Identification of Cyanamide-Based Janus Kinase 3 (JAK3) Covalent InhibitorsClick to copy article linkArticle link copied!
- Agustin Casimiro-Garcia*Agustin Casimiro-Garcia*Phone: (617) 665-5673. E-mail: [email protected]Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United StatesMore by Agustin Casimiro-Garcia
- John I. TrujilloJohn I. TrujilloMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by John I. Trujillo
- Felix VajdosFelix VajdosMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Felix Vajdos
- Brian JubaBrian JubaInflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United StatesMore by Brian Juba
- Mary Ellen BankerMary Ellen BankerMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Mary Ellen Banker
- Ann AulabaughAnn AulabaughMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Ann Aulabaugh
- Paul BalboPaul BalboInflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United StatesMore by Paul Balbo
- Jonathan BaumanJonathan BaumanMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Jonathan Bauman
- Jill ChrencikJill ChrencikMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Jill Chrencik
- Jotham W. CoeJotham W. CoeMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Jotham W. Coe
- Robert CzerwinskiRobert CzerwinskiInflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United StatesMore by Robert Czerwinski
- Martin DowtyMartin DowtyMedicine Design, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts 01810, United StatesMore by Martin Dowty
- John D. KnafelsJohn D. KnafelsMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by John D. Knafels
- Soojin KwonSoojin KwonMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Soojin Kwon
- Louis LeungLouis LeungMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Louis Leung
- Sidney LiangSidney LiangMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Sidney Liang
- Ralph P. RobinsonRalph P. RobinsonMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Ralph P. Robinson
- Jean-Baptiste TelliezJean-Baptiste TelliezInflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United StatesMore by Jean-Baptiste Telliez
- Ray UnwallaRay UnwallaMedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United StatesMore by Ray Unwalla
- Xin YangXin YangMedicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United StatesMore by Xin Yang
- Atli ThorarensenAtli ThorarensenMedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United StatesMore by Atli Thorarensen
Abstract

Ongoing interest in the discovery of selective JAK3 inhibitors led us to design novel covalent inhibitors that engage the JAK3 residue Cys909 by cyanamide, a structurally and mechanistically differentiated electrophile from other cysteine reacting groups previously incorporated in JAK3 covalent inhibitors. Through crystallography, kinetic, and computational studies, interaction of cyanamide 12 with Cys909 was optimized leading to potent and selective JAK3 inhibitors as exemplified by 32. In relevant cell-based assays and in agreement with previous results from this group, 32 demonstrated that selective inhibition of JAK3 is sufficient to drive JAK1/JAK3-mediated cellular responses. The contribution from extrahepatic processes to the clearance of cyanamide-based covalent inhibitors was also characterized using metabolic and pharmacokinetic data for 12. This work also gave key insights into a productive approach to decrease glutathione/glutathione S-transferase-mediated clearance, a challenge typically encountered during the discovery of covalent kinase inhibitors.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 66 publications.
- Jianzhong Chen, Jian Wang, Wanchun Yang, Lu Zhao, Jing Su. Activity Regulation and Conformation Response of Janus Kinase 3 Mediated by Phosphorylation: Exploration from Correlation Network Analysis and Markov Model. Journal of Chemical Information and Modeling 2025, 65
(8)
, 4189-4205. https://doi.org/10.1021/acs.jcim.5c00096
- Laura Scalvini, Daniele Pala, Alberto Cuzzolin, Francesca Galvani, Alessio Lodola, Silvia Rivara, Marco Mor, Andrea Rizzi. JAK3 Inhibitors: Covalent and Noncovalent Interactions of a Cyanamide Group Investigated by Multiscale Free-Energy Simulations. Journal of Chemical Information and Modeling 2025, 65
(3)
, 1404-1418. https://doi.org/10.1021/acs.jcim.4c01889
- Laura Hillebrand, Xiaojun Julia Liang, Ricardo A. M. Serafim, Matthias Gehringer. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. Journal of Medicinal Chemistry 2024, 67
(10)
, 7668-7758. https://doi.org/10.1021/acs.jmedchem.3c01825
- Nils Pemberton, Nina Compagne, Argyrides Argyrou, Emma Evertsson, Anders Gunnarsson, Jason G. Kettle, Jonathan P. Orme, Richard A. Ward. Vinylpyridine as a Tunable Covalent Warhead Targeting C797 in EGFR. ACS Medicinal Chemistry Letters 2024, 15
(5)
, 583-589. https://doi.org/10.1021/acsmedchemlett.3c00425
- Mengxiao Yu, Xiaobin Liu, Xiaoyu Zhang, Jinli Zhang, You Han. Comparative Technical, Economic, and Environmental Analysis of Different Cyanamide Production Processes Optimized through Heat Integration Design. ACS Sustainable Chemistry & Engineering 2023, 11
(49)
, 17371-17383. https://doi.org/10.1021/acssuschemeng.3c05120
- Aniket Mishra, Xuefeng Cong, Masayoshi Nishiura, Zhaomin Hou. Enantioselective Synthesis of 1-Aminoindanes via [3 + 2] Annulation of Aldimines with Alkenes by Scandium-Catalyzed C–H Activation. Journal of the American Chemical Society 2023, 145
(31)
, 17468-17477. https://doi.org/10.1021/jacs.3c06482
- Ingo V. Hartung, Joachim Rudolph, Mary M. Mader, Monique P. C. Mulder, Paul Workman. Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes. Journal of Medicinal Chemistry 2023, 66
(14)
, 9297-9312. https://doi.org/10.1021/acs.jmedchem.3c00550
- Khuchtumur Bum-Erdene, I-Ju Yeh, Giovanni Gonzalez-Gutierrez, Mona K. Ghozayel, Karen Pollok, Samy O. Meroueh. Small-Molecule Cyanamide Pan-TEAD·YAP1 Covalent Antagonists. Journal of Medicinal Chemistry 2023, 66
(1)
, 266-284. https://doi.org/10.1021/acs.jmedchem.2c01189
- Sean P. Henry, Maria-Elena Liosi, Joseph A. Ippolito, Fabian Menges, Ana S. Newton, Joseph Schlessinger, William L. Jorgensen. Covalent Modification of the JH2 Domain of Janus Kinase 2. ACS Medicinal Chemistry Letters 2022, 13
(11)
, 1819-1826. https://doi.org/10.1021/acsmedchemlett.2c00414
- Wen-Yan Xu, Yu-Jie Li, Tian-Jun Gong, Yao Fu. Synthesis of gem-Difluorinated 1,3-Dienes via Synergistic Cu/Pd-Catalyzed Borodifluorovinylation of Alkynes. Organic Letters 2022, 24
(32)
, 5884-5889. https://doi.org/10.1021/acs.orglett.2c01875
- Shan Li, Hongfei Si, Xiaojuan Song, Chong Lei, Xiaoqiang He, Jie Wang, Yiling Liu, Yang Zhou, Jian-Guo Song, Lijie Peng, Xia Tang, Shingpan Chan, Xiaomei Ren, Zhengchao Tu, Zhengqiu Li, Zhen Wang, Zhang Zhang, Ke Ding. Discovery of Hexahydrofuro[3,2-b]furans as New Kinase-Selective and Orally Bioavailable JAK3 Inhibitors for the Treatment of Leukemia Harboring a JAK3 Activating Mutant. Journal of Medicinal Chemistry 2022, 65
(15)
, 10674-10690. https://doi.org/10.1021/acs.jmedchem.2c00922
- Romain Hany, Jean-Philippe Leyris, Guillaume Bret, Sylvie Mallié, Chamroeun Sar, Maxime Thouaye, Abdallah Hamze, Olivier Provot, Pierre Sokoloff, Jean Valmier, Pascal Villa, Didier Rognan. High-Throughput Screening for Extracellular Inhibitors of the FLT3 Receptor Tyrosine Kinase Reveals Chemically Diverse and Druggable Negative Allosteric Modulators. ACS Chemical Biology 2022, 17
(3)
, 709-722. https://doi.org/10.1021/acschembio.2c00048
- Qichao Bao, Liangying Zhang, Nan Wang, Brian Gabet, Weikang Yang, Xingyang Gao, Qidong You, Zhengyu Jiang. Hydrogen Peroxide Inducible JAK3 Covalent Inhibitor: Prodrug for the Treatment of RA with Enhanced Safety Profile. ACS Medicinal Chemistry Letters 2020, 11
(11)
, 2182-2189. https://doi.org/10.1021/acsmedchemlett.0c00323
- Edouard Duchamp, Stephen Hanessian. Cyanide-Free Synthesis of Air Stable N-Substituted Li and K Cyanamide Salts from Tetrazoles. Applications toward the Synthesis of Primary and Secondary Cyanamides as Precursors to Amidines. Organic Letters 2020, 22
(21)
, 8487-8491. https://doi.org/10.1021/acs.orglett.0c03085
- Xuefeng Cong, Gu Zhan, Zhenbo Mo, Masayoshi Nishiura, Zhaomin Hou. Diastereodivergent [3 + 2] Annulation of Aromatic Aldimines with Alkenes via C–H Activation by Half-Sandwich Rare-Earth Catalysts. Journal of the American Chemical Society 2020, 142
(12)
, 5531-5537. https://doi.org/10.1021/jacs.0c01171
- Minjian Yang, Bingzhong Tao, Chengjuan Chen, Wenqiang Jia, Shaolei Sun, Tiantai Zhang, Xiaojian Wang. Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors. Journal of Chemical Information and Modeling 2019, 59
(12)
, 5002-5012. https://doi.org/10.1021/acs.jcim.9b00798
- Gaochan Wu, Tong Zhao, Dongwei Kang, Jian Zhang, Yuning Song, Vigneshwaran Namasivayam, Jacob Kongsted, Christophe Pannecouque, Erik De Clercq, Vasanthanathan Poongavanam, Xinyong Liu, Peng Zhan. Overview of Recent Strategic Advances in Medicinal Chemistry. Journal of Medicinal Chemistry 2019, 62
(21)
, 9375-9414. https://doi.org/10.1021/acs.jmedchem.9b00359
- Matthias Gehringer, Stefan A. Laufer. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. Journal of Medicinal Chemistry 2019, 62
(12)
, 5673-5724. https://doi.org/10.1021/acs.jmedchem.8b01153
- Steven H. Spergel, Michael E. Mertzman, James Kempson, Junqing Guo, Sylwia Stachura, Lauren Haque, Jonathan S. Lippy, Rosemary F. Zhang, Michael Galella, Sidney Pitt, Guoxiang Shen, Aberra Fura, Kathleen Gillooly, Kim W. McIntyre, Vicky Tang, John Tokarski, John S. Sack, Javed Khan, Percy H. Carter, Joel C. Barrish, Steven G. Nadler, Luisa M. Salter-Cid, Gary L. Schieven, Stephen T. Wrobleski, William J. Pitts. Discovery of a JAK1/3 Inhibitor and Use of a Prodrug To Demonstrate Efficacy in a Model of Rheumatoid Arthritis. ACS Medicinal Chemistry Letters 2019, 10
(3)
, 306-311. https://doi.org/10.1021/acsmedchemlett.8b00508
- Narendra Kumar, Daniel Segovia, Priyam Kumar, Hima Bindu Atti, Soaham Kumar, Jayshree Mishra. Mucosal implications of oral Jak3-targeted drugs in COVID patients. Molecular Medicine 2025, 31
(1)
https://doi.org/10.1186/s10020-025-01260-z
- Florian Fischer, Veronika Temml, Daniela Schuster. Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction. Molecules 2025, 30
(10)
, 2183. https://doi.org/10.3390/molecules30102183
- Genhong Qiu, Li Yu, Lei Jia, Yanfei Cai, Yun Chen, Jian Jin, Lei Xu, Jingyu Zhu. Identification of novel covalent JAK3 inhibitors through consensus scoring virtual screening: integration of common feature pharmacophore and covalent docking. Molecular Diversity 2025, 29
(2)
, 1353-1373. https://doi.org/10.1007/s11030-024-10918-5
- Zheng Zhao, Philip E. Bourne. Advances in reversible covalent kinase inhibitors. Medicinal Research Reviews 2025, 45
(2)
, 629-653. https://doi.org/10.1002/med.22084
- Kristen A. Marino, Robert Nicewonger, Hongjun Zhang, Atli Thorarensen. Recent highlights in covalent inhibitor design. 2025https://doi.org/10.1016/B978-0-443-29808-0.00010-8
- Neslihan Demirel Öğüt. Structures of JAK Inhibitors. 2025, 5-12. https://doi.org/10.1007/978-3-031-84274-0_2
- Abdelmoujoud Faris, Ivana Cacciatore, Ibrahim M. Ibrahim, Mohammed H. AL Mughram, Hanine Hadni, Kamal Tabti, Menana Elhallaoui. In silico
computational drug discovery: a Monte Carlo approach for developing a novel JAK3 inhibitors. Journal of Biomolecular Structure and Dynamics 2024, 42
(22)
, 12548-12570. https://doi.org/10.1080/07391102.2023.2270709
- Abdelmoujoud Faris, Ibrahim M. Ibrahim, Hanine Hadni, Menana Elhallaoui. High-throughput virtual screening of phenylpyrimidine derivatives as selective JAK3 antagonists using computational methods. Journal of Biomolecular Structure and Dynamics 2024, 42
(14)
, 7574-7599. https://doi.org/10.1080/07391102.2023.2240413
- You Lv, Pengbing Mi, Jeffrey J. Babon, Guohuang Fan, Jianxun Qi, Longxing Cao, Jiajia Lang, Jin Zhang, Faming Wang, Bostjan Kobe. Small molecule drug discovery targeting the JAK-STAT pathway. Pharmacological Research 2024, 204 , 107217. https://doi.org/10.1016/j.phrs.2024.107217
- Faizan Ahmad, Punya Sachdeva, Bhuvi Sachdeva, Gagandeep Singh, Hemant Soni, Smriti Tandon, Misbahuddin M. Rafeeq, Mohammad Zubair Alam, Hanadi M. Baeissa, Mohammad Khalid. Dioxinodehydroeckol: A Potential Neuroprotective Marine Compound Identified by In Silico Screening for the Treatment and Management of Multiple Brain Disorders. Molecular Biotechnology 2024, 66
(4)
, 663-686. https://doi.org/10.1007/s12033-022-00629-3
- Abdelmoujoud Faris, Ivana Cacciatore, Radwan Alnajjar, Hadni Hanine, Adnane Aouidate, Ramzi A. Mothana, Abdullah R. Alanzi, Menana Elhallaoui. Revealing innovative JAK1 and JAK3 inhibitors: a comprehensive study utilizing QSAR, 3D-Pharmacophore screening, molecular docking, molecular dynamics, and MM/GBSA analyses. Frontiers in Molecular Biosciences 2024, 11 https://doi.org/10.3389/fmolb.2024.1348277
- Tian‐Hua Wei, Meng‐Yi Lu, Si‐Hui Yao, Yu‐Qi Hong, Jin Yang, Meng‐Yuan Zhang, Yu‐Qi Yin, Yu‐Jie Han, Qing‐Qing Li, Zi‐Xuan Wang, Yi‐Bo Wang, Zhen‐Jiang Tong, Yun Zhou, Wei‐Chen Dai, Yan‐Cheng Yu, Shan‐Liang Sun, Ye Yang, Nian‐Guang Li, Zhi‐Hao Shi. Insight into Janus kinases specificity: From molecular architecture to cancer therapeutics. MedComm – Oncology 2024, 3
(1)
https://doi.org/10.1002/mog2.69
- Rameshwar S. Cheke, Prashant S. Kharkar. Covalent inhibitors: An ambitious approach for the discovery of newer oncotherapeutics. Drug Development Research 2024, 85
(1)
https://doi.org/10.1002/ddr.22132
- S. V. Ryabukhin, D. V. Bondarenko, S. A. Trofymchuk, D. A. Lega, D. M. Volochnyuk. Aza‐Heterocyclic Building Blocks with In‐Ring CF
2
‐Fragment. The Chemical Record 2024, 24
(2)
https://doi.org/10.1002/tcr.202300283
- Namrashee V. Mehta, Mariam S. Degani. The expanding repertoire of covalent warheads for drug discovery. Drug Discovery Today 2023, 28
(12)
, 103799. https://doi.org/10.1016/j.drudis.2023.103799
- Yongpeng Zheng, Jianxiao Li, Chaorong Qi, Wanqing Wu, Huanfeng Jiang. Rapid assembly of structurally diverse cyanamides and disulfanes
via
base-mediated aminoalkylation of aryl thiourea. RSC Advances 2023, 13
(47)
, 33047-33052. https://doi.org/10.1039/D3RA06051A
- Poowadon Fukasem, M. Paul Gleeson. Design and Molecular Dynamics Simulation of Thieno-pyrimidine derivative JAK3 Inhibitor. 2023, 1-5. https://doi.org/10.1109/BMEiCON60347.2023.10322062
- Wen‐Yan Xu, Zhe‐Yuan Xu, Ze‐Kuan Zhang, Tian‐Jun Gong, Yao Fu. Tunable Synthesis of Monofluoroalkenes and
Gem‐
Difluoroalkenes via Solvent‐Controlled Rhodium‐Catalyzed Arylation of 1‐Bromo‐2,2‐difluoroethylene. Angewandte Chemie 2023, 135
(40)
https://doi.org/10.1002/ange.202310125
- Wen‐Yan Xu, Zhe‐Yuan Xu, Ze‐Kuan Zhang, Tian‐Jun Gong, Yao Fu. Tunable Synthesis of Monofluoroalkenes and
Gem‐
Difluoroalkenes via Solvent‐Controlled Rhodium‐Catalyzed Arylation of 1‐Bromo‐2,2‐difluoroethylene. Angewandte Chemie International Edition 2023, 62
(40)
https://doi.org/10.1002/anie.202310125
- Morteza Abdoli, Vesa Krasniqi, Alessandro Bonardi, Michael Gütschow, Claudiu T. Supuran, Raivis Žalubovskis. 4-Cyanamido-substituted benzenesulfonamides act as dual carbonic anhydrase and cathepsin inhibitors. Bioorganic Chemistry 2023, 139 , 106725. https://doi.org/10.1016/j.bioorg.2023.106725
- Jingyu Zhu, Jingyu Sun, Lei Jia, Lei Xu, Yanfei Cai, Yun Chen, Jian Jin. Machine Learning‐Enabled Virtual Screening with Multiple Protein Structures toward the Discovery of Novel JAK3 Inhibitors: Integration of Molecular Docking, Pharmacophore, and Naïve Bayesian Classification. Advanced Theory and Simulations 2023, 6
(7)
https://doi.org/10.1002/adts.202200835
- Ting Liang, Yingxiang Yang, Jiayun Wang, Zhao Xie, Xin Chen. The Application of Pyrrolo[2, 3-d]pyrimidine Scaffold in Medicinal Chemistry
from 2017 to 2021. Mini-Reviews in Medicinal Chemistry 2023, 23
(10)
, 1118-1136. https://doi.org/10.2174/1389557523666230111161810
- Marlene Uglebjerg Fruergaard, Christine Juul Fælled Nielsen, Cecilia Rosada Kjeldsen, Lars Iversen, Jacob Lauwring Andersen, Poul Nissen. Activation and inhibition of the C-terminal kinase domain of p90 ribosomal S6 kinases. Life Science Alliance 2023, 6
(5)
, e202201425. https://doi.org/10.26508/lsa.202201425
- Nem Kumar Jain, Mukul Tailang, Hemant Kumar Jain, Balakumar Chandrasekaran, Biswa Mohan Sahoo, Anandhalakshmi Subramanian, Neelaveni Thangavel, Afaf Aldahish, Kumarappan Chidambaram, M. Alagusundaram, Santosh Kumar, Palani Selvam. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Frontiers in Pharmacology 2023, 14 https://doi.org/10.3389/fphar.2023.1135145
- Vinícius Bonatto, Rafael F. Lameiro, Fernanda R. Rocho, Jerônimo Lameira, Andrei Leitão, Carlos A. Montanari. Nitriles: an attractive approach to the development of covalent inhibitors. RSC Medicinal Chemistry 2023, 14
(2)
, 201-217. https://doi.org/10.1039/D2MD00204C
- Xiaochen Wang, Zeyao Ji, Jian Liu, Bingfu Wang, Hui Jin, Lixin Zhang. Advances in Organocatalytic Asymmetric Reactions Involving Thioesters. Acta Chimica Sinica 2023, 81
(1)
, 64. https://doi.org/10.6023/A22100422
- Lin Yang, Kaiyue Zhang, Meng Xu, Youyu Xie, Xiangqi Meng, Hualei Wang, Dongzhi Wei. Mechanism‐Guided Computational Design of ω‐Transaminase by Reprograming of High‐Energy‐Barrier Steps. Angewandte Chemie 2022, 134
(52)
https://doi.org/10.1002/ange.202212555
- Lin Yang, Kaiyue Zhang, Meng Xu, Youyu Xie, Xiangqi Meng, Hualei Wang, Dongzhi Wei. Mechanism‐Guided Computational Design of ω‐Transaminase by Reprograming of High‐Energy‐Barrier Steps. Angewandte Chemie International Edition 2022, 61
(52)
https://doi.org/10.1002/anie.202212555
- Kirsten McAulay, Alan Bilsland, Marta Bon. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals 2022, 15
(11)
, 1366. https://doi.org/10.3390/ph15111366
- Ebrahim Saeedian Moghadam, Katayoon Mireskandari, Raid Abdel-Jalil, Mohsen Amini. An Approach to Pharmacological Targets of Pyrrole Family From Medicinal Chemistry Viewpoint. Mini-Reviews in Medicinal Chemistry 2022, 22
(19)
, 2486-2561. https://doi.org/10.2174/1389557522666220325150531
- Wenhong Su, Zhiwen Chen, Meiying Liu, Rui He, Chaoyi Liu, Rui Li, Mingshan Gao, Mingyue Zheng, Zhengchao Tu, Zhang Zhang, Tianfeng Xu. Design, synthesis and structure-activity relationship studies of pyrido[2,3-d]pyrimidin-7-ones as potent Janus Kinase 3 (JAK3) covalent inhibitors. Bioorganic & Medicinal Chemistry Letters 2022, 64 , 128680. https://doi.org/10.1016/j.bmcl.2022.128680
- Yihao Li, Dan Meng, Jiali Xie, Ruoyu Li, Zifan Wang, Jinlong Li, Lin Mou, Xinhao Deng, Ping Deng. Design of Rational JAK3 Inhibitors Based on the Parent Core Structure of 1,7-Dihydro-Dipyrrolo [2,3-b:3′,2′-e] Pyridine. International Journal of Molecular Sciences 2022, 23
(10)
, 5437. https://doi.org/10.3390/ijms23105437
- Ahmed M. Shawky, Faisal A. Almalki, Ashraf N. Abdalla, Ahmed H. Abdelazeem, Ahmed M. Gouda. A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022, 14
(5)
, 1001. https://doi.org/10.3390/pharmaceutics14051001
- Yusuke Oyamada, Kazuto Inaba, Takahiro Sasamori, Shuichi Nakamura. Enantioselective reaction of
N
-cyano imines: decarboxylative Mannich-type reaction with malonic acid half thioesters. Chemical Communications 2022, 58
(13)
, 2172-2175. https://doi.org/10.1039/D1CC07191B
- Hui Qiu, Zahid Ali, Julian Bowlan, Richard Caldwell, Anna Gardberg, Nina Glaser, Andreas Goutopoulos, Jared Head, Theresa Johnson, Christine Maurer, Katrin Georgi, Roland Grenningloh, Zhizhou Fang, Federica Morandi, Felix Rohdich, Ralf. Schmidt, Ariele Viacava Follis, Brian Sherer. Discovery of Covalent Bruton's Tyrosine Kinase Inhibitors with Decreased CYP2C8 Inhibitory Activity. ChemMedChem 2021, 16
(24)
, 3653-3662. https://doi.org/10.1002/cmdc.202100453
- Zhen Zhang, Yongjin Wang, Xiaojuan Chen, Xiaojuan Song, Zhengchao Tu, Yongheng Chen, Zhimin Zhang, Ke Ding. Characterization of an aromatic trifluoromethyl ketone as a new warhead for covalently reversible kinase inhibitor design. Bioorganic & Medicinal Chemistry 2021, 50 , 116457. https://doi.org/10.1016/j.bmc.2021.116457
- Ivy Guan, Kayla Williams, Jolyn Pan, Xuyu Liu. New Cysteine Covalent Modification Strategies Enable Advancement of Proteome‐wide Selectivity of Kinase Modulators. Asian Journal of Organic Chemistry 2021, 10
(5)
, 949-963. https://doi.org/10.1002/ajoc.202100036
- Visekhonuo Kuotsu, Vevosa Nakro, Imkong Yanger, Tsenbeni N. Lotha, Ketiyala Tzudir, Upasana Bora Sinha, Latonglila Jamir. An environmentally benign synthesis of Tetrabutylphosphonium tribromide (TBPTB) – a versatile and efficient phase transfer reagent for organic transformations. Green Chemistry Letters and Reviews 2021, 14
(2)
, 425-434. https://doi.org/10.1080/17518253.2021.1929511
- Atli Thorarensen, Paul Balbo, Mary E. Banker, Robert M. Czerwinski, Max Kuhn, Tristan S. Maurer, Jean-Baptiste Telliez, Fabien Vincent, Arthur J. Wittwer. The advantages of describing covalent inhibitor in vitro potencies by IC50 at a fixed time point. IC50 determination of covalent inhibitors provides meaningful data to medicinal chemistry for SAR optimization. Bioorganic & Medicinal Chemistry 2021, 29 , 115865. https://doi.org/10.1016/j.bmc.2020.115865
- Elena De Vita. 10 Years Into the Resurgence of Covalent Drugs. Future Medicinal Chemistry 2021, 13
(2)
, 193-210. https://doi.org/10.4155/fmc-2020-0236
- Shovan Mondal, Suniti Malakar. Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances. Tetrahedron 2020, 76
(48)
, 131662. https://doi.org/10.1016/j.tet.2020.131662
- Samuel E. Dalton, Sebastien Campos. Covalent Small Molecules as Enabling Platforms for Drug Discovery. ChemBioChem 2020, 21
(8)
, 1080-1100. https://doi.org/10.1002/cbic.201900674
- Pengfei Xu, Pei Shen, Bin Yu, Xi Xu, Raoling Ge, Xinying Cheng, Qiuyu Chen, Jinlei Bian, Zhiyu Li, JuBo Wang. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. European Journal of Medicinal Chemistry 2020, 192 , 112155. https://doi.org/10.1016/j.ejmech.2020.112155
- Matthias Gehringer. Covalent Kinase Inhibitors: An Overview. 2020, 43-94. https://doi.org/10.1007/7355_2020_103
- Jun Dai, LiXi Yang, Glynn Addison. Current Status in the Discovery of Covalent Janus Kinase 3 (JAK3) Inhibitors. Mini-Reviews in Medicinal Chemistry 2019, 19
(18)
, 1531-1543. https://doi.org/10.2174/1389557519666190617152011
- Henry van den Bedem, Mark A Wilson. Shining light on cysteine modification: connecting protein conformational dynamics to catalysis and regulation. Journal of Synchrotron Radiation 2019, 26
(4)
, 958-966. https://doi.org/10.1107/S160057751900568X
- Warren J. Leonard, Jian-Xin Lin, John J. O'Shea. The γc Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019, 50
(4)
, 832-850. https://doi.org/10.1016/j.immuni.2019.03.028
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.