Andrea Chicca, Patricia Schenker, Oksana S. Patrusheva, Ekaterina V. Nazimova, Dina V. Korchagina, Mikhail Krasavin, Konstantin P. Volcho, Nariman F. Salakhutdinov. Effect of chiral polyhydrochromenes on cannabinoid system. Medicinal Chemistry Research 2019, 28 (4) , 450-464. https://doi.org/10.1007/s00044-019-02294-9
    36. Fatima Arshad, Mohemmed Faraz Khan, Wasim Akhtar, Mohammad Mumtaz Alam, Lalit Mohan Nainwal, Sumit Kumar Kaushik, Mymoona Akhter, Suhel Parvez, Syed Misbahul Hasan, Mohammad Shaquiquzzaman. Revealing quinquennial anticancer journey of morpholine: A SAR based review. European Journal of Medicinal Chemistry 2019, 167 , 324-356. https://doi.org/10.1016/j.ejmech.2019.02.015
    37. Ana Gil-Ordóñez, Mar Martín-Fontecha, Silvia Ortega-Gutiérrez, María L. López-Rodríguez. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochemical Pharmacology 2018, 157 , 18-32. https://doi.org/10.1016/j.bcp.2018.07.036
    38. Giulia Bononi, Carlotta Granchi, Margherita Lapillo, Massimiliano Giannotti, Daniela Nieri, Serena Fortunato, Maguie El Boustani, Isabella Caligiuri, Giulio Poli, Kathryn E. Carlson, Sung Hoon Kim, Marco Macchia, Adriano Martinelli, Flavio Rizzolio, Andrea Chicca, John A. Katzenellenbogen, Filippo Minutolo, Tiziano Tuccinardi. Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry 2018, 157 , 817-836. https://doi.org/10.1016/j.ejmech.2018.08.038

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect