ACS Publications. Most Trusted. Most Cited. Most Read
Mechanistic Insights into the Leishmanicidal and Bactericidal Activities of Batroxicidin, a Cathelicidin-Related Peptide from a South American Viper (Bothrops atrox)
My Activity

    Article

    Mechanistic Insights into the Leishmanicidal and Bactericidal Activities of Batroxicidin, a Cathelicidin-Related Peptide from a South American Viper (Bothrops atrox)
    Click to copy article linkArticle link copied!

    • Anderson Dematei
      Anderson Dematei
      Center for Tropical Medicine, NMT, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
      Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
    • João B. Nunes
      João B. Nunes
      Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
      Laboratory for the Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
    • Daniel C. Moreira
      Daniel C. Moreira
      Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
    • Jéssica A. Jesus
      Jéssica A. Jesus
      Institute of Biosciences, São Paulo State University, São Paulo, Brazil
    • Márcia D. Laurenti
      Márcia D. Laurenti
      Department of Pathology, Laboratory of Pathology of Infectious Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05508-060, Brazil
    • Ana C. A. Mengarda
      Ana C. A. Mengarda
      Research Center on Neglected Diseases, NPDN, University of Guarulhos, Guarulhos 07023-070, Brazil
    • Maria Silva Vieira
      Maria Silva Vieira
      I3S, Institute of Research and Innovation in Health, University of Porto, Porto 4099-002, Portugal
      IBMC, Institute of Molecular and Cellular Biology, University of Porto, Porto 4099-002, Portugal
    • Constança Pais do Amaral
      Constança Pais do Amaral
      Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
    • Marco M. Domingues
      Marco M. Domingues
      Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
    • Josué de Moraes
      Josué de Moraes
      Research Center on Neglected Diseases, NPDN, University of Guarulhos, Guarulhos 07023-070, Brazil
    • Luiz F. D. Passero
      Luiz F. D. Passero
      Institute of Biosciences, São Paulo State University, São Paulo, Brazil
      Department of Pathology, Laboratory of Pathology of Infectious Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05508-060, Brazil
    • Guilherme Brand
      Guilherme Brand
      Laboratory for the Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
    • Lucinda J. Bessa
      Lucinda J. Bessa
      LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
    • Reinhard Wimmer
      Reinhard Wimmer
      Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
    • Selma A. S. Kuckelhaus
      Selma A. S. Kuckelhaus
      Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
    • Ana M. Tomás
      Ana M. Tomás
      I3S, Institute of Research and Innovation in Health, University of Porto, Porto 4099-002, Portugal
      IBMC, Institute of Molecular and Cellular Biology, University of Porto, Porto 4099-002, Portugal
      ICBAS, Abel Salazar Institute for Biomedical Research, University of Porto, Porto 4099-002, Portugal
    • Nuno C. Santos
      Nuno C. Santos
      Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
    • Alexandra Plácido
      Alexandra Plácido
      LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
    • Peter Eaton
      Peter Eaton
      LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
      The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, U.K.
      More by Peter Eaton
    • José Roberto S. A. Leite*
      José Roberto S. A. Leite
      Center for Tropical Medicine, NMT, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
      Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
      *Phone: +556131071891. E-mail: [email protected]; [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2021, 84, 6, 1787–1798
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jnatprod.1c00153
    Published June 2, 2021
    Copyright © 2021 American Chemical Society and American Society of Pharmacognosy

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.

    Copyright © 2021 American Chemical Society and American Society of Pharmacognosy

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jnatprod.1c00153.

    • Additional figure (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 19 publications.

    1. Bruna K. P. Sousa, Melina Mottin, Donald Seanego, Christopher D. Jurisch, Beatriz S. A. Rodrigues, Verônica L. S. da Silva, Milene Aparecida Andrade, Gilberto S. Morais Junior, Diogo F. Boerin, Thamires Q. Froes, Flávia Nader Motta, M. Cristina Nonato, Izabela D. M. Bastos, Kelly Chibale, Richard K. Gessner, Carolina Horta Andrade. Discovery of Non-Covalent Inhibitors for SARS-CoV-2 PLpro: Integrating Virtual Screening, Synthesis, and Experimental Validation. ACS Medicinal Chemistry Letters 2024, 15 (12) , 2140-2149. https://doi.org/10.1021/acsmedchemlett.4c00420
    2. Samya Sen, Ramkamal Samat, Moumita Jash, Satyajit Ghosh, Rajsekhar Roy, Nabanita Mukherjee, Surojit Ghosh, Jayita Sarkar, Surajit Ghosh. Potential Broad-Spectrum Antimicrobial, Wound Healing, and Disinfectant Cationic Peptide Crafted from Snake Venom. Journal of Medicinal Chemistry 2023, 66 (16) , 11555-11572. https://doi.org/10.1021/acs.jmedchem.3c01150
    3. Anderson Dematei, Samuel Ribeiro Costa, Daniel C. Moreira, Eder Alves Barbosa, Lucas F. Friaça Albuquerque, Andreanne G. Vasconcelos, Tiago Nascimento, Pedro Costa Silva, Amandda É. Silva-Carvalho, Felipe Saldanha-Araújo, Mariana Camargo Silva Mancini, Luis Gustavo Saboia Ponte, Rosangela Maria Neves Bezerra, Fernando Moreira Simabuco, Augusto Batagin-Neto, Guilherme Brand, Tatiana Karla S. Borges, Peter Eaton, José Roberto S. A. Leite. Antioxidant and Neuroprotective Effects of the First Tryptophyllin Found in Snake Venom (Bothrops moojeni). Journal of Natural Products 2022, 85 (12) , 2695-2705. https://doi.org/10.1021/acs.jnatprod.2c00304
    4. Raissa S. Reimann, Breno O.C. Barreto, Filippo Romano, Jade G.C. Medeiros, Bruna C. Camargo, Josiel N. da Silva, Ana Luiza B. Soares, Mateus Farias de Souza, Jamile Mariano Macedo, Anderson M. Kayano, Juliana P. Zuliani, Ana Novo de Oliveira, Saulo L. da Silva, Rafaela Diniz-Sousa, Andreimar M. Soares. Biomedical and Biotechnological Potential of Animal Venoms: Bothrops Snake Venoms and their Antimicrobial Applications. Current Medicinal Chemistry 2025, 32 (14) , 2683-2710. https://doi.org/10.2174/0109298673290981240416070550
    5. Daiane F. Oliveira, Alex P. Coleone, Filipe C. D. A. Lima, Augusto Batagin-Neto. Reactivity of amino acids and short peptide sequences: identifying bioactive compounds via DFT calculations. Molecular Diversity 2025, 29 (1) , 489-502. https://doi.org/10.1007/s11030-024-10868-y
    6. Isabella de Souza Mota, Miguel Cardoso, João Bueno, Ingrid Gracielle Martins da Silva, João Gonçalves, Sonia N. Bao, Brenno A.D. Neto, Guilherme Brand, José Raimundo Corrêa, José Roberto S.A. Leite, Felipe Saldanha-Araujo. Intragenic antimicrobial peptide Hs02 toxicity against leukemia cell lines is associated with increased expression of select pyroptotic components. Toxicology in Vitro 2024, 101 , 105945. https://doi.org/10.1016/j.tiv.2024.105945
    7. Wesley Arruda Gimenes Nantes, Sany Caroline Liberal, Filipe Martins Santos, Maria Augusta Dario, Lincoln Takashi Hota Mukoyama, Katrine Berres Woidella, Paula Helena Santa Rita, André Luiz Rodrigues Roque, Carina Elisei de Oliveira, Heitor Miraglia Herrera, Ana Maria Jansen. Viperidae snakes infected by mammalian-associated trypanosomatids and a free-living kinetoplastid. Infection, Genetics and Evolution 2024, 123 , 105630. https://doi.org/10.1016/j.meegid.2024.105630
    8. Corina Lobato Hagemann, Alexandre José Macedo, Tiana Tasca. Therapeutic potential of antimicrobial peptides against pathogenic protozoa. Parasitology Research 2024, 123 (2) https://doi.org/10.1007/s00436-024-08133-0
    9. Ana Luisa A. N. Barros, Vladimir C. Silva, Atvaldo F. Ribeiro-Junior, Miguel G. Cardoso, Samuel R. Costa, Carolina B. Moraes, Cecília G. Barbosa, Alex P. Coleone, Rafael P. Simões, Wanessa F. Cabral, Raul M. Falcão, Andreanne G. Vasconcelos, Jefferson A. Rocha, Daniel D. R. Arcanjo, Augusto Batagin-Neto, Tatiana Karla S. Borges, João Gonçalves, Guilherme D. Brand, Lucio H. G. Freitas-Junior, Peter Eaton, Mariela Marani, Massuo J. Kato, Alexandra Plácido, José Roberto S. A. Leite. Antiviral Action against SARS-CoV-2 of a Synthetic Peptide Based on a Novel Defensin Present in the Transcriptome of the Fire Salamander (Salamandra salamandra). Pharmaceutics 2024, 16 (2) , 190. https://doi.org/10.3390/pharmaceutics16020190
    10. Thaís F. A. Pavani, Maria E. Cirino, Thainá R. Teixeira, Josué de Moraes, Daniela G. G. Rando. Targeting the Schistosoma mansoni nutritional mechanisms to design new antischistosomal compounds. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-46959-3
    11. José Teófilo Moreira-Filho, Bruno Junior Neves, Rayssa Araujo Cajas, Josué de Moraes, Carolina Horta Andrade. Artificial intelligence-guided Approach for Efficient Virtual Screening of Hits Against Schistosoma Mansoni. Future Medicinal Chemistry 2023, 15 (22) , 2033-2050. https://doi.org/10.4155/fmc-2023-0152
    12. José Rafael Almeida, Ana Gomes, Bruno Mendes, Luísa Aguiar, Mariana Ferreira, Mariana Borges Costa Brioschi, Denise Duarte, Fátima Nogueira, Sofia Cortes, David Salazar-Valenzuela, Danilo C. Miguel, Cátia Teixeira, Paula Gameiro, Paula Gomes. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. International Journal of Biological Macromolecules 2023, 242 , 124745. https://doi.org/10.1016/j.ijbiomac.2023.124745
    13. . Beautiful but Deadly. 2023, 185-211. https://doi.org/10.1039/9781839164811-00185
    14. Alexey V. Osipov, Elena G. Cheremnykh, Rustam H. Ziganshin, Vladislav G. Starkov, Trang Thuy Thi Nguyen, Khoa Cuu Nguyen, Dung Tien Le, Anh Ngoc Hoang, Victor I. Tsetlin, Yuri N. Utkin. The Potassium Channel Blocker β-Bungarotoxin from the Krait Bungarus multicinctus Venom Manifests Antiprotozoal Activity. Biomedicines 2023, 11 (4) , 1115. https://doi.org/10.3390/biomedicines11041115
    15. Ameer Khusro, Chirom Aarti, Muhammad Umar Khayam Sahibzada. Antimicrobial peptides, nanocarrier systems, and databases: Therapeutic platform against leishmaniasis. 2023, 125-169. https://doi.org/10.1016/B978-0-323-91942-5.00017-3
    16. Gabriel Acácio. de Moura, Juliana Ramos. de Oliveira, Yasmim Mendes. Rocha, Janaína de Oliveira Freitas, João Pedro Viana. Rodrigues, Vanessa Pinheiro Gonçalves Ferreira, Roberto Nicolete. Antitumor and Antiparasitic Activity of Antimicrobial Peptides Derived from Snake Venom: A Systematic Review Approach. Current Medicinal Chemistry 2022, 29 (32) , 5358-5368. https://doi.org/10.2174/0929867329666220507011719
    17. Shenglan Liao, Gang Yang, Shan Huang, Bin Li, Aijun Li, Jianquan Kan. Chemical composition of Zanthoxylum schinifolium Siebold & Zucc. essential oil and evaluation of its antifungal activity and potential modes of action on Malassezia restricta. Industrial Crops and Products 2022, 180 , 114698. https://doi.org/10.1016/j.indcrop.2022.114698
    18. Cristiane S. Morais, Ana C. Mengarda, Fábio B. Miguel, Karine B. Enes, Vinícius C. Rodrigues, Maria Cristina C. Espírito-Santo, Abolghasem Siyadatpanah, Polrat Wilairatana, Mara R. C. Couri, Josué de Moraes. Pyrazoline derivatives as promising novel antischistosomal agents. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-02792-0
    19. Zainab U. Abdullahi, Salihu S. Musa, Daihai He, Umar M. Bello. Antiprotozoal Effect of Snake Venoms and Their Fractions: A Systematic Review. Pathogens 2021, 10 (12) , 1632. https://doi.org/10.3390/pathogens10121632

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2021, 84, 6, 1787–1798
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jnatprod.1c00153
    Published June 2, 2021
    Copyright © 2021 American Chemical Society and American Society of Pharmacognosy

    Article Views

    980

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.