ACS Publications. Most Trusted. Most Cited. Most Read
Identification of Cyanamide-Based Janus Kinase 3 (JAK3) Covalent Inhibitors
My Activity

Figure 1Loading Img
    Article

    Identification of Cyanamide-Based Janus Kinase 3 (JAK3) Covalent Inhibitors
    Click to copy article linkArticle link copied!

    • Agustin Casimiro-Garcia*
      Agustin Casimiro-Garcia
      Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
      *Phone: (617) 665-5673. E-mail: [email protected]
    • John I. Trujillo
      John I. Trujillo
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
    • Felix Vajdos
      Felix Vajdos
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
      More by Felix Vajdos
    • Brian Juba
      Brian Juba
      Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
      More by Brian Juba
    • Mary Ellen Banker
      Mary Ellen Banker
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
    • Ann Aulabaugh
      Ann Aulabaugh
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
    • Paul Balbo
      Paul Balbo
      Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
      More by Paul Balbo
    • Jonathan Bauman
      Jonathan Bauman
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
    • Jill Chrencik
      Jill Chrencik
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
    • Jotham W. Coe
      Jotham W. Coe
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
    • Robert Czerwinski
      Robert Czerwinski
      Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
    • Martin Dowty
      Martin Dowty
      Medicine Design, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts 01810, United States
      More by Martin Dowty
    • John D. Knafels
      John D. Knafels
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
    • Soojin Kwon
      Soojin Kwon
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
      More by Soojin Kwon
    • Louis Leung
      Louis Leung
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
      More by Louis Leung
    • Sidney Liang
      Sidney Liang
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
      More by Sidney Liang
    • Ralph P. Robinson
      Ralph P. Robinson
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
    • Jean-Baptiste Telliez
      Jean-Baptiste Telliez
      Inflammation and Immunology Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
    • Ray Unwalla
      Ray Unwalla
      Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
      More by Ray Unwalla
    • Xin Yang
      Xin Yang
      Medicine Design, Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
      More by Xin Yang
    • Atli Thorarensen
      Atli Thorarensen
      Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
    Other Access OptionsSupporting Information (2)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2018, 61, 23, 10665–10699
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jmedchem.8b01308
    Published November 13, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ongoing interest in the discovery of selective JAK3 inhibitors led us to design novel covalent inhibitors that engage the JAK3 residue Cys909 by cyanamide, a structurally and mechanistically differentiated electrophile from other cysteine reacting groups previously incorporated in JAK3 covalent inhibitors. Through crystallography, kinetic, and computational studies, interaction of cyanamide 12 with Cys909 was optimized leading to potent and selective JAK3 inhibitors as exemplified by 32. In relevant cell-based assays and in agreement with previous results from this group, 32 demonstrated that selective inhibition of JAK3 is sufficient to drive JAK1/JAK3-mediated cellular responses. The contribution from extrahepatic processes to the clearance of cyanamide-based covalent inhibitors was also characterized using metabolic and pharmacokinetic data for 12. This work also gave key insights into a productive approach to decrease glutathione/glutathione S-transferase-mediated clearance, a challenge typically encountered during the discovery of covalent kinase inhibitors.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.8b01308.

    • Crystallographic data collection and structure refinement statistics for structures of JAK3 bound to 10, 12, 23, or 34; single molecule X-ray crystallography for 13, 105, and 114; 1H NMR data for 90 and 91; electron density of 10, 12, 23, and 34 in complex with JAK3; determination of preferred tautomer form of 12 using 2D NMR; 1H NMR and HPLC data for 34 and 35 (PDF)

    • Molecular formula strings and some data (CSV)

    Accession Codes

    The coordinates and structure factor amplitudes for JAK3 complexes with compounds 10, 12, 23, and 34 have been deposited with the Protein Data Bank (http://www.rcsb.org) with the following accession codes: 6DA4 (10), 6DUD (12), 6DB3 (23), and 6DB4 (34). The authors will release the atomic coordinates and experimental data upon article publication.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 66 publications.

    1. Jianzhong Chen, Jian Wang, Wanchun Yang, Lu Zhao, Jing Su. Activity Regulation and Conformation Response of Janus Kinase 3 Mediated by Phosphorylation: Exploration from Correlation Network Analysis and Markov Model. Journal of Chemical Information and Modeling 2025, 65 (8) , 4189-4205. https://doi.org/10.1021/acs.jcim.5c00096
    2. Laura Scalvini, Daniele Pala, Alberto Cuzzolin, Francesca Galvani, Alessio Lodola, Silvia Rivara, Marco Mor, Andrea Rizzi. JAK3 Inhibitors: Covalent and Noncovalent Interactions of a Cyanamide Group Investigated by Multiscale Free-Energy Simulations. Journal of Chemical Information and Modeling 2025, 65 (3) , 1404-1418. https://doi.org/10.1021/acs.jcim.4c01889
    3. Laura Hillebrand, Xiaojun Julia Liang, Ricardo A. M. Serafim, Matthias Gehringer. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. Journal of Medicinal Chemistry 2024, 67 (10) , 7668-7758. https://doi.org/10.1021/acs.jmedchem.3c01825
    4. Nils Pemberton, Nina Compagne, Argyrides Argyrou, Emma Evertsson, Anders Gunnarsson, Jason G. Kettle, Jonathan P. Orme, Richard A. Ward. Vinylpyridine as a Tunable Covalent Warhead Targeting C797 in EGFR. ACS Medicinal Chemistry Letters 2024, 15 (5) , 583-589. https://doi.org/10.1021/acsmedchemlett.3c00425
    5. Mengxiao Yu, Xiaobin Liu, Xiaoyu Zhang, Jinli Zhang, You Han. Comparative Technical, Economic, and Environmental Analysis of Different Cyanamide Production Processes Optimized through Heat Integration Design. ACS Sustainable Chemistry & Engineering 2023, 11 (49) , 17371-17383. https://doi.org/10.1021/acssuschemeng.3c05120
    6. Aniket Mishra, Xuefeng Cong, Masayoshi Nishiura, Zhaomin Hou. Enantioselective Synthesis of 1-Aminoindanes via [3 + 2] Annulation of Aldimines with Alkenes by Scandium-Catalyzed C–H Activation. Journal of the American Chemical Society 2023, 145 (31) , 17468-17477. https://doi.org/10.1021/jacs.3c06482
    7. Ingo V. Hartung, Joachim Rudolph, Mary M. Mader, Monique P. C. Mulder, Paul Workman. Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes. Journal of Medicinal Chemistry 2023, 66 (14) , 9297-9312. https://doi.org/10.1021/acs.jmedchem.3c00550
    8. Khuchtumur Bum-Erdene, I-Ju Yeh, Giovanni Gonzalez-Gutierrez, Mona K. Ghozayel, Karen Pollok, Samy O. Meroueh. Small-Molecule Cyanamide Pan-TEAD·YAP1 Covalent Antagonists. Journal of Medicinal Chemistry 2023, 66 (1) , 266-284. https://doi.org/10.1021/acs.jmedchem.2c01189
    9. Sean P. Henry, Maria-Elena Liosi, Joseph A. Ippolito, Fabian Menges, Ana S. Newton, Joseph Schlessinger, William L. Jorgensen. Covalent Modification of the JH2 Domain of Janus Kinase 2. ACS Medicinal Chemistry Letters 2022, 13 (11) , 1819-1826. https://doi.org/10.1021/acsmedchemlett.2c00414
    10. Wen-Yan Xu, Yu-Jie Li, Tian-Jun Gong, Yao Fu. Synthesis of gem-Difluorinated 1,3-Dienes via Synergistic Cu/Pd-Catalyzed Borodifluorovinylation of Alkynes. Organic Letters 2022, 24 (32) , 5884-5889. https://doi.org/10.1021/acs.orglett.2c01875
    11. Shan Li, Hongfei Si, Xiaojuan Song, Chong Lei, Xiaoqiang He, Jie Wang, Yiling Liu, Yang Zhou, Jian-Guo Song, Lijie Peng, Xia Tang, Shingpan Chan, Xiaomei Ren, Zhengchao Tu, Zhengqiu Li, Zhen Wang, Zhang Zhang, Ke Ding. Discovery of Hexahydrofuro[3,2-b]furans as New Kinase-Selective and Orally Bioavailable JAK3 Inhibitors for the Treatment of Leukemia Harboring a JAK3 Activating Mutant. Journal of Medicinal Chemistry 2022, 65 (15) , 10674-10690. https://doi.org/10.1021/acs.jmedchem.2c00922
    12. Romain Hany, Jean-Philippe Leyris, Guillaume Bret, Sylvie Mallié, Chamroeun Sar, Maxime Thouaye, Abdallah Hamze, Olivier Provot, Pierre Sokoloff, Jean Valmier, Pascal Villa, Didier Rognan. High-Throughput Screening for Extracellular Inhibitors of the FLT3 Receptor Tyrosine Kinase Reveals Chemically Diverse and Druggable Negative Allosteric Modulators. ACS Chemical Biology 2022, 17 (3) , 709-722. https://doi.org/10.1021/acschembio.2c00048
    13. Qichao Bao, Liangying Zhang, Nan Wang, Brian Gabet, Weikang Yang, Xingyang Gao, Qidong You, Zhengyu Jiang. Hydrogen Peroxide Inducible JAK3 Covalent Inhibitor: Prodrug for the Treatment of RA with Enhanced Safety Profile. ACS Medicinal Chemistry Letters 2020, 11 (11) , 2182-2189. https://doi.org/10.1021/acsmedchemlett.0c00323
    14. Edouard Duchamp, Stephen Hanessian. Cyanide-Free Synthesis of Air Stable N-Substituted Li and K Cyanamide Salts from Tetrazoles. Applications toward the Synthesis of Primary and Secondary Cyanamides as Precursors to Amidines. Organic Letters 2020, 22 (21) , 8487-8491. https://doi.org/10.1021/acs.orglett.0c03085
    15. Xuefeng Cong, Gu Zhan, Zhenbo Mo, Masayoshi Nishiura, Zhaomin Hou. Diastereodivergent [3 + 2] Annulation of Aromatic Aldimines with Alkenes via C–H Activation by Half-Sandwich Rare-Earth Catalysts. Journal of the American Chemical Society 2020, 142 (12) , 5531-5537. https://doi.org/10.1021/jacs.0c01171
    16. Minjian Yang, Bingzhong Tao, Chengjuan Chen, Wenqiang Jia, Shaolei Sun, Tiantai Zhang, Xiaojian Wang. Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors. Journal of Chemical Information and Modeling 2019, 59 (12) , 5002-5012. https://doi.org/10.1021/acs.jcim.9b00798
    17. Gaochan Wu, Tong Zhao, Dongwei Kang, Jian Zhang, Yuning Song, Vigneshwaran Namasivayam, Jacob Kongsted, Christophe Pannecouque, Erik De Clercq, Vasanthanathan Poongavanam, Xinyong Liu, Peng Zhan. Overview of Recent Strategic Advances in Medicinal Chemistry. Journal of Medicinal Chemistry 2019, 62 (21) , 9375-9414. https://doi.org/10.1021/acs.jmedchem.9b00359
    18. Matthias Gehringer, Stefan A. Laufer. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. Journal of Medicinal Chemistry 2019, 62 (12) , 5673-5724. https://doi.org/10.1021/acs.jmedchem.8b01153
    19. Steven H. Spergel, Michael E. Mertzman, James Kempson, Junqing Guo, Sylwia Stachura, Lauren Haque, Jonathan S. Lippy, Rosemary F. Zhang, Michael Galella, Sidney Pitt, Guoxiang Shen, Aberra Fura, Kathleen Gillooly, Kim W. McIntyre, Vicky Tang, John Tokarski, John S. Sack, Javed Khan, Percy H. Carter, Joel C. Barrish, Steven G. Nadler, Luisa M. Salter-Cid, Gary L. Schieven, Stephen T. Wrobleski, William J. Pitts. Discovery of a JAK1/3 Inhibitor and Use of a Prodrug To Demonstrate Efficacy in a Model of Rheumatoid Arthritis. ACS Medicinal Chemistry Letters 2019, 10 (3) , 306-311. https://doi.org/10.1021/acsmedchemlett.8b00508
    20. Narendra Kumar, Daniel Segovia, Priyam Kumar, Hima Bindu Atti, Soaham Kumar, Jayshree Mishra. Mucosal implications of oral Jak3-targeted drugs in COVID patients. Molecular Medicine 2025, 31 (1) https://doi.org/10.1186/s10020-025-01260-z
    21. Florian Fischer, Veronika Temml, Daniela Schuster. Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction. Molecules 2025, 30 (10) , 2183. https://doi.org/10.3390/molecules30102183
    22. Genhong Qiu, Li Yu, Lei Jia, Yanfei Cai, Yun Chen, Jian Jin, Lei Xu, Jingyu Zhu. Identification of novel covalent JAK3 inhibitors through consensus scoring virtual screening: integration of common feature pharmacophore and covalent docking. Molecular Diversity 2025, 29 (2) , 1353-1373. https://doi.org/10.1007/s11030-024-10918-5
    23. Zheng Zhao, Philip E. Bourne. Advances in reversible covalent kinase inhibitors. Medicinal Research Reviews 2025, 45 (2) , 629-653. https://doi.org/10.1002/med.22084
    24. Kristen A. Marino, Robert Nicewonger, Hongjun Zhang, Atli Thorarensen. Recent highlights in covalent inhibitor design. 2025https://doi.org/10.1016/B978-0-443-29808-0.00010-8
    25. Neslihan Demirel Öğüt. Structures of JAK Inhibitors. 2025, 5-12. https://doi.org/10.1007/978-3-031-84274-0_2
    26. Abdelmoujoud Faris, Ivana Cacciatore, Ibrahim M. Ibrahim, Mohammed H. AL Mughram, Hanine Hadni, Kamal Tabti, Menana Elhallaoui. In silico computational drug discovery: a Monte Carlo approach for developing a novel JAK3 inhibitors. Journal of Biomolecular Structure and Dynamics 2024, 42 (22) , 12548-12570. https://doi.org/10.1080/07391102.2023.2270709
    27. Abdelmoujoud Faris, Ibrahim M. Ibrahim, Hanine Hadni, Menana Elhallaoui. High-throughput virtual screening of phenylpyrimidine derivatives as selective JAK3 antagonists using computational methods. Journal of Biomolecular Structure and Dynamics 2024, 42 (14) , 7574-7599. https://doi.org/10.1080/07391102.2023.2240413
    28. You Lv, Pengbing Mi, Jeffrey J. Babon, Guohuang Fan, Jianxun Qi, Longxing Cao, Jiajia Lang, Jin Zhang, Faming Wang, Bostjan Kobe. Small molecule drug discovery targeting the JAK-STAT pathway. Pharmacological Research 2024, 204 , 107217. https://doi.org/10.1016/j.phrs.2024.107217
    29. Faizan Ahmad, Punya Sachdeva, Bhuvi Sachdeva, Gagandeep Singh, Hemant Soni, Smriti Tandon, Misbahuddin M. Rafeeq, Mohammad Zubair Alam, Hanadi M. Baeissa, Mohammad Khalid. Dioxinodehydroeckol: A Potential Neuroprotective Marine Compound Identified by In Silico Screening for the Treatment and Management of Multiple Brain Disorders. Molecular Biotechnology 2024, 66 (4) , 663-686. https://doi.org/10.1007/s12033-022-00629-3
    30. Abdelmoujoud Faris, Ivana Cacciatore, Radwan Alnajjar, Hadni Hanine, Adnane Aouidate, Ramzi A. Mothana, Abdullah R. Alanzi, Menana Elhallaoui. Revealing innovative JAK1 and JAK3 inhibitors: a comprehensive study utilizing QSAR, 3D-Pharmacophore screening, molecular docking, molecular dynamics, and MM/GBSA analyses. Frontiers in Molecular Biosciences 2024, 11 https://doi.org/10.3389/fmolb.2024.1348277
    31. Tian‐Hua Wei, Meng‐Yi Lu, Si‐Hui Yao, Yu‐Qi Hong, Jin Yang, Meng‐Yuan Zhang, Yu‐Qi Yin, Yu‐Jie Han, Qing‐Qing Li, Zi‐Xuan Wang, Yi‐Bo Wang, Zhen‐Jiang Tong, Yun Zhou, Wei‐Chen Dai, Yan‐Cheng Yu, Shan‐Liang Sun, Ye Yang, Nian‐Guang Li, Zhi‐Hao Shi. Insight into Janus kinases specificity: From molecular architecture to cancer therapeutics. MedComm – Oncology 2024, 3 (1) https://doi.org/10.1002/mog2.69
    32. Rameshwar S. Cheke, Prashant S. Kharkar. Covalent inhibitors: An ambitious approach for the discovery of newer oncotherapeutics. Drug Development Research 2024, 85 (1) https://doi.org/10.1002/ddr.22132
    33. S. V. Ryabukhin, D. V. Bondarenko, S. A. Trofymchuk, D. A. Lega, D. M. Volochnyuk. Aza‐Heterocyclic Building Blocks with In‐Ring CF 2 ‐Fragment. The Chemical Record 2024, 24 (2) https://doi.org/10.1002/tcr.202300283
    34. Namrashee V. Mehta, Mariam S. Degani. The expanding repertoire of covalent warheads for drug discovery. Drug Discovery Today 2023, 28 (12) , 103799. https://doi.org/10.1016/j.drudis.2023.103799
    35. Yongpeng Zheng, Jianxiao Li, Chaorong Qi, Wanqing Wu, Huanfeng Jiang. Rapid assembly of structurally diverse cyanamides and disulfanes via base-mediated aminoalkylation of aryl thiourea. RSC Advances 2023, 13 (47) , 33047-33052. https://doi.org/10.1039/D3RA06051A
    36. Poowadon Fukasem, M. Paul Gleeson. Design and Molecular Dynamics Simulation of Thieno-pyrimidine derivative JAK3 Inhibitor. 2023, 1-5. https://doi.org/10.1109/BMEiCON60347.2023.10322062
    37. Wen‐Yan Xu, Zhe‐Yuan Xu, Ze‐Kuan Zhang, Tian‐Jun Gong, Yao Fu. Tunable Synthesis of Monofluoroalkenes and Gem‐ Difluoroalkenes via Solvent‐Controlled Rhodium‐Catalyzed Arylation of 1‐Bromo‐2,2‐difluoroethylene. Angewandte Chemie 2023, 135 (40) https://doi.org/10.1002/ange.202310125
    38. Wen‐Yan Xu, Zhe‐Yuan Xu, Ze‐Kuan Zhang, Tian‐Jun Gong, Yao Fu. Tunable Synthesis of Monofluoroalkenes and Gem‐ Difluoroalkenes via Solvent‐Controlled Rhodium‐Catalyzed Arylation of 1‐Bromo‐2,2‐difluoroethylene. Angewandte Chemie International Edition 2023, 62 (40) https://doi.org/10.1002/anie.202310125
    39. Morteza Abdoli, Vesa Krasniqi, Alessandro Bonardi, Michael Gütschow, Claudiu T. Supuran, Raivis Žalubovskis. 4-Cyanamido-substituted benzenesulfonamides act as dual carbonic anhydrase and cathepsin inhibitors. Bioorganic Chemistry 2023, 139 , 106725. https://doi.org/10.1016/j.bioorg.2023.106725
    40. Jingyu Zhu, Jingyu Sun, Lei Jia, Lei Xu, Yanfei Cai, Yun Chen, Jian Jin. Machine Learning‐Enabled Virtual Screening with Multiple Protein Structures toward the Discovery of Novel JAK3 Inhibitors: Integration of Molecular Docking, Pharmacophore, and Naïve Bayesian Classification. Advanced Theory and Simulations 2023, 6 (7) https://doi.org/10.1002/adts.202200835
    41. Ting Liang, Yingxiang Yang, Jiayun Wang, Zhao Xie, Xin Chen. The Application of Pyrrolo[2, 3-d]pyrimidine Scaffold in Medicinal Chemistry from 2017 to 2021. Mini-Reviews in Medicinal Chemistry 2023, 23 (10) , 1118-1136. https://doi.org/10.2174/1389557523666230111161810
    42. Marlene Uglebjerg Fruergaard, Christine Juul Fælled Nielsen, Cecilia Rosada Kjeldsen, Lars Iversen, Jacob Lauwring Andersen, Poul Nissen. Activation and inhibition of the C-terminal kinase domain of p90 ribosomal S6 kinases. Life Science Alliance 2023, 6 (5) , e202201425. https://doi.org/10.26508/lsa.202201425
    43. Nem Kumar Jain, Mukul Tailang, Hemant Kumar Jain, Balakumar Chandrasekaran, Biswa Mohan Sahoo, Anandhalakshmi Subramanian, Neelaveni Thangavel, Afaf Aldahish, Kumarappan Chidambaram, M. Alagusundaram, Santosh Kumar, Palani Selvam. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Frontiers in Pharmacology 2023, 14 https://doi.org/10.3389/fphar.2023.1135145
    44. Vinícius Bonatto, Rafael F. Lameiro, Fernanda R. Rocho, Jerônimo Lameira, Andrei Leitão, Carlos A. Montanari. Nitriles: an attractive approach to the development of covalent inhibitors. RSC Medicinal Chemistry 2023, 14 (2) , 201-217. https://doi.org/10.1039/D2MD00204C
    45. Xiaochen Wang, Zeyao Ji, Jian Liu, Bingfu Wang, Hui Jin, Lixin Zhang. Advances in Organocatalytic Asymmetric Reactions Involving Thioesters. Acta Chimica Sinica 2023, 81 (1) , 64. https://doi.org/10.6023/A22100422
    46. Lin Yang, Kaiyue Zhang, Meng Xu, Youyu Xie, Xiangqi Meng, Hualei Wang, Dongzhi Wei. Mechanism‐Guided Computational Design of ω‐Transaminase by Reprograming of High‐Energy‐Barrier Steps. Angewandte Chemie 2022, 134 (52) https://doi.org/10.1002/ange.202212555
    47. Lin Yang, Kaiyue Zhang, Meng Xu, Youyu Xie, Xiangqi Meng, Hualei Wang, Dongzhi Wei. Mechanism‐Guided Computational Design of ω‐Transaminase by Reprograming of High‐Energy‐Barrier Steps. Angewandte Chemie International Edition 2022, 61 (52) https://doi.org/10.1002/anie.202212555
    48. Kirsten McAulay, Alan Bilsland, Marta Bon. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals 2022, 15 (11) , 1366. https://doi.org/10.3390/ph15111366
    49. Ebrahim Saeedian Moghadam, Katayoon Mireskandari, Raid Abdel-Jalil, Mohsen Amini. An Approach to Pharmacological Targets of Pyrrole Family From Medicinal Chemistry Viewpoint. Mini-Reviews in Medicinal Chemistry 2022, 22 (19) , 2486-2561. https://doi.org/10.2174/1389557522666220325150531
    50. Wenhong Su, Zhiwen Chen, Meiying Liu, Rui He, Chaoyi Liu, Rui Li, Mingshan Gao, Mingyue Zheng, Zhengchao Tu, Zhang Zhang, Tianfeng Xu. Design, synthesis and structure-activity relationship studies of pyrido[2,3-d]pyrimidin-7-ones as potent Janus Kinase 3 (JAK3) covalent inhibitors. Bioorganic & Medicinal Chemistry Letters 2022, 64 , 128680. https://doi.org/10.1016/j.bmcl.2022.128680
    51. Yihao Li, Dan Meng, Jiali Xie, Ruoyu Li, Zifan Wang, Jinlong Li, Lin Mou, Xinhao Deng, Ping Deng. Design of Rational JAK3 Inhibitors Based on the Parent Core Structure of 1,7-Dihydro-Dipyrrolo [2,3-b:3′,2′-e] Pyridine. International Journal of Molecular Sciences 2022, 23 (10) , 5437. https://doi.org/10.3390/ijms23105437
    52. Ahmed M. Shawky, Faisal A. Almalki, Ashraf N. Abdalla, Ahmed H. Abdelazeem, Ahmed M. Gouda. A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022, 14 (5) , 1001. https://doi.org/10.3390/pharmaceutics14051001
    53. Yusuke Oyamada, Kazuto Inaba, Takahiro Sasamori, Shuichi Nakamura. Enantioselective reaction of N -cyano imines: decarboxylative Mannich-type reaction with malonic acid half thioesters. Chemical Communications 2022, 58 (13) , 2172-2175. https://doi.org/10.1039/D1CC07191B
    54. Hui Qiu, Zahid Ali, Julian Bowlan, Richard Caldwell, Anna Gardberg, Nina Glaser, Andreas Goutopoulos, Jared Head, Theresa Johnson, Christine Maurer, Katrin Georgi, Roland Grenningloh, Zhizhou Fang, Federica Morandi, Felix Rohdich, Ralf. Schmidt, Ariele Viacava Follis, Brian Sherer. Discovery of Covalent Bruton's Tyrosine Kinase Inhibitors with Decreased CYP2C8 Inhibitory Activity. ChemMedChem 2021, 16 (24) , 3653-3662. https://doi.org/10.1002/cmdc.202100453
    55. Zhen Zhang, Yongjin Wang, Xiaojuan Chen, Xiaojuan Song, Zhengchao Tu, Yongheng Chen, Zhimin Zhang, Ke Ding. Characterization of an aromatic trifluoromethyl ketone as a new warhead for covalently reversible kinase inhibitor design. Bioorganic & Medicinal Chemistry 2021, 50 , 116457. https://doi.org/10.1016/j.bmc.2021.116457
    56. Ivy Guan, Kayla Williams, Jolyn Pan, Xuyu Liu. New Cysteine Covalent Modification Strategies Enable Advancement of Proteome‐wide Selectivity of Kinase Modulators. Asian Journal of Organic Chemistry 2021, 10 (5) , 949-963. https://doi.org/10.1002/ajoc.202100036
    57. Visekhonuo Kuotsu, Vevosa Nakro, Imkong Yanger, Tsenbeni N. Lotha, Ketiyala Tzudir, Upasana Bora Sinha, Latonglila Jamir. An environmentally benign synthesis of Tetrabutylphosphonium tribromide (TBPTB) – a versatile and efficient phase transfer reagent for organic transformations. Green Chemistry Letters and Reviews 2021, 14 (2) , 425-434. https://doi.org/10.1080/17518253.2021.1929511
    58. Atli Thorarensen, Paul Balbo, Mary E. Banker, Robert M. Czerwinski, Max Kuhn, Tristan S. Maurer, Jean-Baptiste Telliez, Fabien Vincent, Arthur J. Wittwer. The advantages of describing covalent inhibitor in vitro potencies by IC50 at a fixed time point. IC50 determination of covalent inhibitors provides meaningful data to medicinal chemistry for SAR optimization. Bioorganic & Medicinal Chemistry 2021, 29 , 115865. https://doi.org/10.1016/j.bmc.2020.115865
    59. Elena De Vita. 10 Years Into the Resurgence of Covalent Drugs. Future Medicinal Chemistry 2021, 13 (2) , 193-210. https://doi.org/10.4155/fmc-2020-0236
    60. Shovan Mondal, Suniti Malakar. Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances. Tetrahedron 2020, 76 (48) , 131662. https://doi.org/10.1016/j.tet.2020.131662
    61. Samuel E. Dalton, Sebastien Campos. Covalent Small Molecules as Enabling Platforms for Drug Discovery. ChemBioChem 2020, 21 (8) , 1080-1100. https://doi.org/10.1002/cbic.201900674
    62. Pengfei Xu, Pei Shen, Bin Yu, Xi Xu, Raoling Ge, Xinying Cheng, Qiuyu Chen, Jinlei Bian, Zhiyu Li, JuBo Wang. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. European Journal of Medicinal Chemistry 2020, 192 , 112155. https://doi.org/10.1016/j.ejmech.2020.112155
    63. Matthias Gehringer. Covalent Kinase Inhibitors: An Overview. 2020, 43-94. https://doi.org/10.1007/7355_2020_103
    64. Jun Dai, LiXi Yang, Glynn Addison. Current Status in the Discovery of Covalent Janus Kinase 3 (JAK3) Inhibitors. Mini-Reviews in Medicinal Chemistry 2019, 19 (18) , 1531-1543. https://doi.org/10.2174/1389557519666190617152011
    65. Henry van den Bedem, Mark A Wilson. Shining light on cysteine modification: connecting protein conformational dynamics to catalysis and regulation. Journal of Synchrotron Radiation 2019, 26 (4) , 958-966. https://doi.org/10.1107/S160057751900568X
    66. Warren J. Leonard, Jian-Xin Lin, John J. O'Shea. The γc Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019, 50 (4) , 832-850. https://doi.org/10.1016/j.immuni.2019.03.028

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2018, 61, 23, 10665–10699
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jmedchem.8b01308
    Published November 13, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    7345

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.