ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Development of Multifunctional Histone Deacetylase 6 Degraders with Potent Antimyeloma Activity

  • Hao Wu
    Hao Wu
    School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
    More by Hao Wu
  • Ka Yang
    Ka Yang
    School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
    More by Ka Yang
  • Zhongrui Zhang
    Zhongrui Zhang
    School of Pharmacy  and  Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
  • Eric D. Leisten
    Eric D. Leisten
    School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
  • Ziyuan Li
    Ziyuan Li
    School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
    More by Ziyuan Li
  • Haibo Xie
    Haibo Xie
    School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
    More by Haibo Xie
  • Jin Liu
    Jin Liu
    School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
    More by Jin Liu
  • Kerry A. Smith
    Kerry A. Smith
    School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
  • Zora Novakova
    Zora Novakova
    Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
  • Cyril Barinka
    Cyril Barinka
    Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
  • , and 
  • Weiping Tang*
    Weiping Tang
    School of Pharmacy  and  Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
    *E-mail: [email protected]
    More by Weiping Tang
Cite this: J. Med. Chem. 2019, 62, 15, 7042–7057
Publication Date (Web):July 4, 2019
https://doi.org/10.1021/acs.jmedchem.9b00516
Copyright © 2019 American Chemical Society

    Article Views

    7087

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (7 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Histone deacetylase 6 (HDAC6) primarily catalyzes the removal of acetyl group from the side chain of acetylated lysine residues in cytoplasmic proteins such as α-tubulin and HSP90. HDAC6 is involved in multiple disease-relevant pathways. Based on the proteolysis targeting chimera strategy, we previously developed the first HDAC6 degrader by tethering a pan-HDAC inhibitor with cereblon (CRBN) E3 ubiquitin ligase ligand. We herein report our new generation of multifunctional HDAC6 degraders by tethering selective HDAC6 inhibitor Nexturastat A with CRBN ligand that can synergize with HDAC6 degradation for the antiproliferation of multiple myeloma (MM). This new class of degraders exhibited improved potency and selectivity for the degradation of HDAC6. After the optimization of the linker length and linking positions, we discovered potent HDAC6 degraders with nanomolar DC50 and promising antiproliferation activity in multiple myeloma (MM) cells.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.9b00516.

    • List of primers for qRT-PCR; statistical significance of Figure 7B; validation of in-cell ELISA; full western blots of Figures 5A,B and 6B and wash-out experiment; an additional western blot analysis of proteins in A431, RPMI8226, Jurkat, HepG2, RS4;11, A375, MCF-7 cell lines treated with 12d or 12n; qRT-PCR assays with 12d; western blots of deactivated degraders 13 and 15, and an apoptosis assay with 12d; 1H and 13C NMR spectra of compounds 4ae, 11ae, 12ar, 13, 14, and 15; LC–MS spectra of 12ar, 13, and 15 (PDF)

    • Molecular string files for all of the final target compounds (CSV)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 112 publications.

    1. Pengming Pan, Tongtong Geng, Zhongtang Li, Xuyang Ding, Mengyuan Shi, Yang Li, Yashuai Wang, Yuanyuan Shi, Jiaojiao Wu, Liang Zhong, Dengbo Ji, Zhongjun Li, Xiangbao Meng. Design, Synthesis, and Biological Evaluation of Proteolysis-Targeting Chimeras as Highly Selective and Efficient Degraders of Extracellular Signal-Regulated Kinase 5. Journal of Medicinal Chemistry 2023, 66 (19) , 13568-13586. https://doi.org/10.1021/acs.jmedchem.3c00864
    2. Minglei Li, Ying Zhi, Bo Liu, Qingqiang Yao. Advancing Strategies for Proteolysis-Targeting Chimera Design. Journal of Medicinal Chemistry 2023, 66 (4) , 2308-2329. https://doi.org/10.1021/acs.jmedchem.2c01555
    3. Conor B. O’Herin, Yuta W. Moriuchi, Troy A. Bemis, Alysia J. Kohlbrand, Michael D. Burkart, Seth M. Cohen. Development of Human Carbonic Anhydrase II Heterobifunctional Degraders. Journal of Medicinal Chemistry 2023, 66 (4) , 2789-2803. https://doi.org/10.1021/acs.jmedchem.2c01843
    4. Jinbo Huang, Jun Zhang, Wenchao Xu, Qiong Wu, Rongsheng Zeng, Zhichao Liu, Wenhui Tao, Qian Chen, Yongqing Wang, Wei-Guo Zhu. Structure-Based Discovery of Selective Histone Deacetylase 8 Degraders with Potent Anticancer Activity. Journal of Medicinal Chemistry 2023, 66 (2) , 1186-1209. https://doi.org/10.1021/acs.jmedchem.2c00739
    5. Laura Sinatra, Jing Yang, Julian Schliehe-Diecks, Niklas Dienstbier, Melina Vogt, Philip Gebing, Luisa M. Bachmann, Melf Sönnichsen, Thomas Lenz, Kai Stühler, Andrea Schöler, Arndt Borkhardt, Sanil Bhatia, Finn K. Hansen. Solid-Phase Synthesis of Cereblon-Recruiting Selective Histone Deacetylase 6 Degraders (HDAC6 PROTACs) with Antileukemic Activity. Journal of Medicinal Chemistry 2022, 65 (24) , 16860-16878. https://doi.org/10.1021/acs.jmedchem.2c01659
    6. Nhu Truong, Christopher C. Goodis, Andrea L. Cottingham, Jacob R. Shaw, Steven Fletcher, Ryan M. Pearson. Modified Suberoylanilide Hydroxamic Acid Reduced Drug-Associated Immune Cell Death and Organ Damage under Lipopolysaccharide Inflammatory Challenge. ACS Pharmacology & Translational Science 2022, 5 (11) , 1128-1141. https://doi.org/10.1021/acsptsci.2c00119
    7. Donghuan Sun, Jing Zhang, Guoqiang Dong, Shipeng He, Chunquan Sheng. Blocking Non-enzymatic Functions by PROTAC-Mediated Targeted Protein Degradation. Journal of Medicinal Chemistry 2022, 65 (21) , 14276-14288. https://doi.org/10.1021/acs.jmedchem.2c01159
    8. Natsuko Macabuag, William Esmieu, Perla Breccia, Rebecca Jarvis, Wesley Blackaby, Ovadia Lazari, Liudvikas Urbonas, Maria Eznarriaga, Rachel Williams, Annelieke Strijbosch, Rhea Van de Bospoort, Kim Matthews, Cole Clissold, Tammy Ladduwahetty, Huw Vater, Patrick Heaphy, Douglas G. Stafford, Hong-Jun Wang, John E. Mangette, George McAllister, Vahri Beaumont, Thomas F. Vogt, Hilary A. Wilkinson, Elizabeth M. Doherty, Celia Dominguez. Developing HDAC4-Selective Protein Degraders To Investigate the Role of HDAC4 in Huntington’s Disease Pathology. Journal of Medicinal Chemistry 2022, 65 (18) , 12445-12459. https://doi.org/10.1021/acs.jmedchem.2c01149
    9. Anu R Melge, Shraddha Parate, Keechilat Pavithran, Manzoor Koyakutty, C Gopi Mohan. Discovery of Anticancer Hybrid Molecules by Supervised Machine Learning Models and in Vitro Validation in Drug Resistant Chronic Myeloid Leukemia Cells. Journal of Chemical Information and Modeling 2022, 62 (4) , 1126-1146. https://doi.org/10.1021/acs.jcim.1c01554
    10. Zhuoxian Cao, Zhicheng Gu, Shuxian Lin, Di Chen, Jie Wang, Yonglong Zhao, Yan Li, Ting Liu, Yongjun Li, Yi Wang, Hening Lin, Bin He. Attenuation of NLRP3 Inflammasome Activation by Indirubin-Derived PROTAC Targeting HDAC6. ACS Chemical Biology 2021, 16 (12) , 2746-2751. https://doi.org/10.1021/acschembio.1c00681
    11. Pratik Pal, Dinesh Thummuri, Dongwen Lv, Xingui Liu, Peiyi Zhang, Wanyi Hu, Saikat K. Poddar, Nan Hua, Sajid Khan, Yaxia Yuan, Xuan Zhang, Daohong Zhou, Guangrong Zheng. Discovery of a Novel BCL-XL PROTAC Degrader with Enhanced BCL-2 Inhibition. Journal of Medicinal Chemistry 2021, 64 (19) , 14230-14246. https://doi.org/10.1021/acs.jmedchem.1c00517
    12. Troy A. Bemis, James J. La Clair, Michael D. Burkart. Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry 2021, 64 (12) , 8042-8052. https://doi.org/10.1021/acs.jmedchem.1c00482
    13. Sida Shen, Cristina Picci, Kseniya Ustinova, Veronick Benoy, Zsófia Kutil, Guiping Zhang, Maurício T. Tavares, Jiří Pavlíček, Chad A. Zimprich, Matthew B. Robers, Ludo Van Den Bosch, Cyril Bařinka, Brett Langley, Alan P. Kozikowski. Tetrahydroquinoline-Capped Histone Deacetylase 6 Inhibitor SW-101 Ameliorates Pathological Phenotypes in a Charcot–Marie–Tooth Type 2A Mouse Model. Journal of Medicinal Chemistry 2021, 64 (8) , 4810-4840. https://doi.org/10.1021/acs.jmedchem.0c02210
    14. Rao Song, Wenliang Qiao, Jun He, Jiasheng Huang, Youfu Luo, Tao Yang. Proteases and Their Modulators in Cancer Therapy: Challenges and Opportunities. Journal of Medicinal Chemistry 2021, 64 (6) , 2851-2877. https://doi.org/10.1021/acs.jmedchem.0c01640
    15. Jianping Hu, Jieli Wei, Hyerin Yim, Li Wang, Ling Xie, Margaret S. Jin, Md Kabir, Lihuai Qin, Xian Chen, Jing Liu, Jian Jin. Potent and Selective Mitogen-Activated Protein Kinase Kinase 1/2 (MEK1/2) Heterobifunctional Small-molecule Degraders. Journal of Medicinal Chemistry 2020, 63 (24) , 15883-15905. https://doi.org/10.1021/acs.jmedchem.0c01609
    16. Terence C. S. Ho, Alex H. Y. Chan, A. Ganesan. Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. Journal of Medicinal Chemistry 2020, 63 (21) , 12460-12484. https://doi.org/10.1021/acs.jmedchem.0c00830
    17. Satish Noonepalle, Sida Shen, Jakub Ptáček, Maurício T. Tavares, Guiping Zhang, Jan Stránský, Jiří Pavlíček, Glaucio M. Ferreira, Melissa Hadley, Guido Pelaez, Cyril Bařinka, Alan P. Kozikowski, Alejandro Villagra. Rational Design of Suprastat: A Novel Selective Histone Deacetylase 6 Inhibitor with the Ability to Potentiate Immunotherapy in Melanoma Models. Journal of Medicinal Chemistry 2020, 63 (18) , 10246-10262. https://doi.org/10.1021/acs.jmedchem.0c00567
    18. Brett L. Roberts, Zhi-Xiong Ma, Ang Gao, Eric D. Leisten, Dan Yin, Wei Xu, Weiping Tang. Two-Stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders. ACS Chemical Biology 2020, 15 (6) , 1487-1496. https://doi.org/10.1021/acschembio.0c00140
    19. Ka Yang, Hao Wu, Zhongrui Zhang, Eric D. Leisten, Xueqing Nie, Binkai Liu, Zhi Wen, Jing Zhang, Michael D. Cunningham, Weiping Tang. Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase. ACS Medicinal Chemistry Letters 2020, 11 (4) , 575-581. https://doi.org/10.1021/acsmedchemlett.0c00046
    20. Sida Shen, Melissa Hadley, Kseniya Ustinova, Jiri Pavlicek, Tessa Knox, Satish Noonepalle, Mauricio T. Tavares, Chad A. Zimprich, Guiping Zhang, Matthew B. Robers, Cyril Bařinka, Alan P. Kozikowski, Alejandro Villagra. Discovery of a New Isoxazole-3-hydroxamate-Based Histone Deacetylase 6 Inhibitor SS-208 with Antitumor Activity in Syngeneic Melanoma Mouse Models. Journal of Medicinal Chemistry 2019, 62 (18) , 8557-8577. https://doi.org/10.1021/acs.jmedchem.9b00946
    21. Marta Pichlak, Tomasz Sobierajski, Katarzyna M. Błażewska, Edyta Gendaszewska-Darmach. Targeting reversible post-translational modifications with PROTACs: a focus on enzymes modifying protein lysine and arginine residues. Journal of Enzyme Inhibition and Medicinal Chemistry 2023, 38 (1) https://doi.org/10.1080/14756366.2023.2254012
    22. Jinxiao Ru, Yuxi Wang, Zijia Li, Jiaxing Wang, Changyu Ren, Jifa Zhang. Technologies of targeting histone deacetylase in drug discovery: Current progress and emerging prospects. European Journal of Medicinal Chemistry 2023, 261 , 115800. https://doi.org/10.1016/j.ejmech.2023.115800
    23. Shaoting Chen, Yuxiang Zheng, Benji Liang, Yudong Yin, Jian Yao, Quande Wang, Yanghan Liu, Nouri Neamati. The application of PROTAC in HDAC. European Journal of Medicinal Chemistry 2023, 260 , 115746. https://doi.org/10.1016/j.ejmech.2023.115746
    24. Yufeng Xiao, Seth Hale, Nikee Awasthee, Chengcheng Meng, Xuan Zhang, Yi Liu, Haocheng Ding, Zhiguang Huo, Dongwen Lv, Weizhou Zhang, Mei He, Guangrong Zheng, Daiqing Liao. HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation. Cell Chemical Biology 2023, 30 (11) , 1421-1435.e12. https://doi.org/10.1016/j.chembiol.2023.07.010
    25. Anna Pasieka, Eleonora Diamanti, Elisa Uliassi, Maria Laura Bolognesi. Click Chemistry and Targeted Degradation: A Winning Combination for Medicinal Chemists?. ChemMedChem 2023, 18 (20) https://doi.org/10.1002/cmdc.202300422
    26. Xiaopeng Peng, Zhihao Hu, Limei Zeng, Meizhu Zhang, Congcong Xu, Benyan Lu, Chengpeng Tao, Weiming Chen, Wen Hou, Kui Cheng, Huichang Bi, Wanyi Pan, Jianjun Chen. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharmaceutica Sinica B 2023, 69 https://doi.org/10.1016/j.apsb.2023.09.003
    27. Judith Bockstiegel, Silas L. Wurnig, Jonas Engelhardt, Jana Enns, Finn K. Hansen, Günther Weindl. Pharmacological inhibition of HDAC6 suppresses NLRP3 inflammasome-mediated IL-1β release. Biochemical Pharmacology 2023, 215 , 115693. https://doi.org/10.1016/j.bcp.2023.115693
    28. Muhammad Zafar Irshad Khan, Adila Nazli, Iffat Naz, Dildar Khan, Ihsan-ul Haq, Jian-Zhong Chen. Targeted protein degradation: A promising approach for cancer treatment. Journal of Pharmaceutical Analysis 2023, 26 https://doi.org/10.1016/j.jpha.2023.09.004
    29. Urvashi Patel, Joshua P. Smalley, James T. Hodgkinson. PROTAC chemical probes for histone deacetylase enzymes. RSC Chemical Biology 2023, 4 (9) , 623-634. https://doi.org/10.1039/D3CB00105A
    30. Md Kabir, Xufen Yu, H. Ümit Kaniskan, Jian Jin. Chemically induced degradation of epigenetic targets. Chemical Society Reviews 2023, 52 (13) , 4313-4342. https://doi.org/10.1039/D3CS00100H
    31. Chunlong Zhao, Deng Chen, Fengzhi Suo, Rita Setroikromo, Wim J. Quax, Frank J. Dekker. Discovery of highly potent HDAC8 PROTACs with anti-tumor activity. Bioorganic Chemistry 2023, 136 , 106546. https://doi.org/10.1016/j.bioorg.2023.106546
    32. Veronica Davalos, Manel Esteller. Cancer epigenetics in clinical practice. CA: A Cancer Journal for Clinicians 2023, 73 (4) , 376-424. https://doi.org/10.3322/caac.21765
    33. Pengyun Li, Changkai Jia, Zhiya Fan, Xiaotong Hu, Wenjuan Zhang, Ke Liu, Shiyang Sun, Haoxin Guo, Ning Yang, Maoxiang Zhu, Xiaomei Zhuang, Junhai Xiao, Zhibing Zheng, Song Li. Discovery of novel exceptionally potent and orally active c-MET PROTACs for the treatment of tumors with MET alterations. Acta Pharmaceutica Sinica B 2023, 13 (6) , 2715-2735. https://doi.org/10.1016/j.apsb.2023.01.014
    34. Tao Liang, Fengli Wang, Reham M. Elhassan, Yongmei Cheng, Xiaolei Tang, Wengang Chen, Hao Fang, Xuben Hou. Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharmaceutica Sinica B 2023, 13 (6) , 2425-2463. https://doi.org/10.1016/j.apsb.2023.02.007
    35. Madison E Carelock, Rohan P Master, Myung-Chul Kim, Zeng Jin, Lei Wang, Chandra K Maharjan, Nan Hua, Umasankar De, Ryan Kolb, Yufeng Xiao, Daiqing Liao, Guangrong Zheng, Weizhou Zhang. Targeting intracellular proteins with cell type-specific functions for cancer immunotherapy. Life Medicine 2023, 2 (3) https://doi.org/10.1093/lifemedi/lnad019
    36. Hong‐Yi Zhao, Minhang Xin, San‐Qi Zhang. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Development Research 2023, 84 (2) , 337-394. https://doi.org/10.1002/ddr.22026
    37. Muhammad Zafar Irshad Khan, Adila Nazli, You-Lu Pan, Jian-Zhong Chen. Recent Developments in Medicinal Chemistry and Therapeutic Potential of Anti-Cancer PROTACs-Based Molecules. Current Medicinal Chemistry 2023, 30 (14) , 1576-1622. https://doi.org/10.2174/0929867329666220803112409
    38. Yu-Wei Wang, Li Lan, Min Wang, Jin-Yang Zhang, Yu-Hui Gao, Lei Shi, Li-Ping Sun. PROTACS: A technology with a gold rush-like atmosphere. European Journal of Medicinal Chemistry 2023, 247 , 115037. https://doi.org/10.1016/j.ejmech.2022.115037
    39. Xuelian Liu, Anjin Wang, Yuying Shi, Mengyuan Dai, Miao Liu, Hong-Bing Cai. PROTACs in Epigenetic Cancer Therapy: Current Status and Future Opportunities. Molecules 2023, 28 (3) , 1217. https://doi.org/10.3390/molecules28031217
    40. Salma Darwish, Tino Heimburg, Johannes Ridinger, Daniel Herp, Matthias Schmidt, Christophe Romier, Manfred Jung, Ina Oehme, Wolfgang Sippl. Synthesis, Biochemical, and Cellular Evaluation of HDAC6 Targeting Proteolysis Targeting Chimeras. 2023, 179-193. https://doi.org/10.1007/978-1-0716-2788-4_12
    41. Al-Hassan M. Mustafa, Oliver H. Krämer, . Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacological Reviews 2023, 75 (1) , 35-61. https://doi.org/10.1124/pharmrev.122.000612
    42. Beiwen Ni, Jian Hou. Promising therapeutic approaches for relapsed/refractory multiple myeloma. Hematology 2022, 27 (1) , 343-352. https://doi.org/10.1080/16078454.2022.2045724
    43. Alex Sobko. Cell biologist’s perspective: frontiers in the development of PROTAC-HDAC degraders. Journal of Stem Cell Research & Therapeutics 2022, 7 (1) , 40-45. https://doi.org/10.15406/jsrt.2022.07.00155
    44. Deping Li, Dongmin Yu, Yan Li, Renze Yang. A bibliometric analysis of PROTAC from 2001 to 2021. European Journal of Medicinal Chemistry 2022, 244 , 114838. https://doi.org/10.1016/j.ejmech.2022.114838
    45. Xinyi Li, Wenchen Pu, Qingquan Zheng, Min Ai, Song Chen, Yong Peng. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer 2022, 21 (1) https://doi.org/10.1186/s12943-021-01434-3
    46. Yan Li, Shuxian Lin, Zhicheng Gu, Lei Chen, Bin He. Zinc-dependent deacetylases (HDACs) as potential targets for treating Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters 2022, 76 , 129015. https://doi.org/10.1016/j.bmcl.2022.129015
    47. Jing Liu, Yunhua Peng, Hiroyuki Inuzuka, Wenyi Wei. Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Seminars in Cancer Biology 2022, 86 , 269-279. https://doi.org/10.1016/j.semcancer.2022.07.001
    48. Tim Keuler, Beate König, Nico Bückreiß, Fabian B. Kraft, Philipp König, Linda Schäker-Hübner, Christian Steinebach, Gerd Bendas, Michael Gütschow, Finn K. Hansen. Development of the first non-hydroxamate selective HDAC6 degraders. Chemical Communications 2022, 58 (79) , 11087-11090. https://doi.org/10.1039/D2CC03712B
    49. Yangping Wu, Jingliao Zhang, Xiaofan Zhu, Yingchi Zhang. Developing PROteolysis TArgeting Chimeras (PROTACs) for hematologic malignancies. Cancer Letters 2022, 544 , 215808. https://doi.org/10.1016/j.canlet.2022.215808
    50. Zhiqiang Sun, Bulian Deng, Zichao Yang, Ruiyao Mai, Junli Huang, Zeli Ma, Ting Chen, Jianjun Chen. Discovery of pomalidomide-based PROTACs for selective degradation of histone deacetylase 8. European Journal of Medicinal Chemistry 2022, 239 , 114544. https://doi.org/10.1016/j.ejmech.2022.114544
    51. Zefan Liu, Yajun Zhang, Yucheng Xiang, Xin Kang. Small-Molecule PROTACs for Cancer Immunotherapy. Molecules 2022, 27 (17) , 5439. https://doi.org/10.3390/molecules27175439
    52. Jia-Yue Xi, Ru-Yue Zhang, Ke Chen, Lin Yao, Mu-Qiong Li, Ru Jiang, Xiao-Ye Li, Li Fan. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorganic Chemistry 2022, 125 , 105848. https://doi.org/10.1016/j.bioorg.2022.105848
    53. Moyang Lv, Weichao Hu, Shengwei Zhang, Lijiao He, Changjiang Hu, Shiming Yang. Proteolysis-targeting chimeras: A promising technique in cancer therapy for gaining insights into tumor development. Cancer Letters 2022, 539 , 215716. https://doi.org/10.1016/j.canlet.2022.215716
    54. Olga Bakulina, Alexander Sapegin, Alexander S. Bunev, Mikhail Krasavin. Synthetic approaches to constructing proteolysis targeting chimeras (PROTACs). Mendeleev Communications 2022, 32 (4) , 419-432. https://doi.org/10.1016/j.mencom.2022.07.001
    55. Salma Darwish, Ehab Ghazy, Tino Heimburg, Daniel Herp, Patrik Zeyen, Rabia Salem-Altintas, Johannes Ridinger, Dina Robaa, Karin Schmidtkunz, Frank Erdmann, Matthias Schmidt, Christophe Romier, Manfred Jung, Ina Oehme, Wolfgang Sippl. Design, Synthesis and Biological Characterization of Histone Deacetylase 8 (HDAC8) Proteolysis Targeting Chimeras (PROTACs) with Anti-Neuroblastoma Activity. International Journal of Molecular Sciences 2022, 23 (14) , 7535. https://doi.org/10.3390/ijms23147535
    56. Izidor Sosič, Aleša Bricelj, Christian Steinebach. E3 ligase ligand chemistries: from building blocks to protein degraders. Chemical Society Reviews 2022, 51 (9) , 3487-3534. https://doi.org/10.1039/D2CS00148A
    57. Chao Wang, Cangxin Zheng, Han Wang, Liangren Zhang, Zhenming Liu, Ping Xu. The state of the art of PROTAC technologies for drug discovery. European Journal of Medicinal Chemistry 2022, 235 , 114290. https://doi.org/10.1016/j.ejmech.2022.114290
    58. Yan Li, Zhicheng Gu, Shuxian Lin, Lei Chen, Valentina Dzreyan, Moez Eid, Svetlana Demyanenko, Bin He. Histone Deacetylases as Epigenetic Targets for Treating Parkinson’s Disease. Brain Sciences 2022, 12 (5) , 672. https://doi.org/10.3390/brainsci12050672
    59. Wu Du. Targeted Protein Degradation by Proteolysis Targeting Chimeras. 2022, 225-271. https://doi.org/10.1002/9781119627784.ch11
    60. Marton Siklos, Stefan Kubicek. T herapeutic targeting of chromatin: status and opportunities. The FEBS Journal 2022, 289 (5) , 1276-1301. https://doi.org/10.1111/febs.15966
    61. Yong Chen, Xue Yuan, Minghai Tang, Mingsong Shi, Tao Yang, Kongjun Liu, Dexin Deng, Lijuan Chen. Degrading FLT3-ITD protein by proteolysis targeting chimera (PROTAC). Bioorganic Chemistry 2022, 119 , 105508. https://doi.org/10.1016/j.bioorg.2021.105508
    62. Geetha Shanmugam, Sudeshna Rakshit, Koustav Sarkar. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Translational Oncology 2022, 16 , 101312. https://doi.org/10.1016/j.tranon.2021.101312
    63. Daniel Alencar Rodrigues, Andrew Roe, Darren Griffith, Tríona Ní Chonghaile. Advances in the Design and Development of PROTAC-mediated HDAC Degradation. Current Topics in Medicinal Chemistry 2022, 22 (5) , 408-424. https://doi.org/10.2174/1568026621666211015092047
    64. Mateusz Daśko, Beatriz de Pascual-Teresa, Irene Ortín, Ana Ramos. HDAC Inhibitors: Innovative Strategies for Their Design and Applications. Molecules 2022, 27 (3) , 715. https://doi.org/10.3390/molecules27030715
    65. Xingrui He, Zi Hui, Li Xu, Renren Bai, Yuan Gao, Zongcheng Wang, Tian Xie, Xiang-Yang Ye. Medicinal chemistry updates of novel HDACs inhibitors (2020 to present). European Journal of Medicinal Chemistry 2022, 227 , 113946. https://doi.org/10.1016/j.ejmech.2021.113946
    66. Fabian Fischer, Leandro A Alves Avelar, Laoise Murray, Thomas Kurz. Designing HDAC-PROTACs: lessons learned so far. Future Medicinal Chemistry 2022, 14 (3) , 143-166. https://doi.org/10.4155/fmc-2021-0206
    67. Chao Wang, Yujing Zhang, Yudong Wu, Dongming Xing. Developments of CRBN-based PROTACs as potential therapeutic agents. European Journal of Medicinal Chemistry 2021, 225 , 113749. https://doi.org/10.1016/j.ejmech.2021.113749
    68. Kunal Nepali, Jing-Ping Liou. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. Journal of Biomedical Science 2021, 28 (1) https://doi.org/10.1186/s12929-021-00721-x
    69. Yingxin Lu, Danwen Sun, Donghuai Xiao, Yingying Shao, Mingbo Su, Yubo Zhou, Jia Li, Shulei Zhu, Wei Lu. Design, Synthesis, and Biological Evaluation of HDAC Degraders with CRBN E3 Ligase Ligands. Molecules 2021, 26 (23) , 7241. https://doi.org/10.3390/molecules26237241
    70. Zahra Hasanpour, Peyman Salehi, Lennart Bunch, Mona Khoramjouy, Morteza Bararjanian, Dan Staerk, Mehrdad Faizi. Semi-synthesis of novel buprenorphine derivatives and their anti-nociceptive properties and dependency potential. Canadian Journal of Chemistry 2021, 99 (11) , 910-919. https://doi.org/10.1139/cjc-2020-0429
    71. Yuan Xiong, Katherine A. Donovan, Nicholas A. Eleuteri, Nadia Kirmani, Hong Yue, Anthony Razov, Noah M. Krupnick, Radosław P. Nowak, Eric S. Fischer. Chemo-proteomics exploration of HDAC degradability by small molecule degraders. Cell Chemical Biology 2021, 28 (10) , 1514-1527.e4. https://doi.org/10.1016/j.chembiol.2021.07.002
    72. Laura Márquez-Cantudo, Ana Ramos, Claire Coderch, Beatriz de Pascual-Teresa. Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs That Enable Degradation. Molecules 2021, 26 (18) , 5606. https://doi.org/10.3390/molecules26185606
    73. Jing Liu, Yunhua Peng, Wenyi Wei. Light-Controllable PROTACs for Temporospatial Control of Protein Degradation. Frontiers in Cell and Developmental Biology 2021, 9 https://doi.org/10.3389/fcell.2021.678077
    74. Aleša Bricelj, Christian Steinebach, Robert Kuchta, Michael Gütschow, Izidor Sosič. E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.707317
    75. Ming He, Wenxing Lv, Yu Rao. Opportunities and Challenges of Small Molecule Induced Targeted Protein Degradation. Frontiers in Cell and Developmental Biology 2021, 9 https://doi.org/10.3389/fcell.2021.685106
    76. Xiangbo Yang, Zhijia Wang, Yuan Pei, Ning Song, Lei Xu, Bo Feng, Hanlin Wang, Xiaomin Luo, Xiaobei Hu, Xiaohui Qiu, Huijin Feng, Yaxi Yang, Yubo Zhou, Jia Li, Bing Zhou. Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders. European Journal of Medicinal Chemistry 2021, 218 , 113341. https://doi.org/10.1016/j.ejmech.2021.113341
    77. Maurício T Tavares, Sida Shen. Recent innovative advances in the discovery of selective HDAC6 inhibitors. Future Medicinal Chemistry 2021, 13 (12) , 1017-1019. https://doi.org/10.4155/fmc-2021-0040
    78. Ana Rita Cardoso, João Lobo, Vera Miranda-Gonçalves, Rui Henrique, Carmen Jerónimo. Epigenetic alterations as therapeutic targets in Testicular Germ Cell Tumours : current and future application of ‘epidrugs’. Epigenetics 2021, 16 (4) , 353-372. https://doi.org/10.1080/15592294.2020.1805682
    79. Duncan K. Brownsey, Ben C. Rowley, Evgueni Gorobets, Benjamin S. Gelfand, Darren J. Derksen. Rapid synthesis of pomalidomide-conjugates for the development of protein degrader libraries. Chemical Science 2021, 12 (12) , 4519-4525. https://doi.org/10.1039/D0SC05442A
    80. Sarah F. Giardina, Elena Valdambrini, J. David Warren, Francis Barany. PROTACs: Promising Approaches for Epigenetic Strategies to Overcome Drug Resistance. Current Cancer Drug Targets 2021, 21 (4) , 306-325. https://doi.org/10.2174/1568009621666210203110857
    81. Yvonne A. Nagel, Adrian Britschgi, Antonio Ricci. From Degraders to Molecular Glues: New Ways of Breaking Down Disease‐Associated Proteins. 2021, 47-85. https://doi.org/10.1002/9783527826872.ch2
    82. Shenxin Zeng, Hongjie Zhang, Zhengrong Shen, Wenhai Huang. Photopharmacology of Proteolysis-Targeting Chimeras: A New Frontier for Drug Discovery. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.639176
    83. Alexandria M. Chan, Steven Fletcher. Shifting the paradigm in treating multi-factorial diseases: polypharmacological co-inhibitors of HDAC6. RSC Medicinal Chemistry 2021, 12 (2) , 178-196. https://doi.org/10.1039/D0MD00286K
    84. Ka Yang, Yaxian Zhou, Brett L. Roberts, Xueqing Nie, Weiping Tang. Evaluation of the binding affinity of E3 ubiquitin ligase ligands by cellular target engagement and in-cell ELISA assay. STAR Protocols 2021, 2 (1) , 100288. https://doi.org/10.1016/j.xpro.2020.100288
    85. Robert Jenke, Nina Reßing, Finn K. Hansen, Achim Aigner, Thomas Büch. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers 2021, 13 (4) , 634. https://doi.org/10.3390/cancers13040634
    86. Jenna N. Beyer, Nicole R. Raniszewski, George M. Burslem. Advances and Opportunities in Epigenetic Chemical Biology. ChemBioChem 2021, 22 (1) , 17-42. https://doi.org/10.1002/cbic.202000459
    87. M. Maneiro, E. De Vita, D. Conole, C.S. Kounde, Q. Zhang, E.W. Tate. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. 2021, 67-190. https://doi.org/10.1016/bs.pmch.2021.01.002
    88. Shenxin Zeng, Wenhai Huang, Xiaoliang Zheng, Liyan cheng, Zhimin Zhang, Jian Wang, Zhengrong Shen. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. European Journal of Medicinal Chemistry 2021, 210 , 112981. https://doi.org/10.1016/j.ejmech.2020.112981
    89. Laura Sinatra, Jan J. Bandolik, Martin Roatsch, Melf Sönnichsen, Clara T. Schoeder, Alexandra Hamacher, Andrea Schöler, Arndt Borkhardt, Jens Meiler, Sanil Bhatia, Matthias U. Kassack, Finn K. Hansen. Hydroxamic Acids Immobilized on Resins (HAIRs): Synthese von Dual‐Target‐HDAC‐Inhibitoren und HDAC‐PROTACs. Angewandte Chemie 2020, 132 (50) , 22681-22687. https://doi.org/10.1002/ange.202006725
    90. Laura Sinatra, Jan J. Bandolik, Martin Roatsch, Melf Sönnichsen, Clara T. Schoeder, Alexandra Hamacher, Andrea Schöler, Arndt Borkhardt, Jens Meiler, Sanil Bhatia, Matthias U. Kassack, Finn K. Hansen. Hydroxamic Acids Immobilized on Resins (HAIRs): Synthesis of Dual‐Targeting HDAC Inhibitors and HDAC Degraders (PROTACs). Angewandte Chemie International Edition 2020, 59 (50) , 22494-22499. https://doi.org/10.1002/anie.202006725
    91. Yuan Gao, Hang Zhang, Frédéric Lirussi, Carmen Garrido, Xiang-Yang Ye, Tian Xie. Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochemical Pharmacology 2020, 182 , 114224. https://doi.org/10.1016/j.bcp.2020.114224
    92. Katherine A. Donovan, Fleur M. Ferguson, Jonathan W. Bushman, Nicholas A. Eleuteri, Debabrata Bhunia, SeongShick Ryu, Li Tan, Kun Shi, Hong Yue, Xiaoxi Liu, Dennis Dobrovolsky, Baishan Jiang, Jinhua Wang, Mingfeng Hao, Inchul You, Mingxing Teng, Yanke Liang, John Hatcher, Zhengnian Li, Theresa D. Manz, Brian Groendyke, Wanyi Hu, Yunju Nam, Sandip Sengupta, Hanna Cho, Injae Shin, Michael P. Agius, Irene M. Ghobrial, Michelle W. Ma, Jianwei Che, Sara J. Buhrlage, Taebo Sim, Nathanael S. Gray, Eric S. Fischer. Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell 2020, 183 (6) , 1714-1731.e10. https://doi.org/10.1016/j.cell.2020.10.038
    93. Beichen Hu, Yirong Zhou, Dejuan Sun, Yueying Yang, Yang Liu, Xingzhou Li, Hua Li, Lixia Chen. PROTACs: New method to degrade transcription regulating proteins. European Journal of Medicinal Chemistry 2020, 207 , 112698. https://doi.org/10.1016/j.ejmech.2020.112698
    94. Daniela Tomaselli, Nicola Mautone, Antonello Mai, Dante Rotili. Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). European Journal of Medicinal Chemistry 2020, 207 , 112750. https://doi.org/10.1016/j.ejmech.2020.112750
    95. Fangyuan Cao, Sander de Weerd, Deng Chen, Martijn R.H. Zwinderman, Petra E. van der Wouden, Frank J. Dekker. Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC). European Journal of Medicinal Chemistry 2020, 208 , 112800. https://doi.org/10.1016/j.ejmech.2020.112800
    96. Yonghan He, Sajid Khan, Zhiguang Huo, Dongwen Lv, Xuan Zhang, Xingui Liu, Yaxia Yuan, Robert Hromas, Mingjiang Xu, Guangrong Zheng, Daohong Zhou. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. Journal of Hematology & Oncology 2020, 13 (1) https://doi.org/10.1186/s13045-020-00924-z
    97. Lina Yin, Qingzhong Hu. Chimera induced protein degradation: PROTACs and beyond. European Journal of Medicinal Chemistry 2020, 206 , 112494. https://doi.org/10.1016/j.ejmech.2020.112494
    98. Jiangying Cao, Wei Zhao, Chunlong Zhao, Qian Liu, Shunda Li, Guozhen Zhang, C. James Chou, Yingjie Zhang. Development of a Bestatin-SAHA Hybrid with Dual Inhibitory Activity against APN and HDAC. Molecules 2020, 25 (21) , 4991. https://doi.org/10.3390/molecules25214991
    99. Philipp M. Cromm, Craig M. Crews, Hilmar Weinmann. PROTAC-mediated Target Degradation: A Paradigm Changer in Drug Discovery?. 2020, 1-13. https://doi.org/10.1039/9781839160691-00001
    100. Joshua P. Smalley, Shaun M. Cowley, James T. Hodgkinson. Bifunctional HDAC Therapeutics: One Drug to Rule Them All?. Molecules 2020, 25 (19) , 4394. https://doi.org/10.3390/molecules25194394
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect