ACS Publications. Most Trusted. Most Cited. Most Read
Natural Products as Sources of New Drugs from 1981 to 2014
My Activity
  • Open Access
  • Editors Choice
Review

Natural Products as Sources of New Drugs from 1981 to 2014
Click to copy article linkArticle link copied!

View Author Information
NIH Special Volunteer, Wayne, Pennsylvania 19087, United States
NIH Special Volunteer, Bethesda, Maryland 20814, United States
Open PDFSupporting Information (1)

Journal of Natural Products

Cite this: J. Nat. Prod. 2016, 79, 3, 629–661
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jnatprod.5b01055
Published February 7, 2016

Copyright © 2016 The American Chemical Society and American Society of Pharmacognosy. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a “natural product mimic”, or “NM”, to join the original primary divisions and the designation “natural product botanical”, or “NB”, to cover those botanical “defined mixtures” now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from around the 1940s to the end of 2014, of the 175 small molecules approved, 131, or 75%, are other than “S” (synthetic), with 85, or 49%, actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the “host from whence it was isolated”, and therefore it is considered that this area of natural product research should be expanded significantly.

Copyright © 2016 The American Chemical Society and American Society of Pharmacognosy

SPECIAL ISSUE

This article is part of the Special Issue in Honor of John Blunt and Murray Munro special issue.

Introduction

Click to copy section linkSection link copied!

It is now 18 years since the publication of our first review covering drugs from 1984 to 1995; (1) 12 years since the second, which covered the period from 1981 to 2002; (2) eight years since our third, covering the period 1981 to the middle of 2006; (3) and four years (4) since our last full analysis (covering the period 1981 to 2010), of the sources of new and approved drugs for the treatment of human diseases. In the present review we have also covered the four years from the beginning of 2011 to the end of 2014. In the last four years we have also published intermediate reports on natural products as leads to potential drugs, (5) the sources of antitumor compounds, (6) a general discussion on bioactive macrocycles from Nature, (7) an e-book series on natural products from microbial sources, (8-10) and a very recent book chapter on natural products in medicinal chemistry. (11) All of these articles have emphasized that natural product and/or natural product structures continue to play a highly significant role in the drug discovery and development process.
In Table 1, we have shown the genesis of our category codes and the years that we started with them. This is for the benefit of readers who are not familiar with these definitions and their derivation. The detailed reasoning behind the subgroup definition is given later under results.
Table 1. Codes Used in Analyses
codebrief definition/year
BBiological macromolecule, 1997
NUnaltered natural product, 1997
NBBotanical drug (defined mixture), 2012
NDNatural product derivative, 1997
SSynthetic drug, 1997
S*Synthetic drug (NP pharmacophore), 1997
VVaccine, 2003
/NMMimic of natural product, 2003
That Nature in one guise or another has continued to influence the design of small molecules is shown by inspection of the information given below, where with the advantage of now 34 years of data from 1981 to 2014 the system has been able to be refined. We have eliminated some duplicated entries that crept into the original data sets and have continued to revise some source designations, as newer information has been obtained from diverse sources. In particular, as behooves authors originally from the National Cancer Institute (NCI), in the specific case of cancer treatments, we have continued to consult the records of the U.S. FDA and have added comments from investigators who have informed us of compounds that may have been approved in other countries and that were not included in our earlier searches. As was done previously, the cancer data will be presented as a stand-alone section from the beginning of formal chemotherapy in the very late 1930s or early 1940s to the present, but information from the last 34 years will be included in the data sets used in the overall discussion.
A trend mentioned in our 2003 review, (2) namely, the development of high-throughput screens based on molecular targets, had led to a demand for the generation of large libraries of compounds; however, the shift away from large combinatorial libraries that was becoming obvious at that time has continued even today, with the emphasis continuing to be on small focused (100–3000 plus) collections that contain much of the “structural aspects” of natural products. As mentioned in our 2012 review, (4) various names have been given to this process, including “diversity oriented syntheses”, (12-16) but we prefer to refer simply to “more natural-product-like”, in terms of their combinations of heteroatoms and significant numbers of chiral centers within a single molecule, (17) or even “natural product mimics” if they happen to be direct competitive inhibitors of the natural substrate (the origin of our subset listed as “?/NM”). It should also be pointed out, yet again, that Lipinski’s fifth rule effectively states that the first four rules do not apply to natural products nor to any molecule that is recognized by an active transport system when considering “druggable chemical entities”. (18-20) An excellent paper by Koehn in 2012 gives a listing in Table 1 in that article of the 26 drugs approved between 1981 and 2011 based on 18 natural product structures that do not obey the “rule of 5” and its strictures. (21) This paper together with one from Sweden by Doak et al. (22) and a very recent contribution by Camp et al. (23) should be part of any discussion on this aspect of natural product drugs.
Commentaries on the “industrial” perspective in regard to drug sources and high-throughput screening were published by the GSK group (24) in 2011, and very recently an intriguing article on what has been called “high throughput screening-dark chemical matter” (HTS-DCM) has opened the discussion on molecules, some of which are based on natural products, that show no activities in in vitro assays but a number of which have very close structural analogues that are active. (25, 26) These papers, the first of which is a perspective on the second much larger paper, should also be read in conjunction with a recent paper showing the natural product compound equivalents (invalid metabolic panaceas (IMPS)) (27) to the pan-assay interference compounds (PAINS) that cause major problems in HTS programs. (28, 29)
Although combinatorial chemistry in one or more of its manifestations has now been present as a discovery source for approximately 80% of the time covered by this review, to date, we still can only find one formal denovo new chemical entity reported in the public domain, with a second possibility discovered in a similar manner, with both approved for drug use. The first was the antitumor compound known as sorafenib (Nexavar, 1) from Bayer, approved by the FDA in 2005 for treatment of renal cell carcinoma, and then in 2007, another approval was given for treatment of hepatocellular carcinoma. It has been approved in more than 100 countries as of the middle of 2014 for these two indications, and in late 2013, the U.S. FDA approved it for treatment of thyroid cancer with further approval for the same indication following in 2014 in the European Union and Japan. As is customary, it is still in multiple clinical trials in both combination and single-agent therapies. The second drug that probably came about from a de novo sourcing is ataluren (Translarna; 2), (30) which was approved in the EU in 2014 and launched in Germany the same year for the treatment of patients with genetic disorders due to a “nonsense” mutation. The mechanism of this small molecule can be seen in a diagrammatic mode at the following URL: http://www.ptcbio.com/en/pipeline/ataluren-translarna/. However, the first anticancer drug constructed by use of fragment screening and model fitting, vemurafenib (3), was approved by the FDA in 2011, and the story behind this and other small-molecule antitumor agents was well described in a review in 2012 by Hoelder et al., which should be consulted for more information on this style of approach to drug discovery. (31)

Chart 1

As mentioned by the present authors and a significant number of other authors in prior reviews on this topic, the developmental capability of combinatorial chemistry as a means for structural optimization, once an active skeleton has been identified, is without par. An expected surge in productivity, however, did not appear to materialize in the years from 2004 to 2014. Thus, the number of new active substances (NASs) from our data set, also known as new chemical entities (NCEs), which we consider to encompass all molecules, including biologics and vaccines, hit a 24-year low of 24 in 2004 (although 7, or 29%, of these were assigned to the “ND” category), leading to a rebound to 52 in 2005, with 25% being “N” or “ND” and 37% being biologics (“B”) or vaccines (“V”). The next four years from 2006 to 2009 averaged 40, with 35–45% being vaccines or biologics, although in these four years, four “botanicals” were approved. In 2010 and 2011, the figures again dropped to 33 and 34, respectively, but then in 2012 to 2014, the figures rebounded to 60, 47, and 65, respectively, but biologics and vaccines were significant proportions of these totals.
These figures are further developed covering the full details by year in Figures 2 and 4 (see the Discussion section below), together with other graphs such as Figure 5, showing total small molecules/year, Figure 6, showing the percentage of natural-product-based compounds and their derivatives. Plus in this review, we have also added the S* series of compounds to these. The use of the S* classification originally arose as a result of doubts expressed by some colleagues working in the chemical synthesis area who questioned the claim that nucleoside analogues synthesized in the laboratory actually evolved from the discoveries by the Bergmann group in the 1950s of the arabinose-containing natural products from marine sponges. (32-34)
The justification for the addition of the “S*” category to natural-product-based compounds and their derivatives in this review is that a large number of the “S*” structures are based on naturally derived nucleosides or very closely related scaffolds, and their relevance to drug discovery will be published in a review in the first half of 2016. Figure 7 then shows the percentage of just the “N*” categories over the 34 years. What is of significant importance in this area is the very recent paper from the Gerwick group demonstrating the isolation of spongosine (4) from a Vibrio harveyi strain isolated from the same sponge species (Tectitethya crypta) as used by Bergmann 60+ years earlier. (35) However, to allow for comparisons with earlier reviews, we have not altered the categories in the analyses. Fortunately, however, research is still being conducted by (bio)synthetic groups on the modification of active natural product skeletons as leads to novel agents. This was exemplified recently by publications in 2014–2015 from the groups of Szychowski et al., (36) Bathula, (37) Thaker, (38) Williams, (39) Miller, (40) and Novaes et al. (41) and an excellent perspective by Nicolaou in 2014. (42)
Against this backdrop, we now present an updated analysis of the role of natural products in the drug discovery and development process, dating from January 1981 through December 2014. As in our earlier analyses, (1-4) we have consulted the Annual Reports of Medicinal Chemistry, in this case from 1984 to 2014, (43-74) and to obtain more comprehensive coverage of the 1981–2014 time frame we have added data from the publication Drug News and Perspective, (75-95) the successor listings in Drugs of Today, (96-101) and searches of the Prous (now Thomson-Reuter’s Integrity) database, as well as by including information from individual investigators. As in the last review, the biologics data prior to 2005 were updated using information culled from disparate sources that culminated in a 2005 review on biopharmaceutical drugs. (102) We have continued our attempts to capture vaccine data for the past few years, but this area of the database is still not as complete as we would hope.
As in previous reviews in this series, we have continued to include relevant references in a condensed form in Tables 36 and 911. If we had attempted to provide full citations, the numbers of references cited in the present review would become overwhelming. In these tables, “ARMC ##” refers to the volume of Annual Reports in Medicinal Chemistry together with the page on which the structure(s) and commentary can be found. We should point out that due to a change effective in 2015, the ARMC is now known as Medicinal Chemistry Reviews. Similarly, “DNP ##” refers to the volume of Drug News and Perspective and the corresponding page(s), although this journal has now ceased publication as of the 2010 volume. Similarly “DT ##” refers to the relevant volume of Drugs of Today and the corresponding page(s), and an “I ######” is the accession number in the Prous (now Thomson-Reuters, Integrity) database. Finally, in the overall listing of antitumor agents from the middle 1930s to 2014 (Table 9) we have used “Boyd” to refer to a review article (103) on clinical antitumor agents, an earlier book on the same subject, (104) and “M’dale” to refer to Martindale (105) with the relevant page noted.
It must be noted that the “year” header in all tables is formally equivalent to the “year of introduction” of the drug in the first country in which it was approved. We only count a drug once, even if subsequently it is approved in other countries or for other indications. Over the years, we have realized that there are discrepancies between sources as to the actual year, often due to differences in definitions between sources. Some reports will use the year of approval (registration by non-USA FDA equivalent organizations), while others will use the first recorded sales. We have generally taken the earliest year in the absence of further information.

Results

Click to copy section linkSection link copied!

As in previous reviews, we have, except in a case that will be noted later in this review where a therapy used NCEs (two unapproved agents) in the approved combination, only covered NCEs in the present analysis. As mentioned in earlier reviews, if one reads the U.S. FDA and PhRMA Web sites, the numbers of New Drug Application (NDA) approvals are in the high tens in some of the past few years. The FDA Drugs Database needs to be assessed by anyone using it for drugs previously approved in other countries versus new drugs only approved in the USA to obtain more accurate figures, and there will be differences due to our noting drugs approved the first time anywhere and then not counting the same compound the first time it was approved by the FDA. Using our data (see Figures 2, 4, and 5) the number of NCEs has ranged from the 20’s to just over 50 per year from 1989 to 2011 and in 2013 for approved NCEs (note that Figures 4 and 5 count only small molecules), although in 2012 and 2014 the figures reached 60 and 65, respectively. The reader needs to bear in mind that our vaccine numbers are not complete, so the overall numbers could increase. If one now removes biologicals and vaccines, thus noting only “small molecules” (including peptides such as Byetta), then the figures show that over the same time frame the numbers have ranged from close to 40 for most of the 1989 to 2000 time frame (except for 2002) to close to 20 from 2001 to 2010, with the exception of 2002 and 2004, when the figures climbed above 30. In the last four years (2011 to 2014), the numbers have now climbed from 28 in 2011 to 44 (cf., Figures 2 and 4).

Figure 1

Figure 1. All new approved drugs 1981–2014; n = 1562.

Figure 2

Figure 2. All new approved drugs by source/year.

Figure 3

Figure 3. All small-molecule approved drugs 1981–2014s; n = 1211.

Figure 4

Figure 4. All small-molecule approved drugs by source/year.

Now with 34 years of data to analyze, it was decided to add another graph to the listings, together with one of significant interest to the natural products community. In Figure 6 we have plotted a bar graph from 1981 to 2014 showing the results in numbers/year when the designations used are an “N” or a subdivision (“NB” or “ND”). This time, we have deliberately included the “S*” designation (for the reasons elaborated earlier), which could be considered as “inspired by a natural product structure”. This figure demonstrates that even in 2014 10 of the 44 approved small-molecule drugs are “N”, “NB”, and “ND” with one “S*”, which account for 25% of the 44 approved NCEs that year. If we just use the “N”, “NB”, and “ND” designations over the complete 34 years, then the mean and standard deviation figures in percentages are 33 ± 9, and in Figure 7 we have shown the percentage for “N*” values by year. Readers can determine their own ratios for their “year of interest”, as desired.
As in our earlier reviews, (1-4) the data have been analyzed in terms of numbers and classified according to their origin using the previous major categories and their subdivisions.

Major Categories of Sources

The major categories used are as follows:
“B”: Biological, usually a large (>50 residues) peptide or protein either isolated from an organism/cell line or produced by biotechnological means in a surrogate host
“N”: Natural product, unmodifed in structure, though might be semi- or totally synthetic
“NB”: Natural product “botanical drug” (in general these have been recently approved)
“ND”: Derived from a natural product and is usually a semisynthetic modification
“S”: Totally synthetic drug, often found by random screening/modification of an existing agent
“S*”: Made by total synthesis, but the pharmacophore is/was from a natural product
“V”: Vaccine

Subcategory

“NM”: Natural product mimic (see rationale and examples below, as they give the reasoning for the extension of the “S” and “S*” categories from 2003 onward)
In the field of anticancer therapy, the advent in 2001 of Gleevec, a protein tyrosine kinase inhibitor, was justly heralded as a breakthrough in the treatment of leukemia. This compound was classified as an “/NM” on the basis of its competitive displacement of the natural substrate, ATP, in which the intracellular concentrations can approach 5 mM. We have continued to classify most PTK inhibitors that are approved as drugs under the “/NM” category for exactly the same reasons as elaborated in the 2003 review, (2) although nowadays, some later kinase inhibitors are not competitive inhibitors of ATP and thus would not be classified this way. The latest discussion on this aspect of PTKs can be read in the 2015 paper by Fabbro et al. (106) (Fabbro can be considered the “developmental father of Gleevec”), which should be read in conjunction with his 2002 paper on PTKs as targets. (107) In addition, the very interesting recent review by Vijayan et al. (108) should be consulted, as it demonstrates, together with the 2015 paper from Fabbro et al., (106) that kinase modulation occurs in a large number of other diseases, and not just in cancer.
Thus, PTK inhibitors have a wide range of possible targets and, in the cases of some specific approved antitumor-directed kinase inhibitors, have a very large number of “targets” in the human kinome. Thus, sunitinib (5) affects a very considerable number of different kinase “families”, whereas lapatinib (6) is restricted to one class, and the as yet unapproved PTKi selumetinib (AZD6244; 7) appears to be quite specific. These effects can be seen in the figures in the 2015 paper by Fabbro et al. (106) and are further elaborated on by Tilgada et al., (109) demonstrating that the targets of PTKi’s are not just in cancer and related diseases. As previously, we have continued to extend the “/SM” category to cover other direct inhibitors/antagonists of the natural substrate/receptor interaction whether obtained by direct experiment or by in silico studies followed by direct assay in the relevant system.

Figure 5

Figure 5. Total small molecules/year.

Figure 6

Figure 6. N, NB, ND, and S* categories by year, 1981–2014.

Figure 7

Figure 7. Percentage of N* by year, 1981–2014.

Similarly, a number of new peptidic drug entities, although formally synthetic in nature, are simply produced by chemical synthetic methods rather than by the use of fermentation or extraction. In some cases, an end group might have been changed for ease of recovery. However, a number of compounds produced totally by synthesis are in fact isosteres of the peptidic substrate and are thus “natural product mimics” in the truest sense of the term. We gave some examples of this type of interplay in our 2012 review, in which we mentioned the path to the “sartans”. (4)

Derivation of Oral Renin Inhibitors

Expanding upon this aspect of chemistry and pharmacology, we now will show how the first orally active renin inhibitor was derived starting from pepstatin. In Scheme 1 we show an idealized representation of the angiotensin system pathway, showing the physiological route from renin (an aspartic proteinase) through to the angiotensin-converting enzyme (ACE), to yield the hexapeptide angiotensin II. It was knowledge that this enzyme is a zinc-containing carboxy-peptidase that enabled the Squibb group back in the 1970s to synthesize the pseudodipeptide captopril (8) as the first ACE inhibitor to be approved by the FDA.
However, the “prime target” in the system is inhibition of renin since that is the enzyme that starts the cascade, and, unlike ACE, it does not hydrolyze the “kinin” peptides (bradykinin, etc.). Renin was known to be an aspartic proteinase, and it could be inhibited by the bacterial peptide pepstatin (9). This compound contains the unusual amino acid statine, which contains as a dipeptide mimic a hydroxyethylene isostere, and it was the basis of a long-term project at Merck to synthesize renin inhibitors, and later HIV-protease inhibitors, based on this substituent mimicking the transition state of the aspartic proteinase/substrate pair. (110, 111) Although none of their peptide structures provided a renin inhibitor that was approved as a drug, their work demonstrated the potential for such substitutions to be effective drug leads, albeit from Ciba-Geigy (now Novartis), en route to an orally active renin inhibitor. The first of what were known as type-I inhibitors (112) contained the dipeptide isostere (2S,4S,5S)-5-amino-4-hydroxy-2-isopropyl-6-cyclohexylhexanoic acid at the P1–P1′ position and also mimicked angiotensinogen from residue P3 to P1′ using the nomenclature from Schetchter and Berger. (113)
The story of the search for orally active renin inhibitors, although formally nonpeptidic but still containing the hydroxyethylene transition state dipeptide isostere, was given in detail by Novartis scientists in two papers, demonstrating that the search involved significant computerized structure–activity relationships using the crystal structure of human renin to optimize the chemistry, before finally leading to the drug candidate, SPP-100, which became the drug aliskiren (10) and gained FDA approval in March 2007 and EMA approval in August 2007. The first paper, in 2000, (114) gave the chemical basis for the initial discoveries of pseudopeptidic agents and the use of structure-based drug design with modifications around the initial type-I inhibitor (CGP 38′560; 11). The second paper, published in 2003, (115) gave the next chapter in the story, the work leading up to aliskiren. Finally, a thorough analysis of the various molecules and routes leading to aliskiren was published by Novartis scientists in 2010, and this should be consulted for the full story. (116)

Scheme 1

Figure 8

Figure 8. All anticancer drugs 1981–2014; n = 174.

Figure 9

Figure 9. Small-molecule anticancer drugs 1940s–2014; n = 136.

Figure 10

Figure 10. All anticancer drugs 1940s–2014 by source; n = 246.

Figure 11

Figure 11. All anticancer drugs 1940s–2014 by source/year; n = 246.

Also of interest are some recent publications that under certain conditions could almost be considered as potential for “repurposing” of this drug and perhaps others with the same target. Following a study on the conformation of aliskiren in solution and when bound to its receptor, by Politi et al., in 2011 (117) the data were used to calculate binding of aliskiren to a model of the HIV protease (an aspartic proteinase). This study also demonstrated that the FDA-approved (2013) SGLT-2 inhibitor canagliflozin (12) and the approved HIV protease inhibitor darunavir (13) may have cross-activities in renin inhibition as well as their regular approved pharmacological targets, thus potentially repurposing these compounds. (118)

Chart 2

Biologically Active Peptides

A review covering the preparation of biologically active peptides was published in 2014 and makes interesting reading when the methodologies are compared with those covering the synthesis of pseudopeptides that inhibit aspartic proteinases. (119)

Modifications of Natural Products by Combinatorial Methods

These techniques often produce entirely different compounds that may bear little if any resemblance to the original lead, but are legitimately assignable to the “/NM” category. In addition to the citations given in our previous reviews covering these methodologies, there have been some recent publications that can be consulted in order to demonstrate how “privileged structures from Nature” are demonstrated sources of molecular skeletons around which one may build libraries. (120-123)

Overview of Results

The data that have been analyzed in a variety of ways are presented as a series of bar graphs and pie charts and two major tables in order to establish the overall picture and then are further subdivided into some major therapeutic areas using a tabular format. The time frame covered is the 34 years from January 1, 1981, to December 31, 2014.

New Approved Drugs: From all source categories; pie chart (Figure 1)

New Approved Drugs: By source/year; bar graph (Figure 2)

Sources of All NCEs: Where four or more drugs were approved per medical indication, their sources are shown, and listings of diseases with ≤3 approved drugs (Table 2)

Sources of Small-Molecule NCEs: All subdivisions; pie chart (Figure 3)

Sources of Small-Molecule NCEs: By source/year; bar graph (Figure 4)

Total Small Molecules: By year; point chart (Figure 5)

N/NB/ND and S* Categories: By year; bar graph (Figure 6)

Percentage of N* Sources: By year; bar graph (Figure 7)

Antibacterial Drugs: Generic and trade names, year, reference, and source (Table 3)

Antifungal Drugs: Generic and trade names, year, reference, and source (Table 4)

Antiviral Drugs: Generic and trade names, year, reference, and source (Table 5)

Antiparasitic Drugs: Generic and trade names, year, reference, and source (Table 6)

Anti-infective Drugs: All molecules, source, and numbers (Table 7)

Anti-infective Drugs: Small molecules, source, and numbers (Table 8)

Anticancer Drugs: Generic and trade names, year, reference by source (Table 9; Figure 8 all drugs pie chart; Figure 9, small molecules pie chart)

All Anticancer Drugs (very late 1930s–12/2014): Generic and trade names, year, and reference by source (Table 10; Figure 10 pie chart; Figure 11, bar graph)

Antidiabetic Drugs: Generic and trade names, year, reference, and source (Table 11)

The extensive data sets shown in the figures and tables referred to above continue to highlight the continuing role that natural products and structures derived from or related to natural products from all sources have played, and continue to play, in the development of the current therapeutic armamentarium of the physician. Inspection of the data shows the continued important role for natural products in spite of the greatly reduced level of natural-products-based drug discovery programs in major pharmaceutical houses.
Inspection of the rate of NCE approvals as shown in Figures 2 and 47 demonstrate that even in 2014 the natural products field is still producing, or is involved in, ∼40% of all small molecules in the years 2000–2008, with a drop to ∼20% in 2009, followed by a rebound to 45% in 2010, and then fluctuation between a low of ∼13% in 2013 to between 25% and 30% in the other years of the second decade of the 21st century. The mean and standard deviation for these 15 years are 34 ± 9%, without including any of the natural-product-inspired classifications (“S*”, “S*/NM”, and “S/NM”).
As was shown in the 2012 review, a significant number of all NCEs still fall into the categories of biological (“B”) or vaccines (“V”), with 351 of 1562, or 23% (differs slightly from Figure 1 due to rounding), over the full 34-year period, and it is admitted that not all of the vaccines approved in these 34 years have been identified. We hope that in the last 14 or 15 years a majority have been captured, although some of the more obscure anti-influenza variants may not have been. Thus, the proportion of approved vaccines may well be higher over the longer time frame. Inspection of Figure 2 shows the significant proportion that these two categories hold in the number of approved drugs from 2000, where, in some years, these categories accounted for ca. 50% of all approvals. If the three “N” categories are included, then the proportions of formally nonsynthetics are even higher for these years, although this figure would increase if the “S*” variants are included.

De Novo Combinatorial Drugs

As mentioned earlier, in spite of many years of work by the pharmaceutical industry devoted to high-throughput screening of very significant numbers of combinatorial chemistry products (cf. Macarron’s (20, 24, 25) and Wassermann’s (26) papers on the industrial perspectives), during this time period, only two approved drugs could be found that fall under the de novo combinatorial category, sorafenib (1) and ataluren (2), with vemurafenib (3) potentially falling into this category due to the use of fragment-based methods.

Natural Product Mimics

Overall, of the 1562 NCEs covering all diseases/countries/sources in the years 01/1981–12/2014, and using the “NM” classifications introduced in our 2003 review, (2) the 334 compounds falling into these categories accounted for 21%, or if using just the small molecules where the divisor drops to 1211, the figure becomes 28%. This demonstrates the influence of “other than formal synthetics” on drug discovery and approval (Figures 1 and 3). In the 2012 review, the corresponding figures were ∼20% for all drugs and 25% for small molecules. (4)
Table 2. New Chemical Entities and Medical Indications by Source of Compound 1/1/1981–12/31/2014a
indicationtotalBNNBNDSS/NMS*S*/NMV
COPD8     3 5 
analgesic17 1  1132  
anesthetic5    5    
anti-Alzheimer611 1 3   
anti-Gaucher’s disease53  1   1 
anti-Parkinsonian12   11514 
antiallergic18 11412    
antianginal5    5    
antiarrhythmic17 1  14  2 
antiarthritic22611346 1 
antiasthmatic141  326 2 
antibacterial140111 7129  127
anticancer1743317138232013245
anticoagulant225  13  13 
antidepressant27    817 2 
antidiabetic, types 1 and 252231 641116 
antiemetic11    12 8 
antiepileptic17   211 22 
antifungal321  3253   
antiglaucoma14   5 513 
antihistamine14    14    
antihyperprolactinemia4   4     
antihypertensive80   22815233 
anti-inflammatory511  1337    
antimigraine10    21 7 
antiobesity6   114   
antiparasitic16 2 55 3 1
antipsoriatic114 13 111 
antipsychotic11    36 2 
antithrombotic30131 526 3 
antiulcer3411 1220    
antiviral13914  4145241761
anxiolytic10    82   
benign prostatic hypertrophy4 1 111   
bronchodilator8   2   6 
calcium metabolism20   893   
cardiotonic13   323 5 
chelator4    4    
contraception9   8 1   
cystic fibrosis41   3    
diuretic6    42   
erythropoiesis55        
gastroprokinetic4    12 1 
hematopoiesis77        
hemophilia1919        
hemostatic44        
hormone2212  10     
hormone replacement therapy8   8     
hyperphosphatemia5    5    
hypnotic12    12    
hypocholesterolemic13 4 121 5 
hypolipidemic8 1  7    
immunomodulator421 1     
immunostimulant1263 21    
immunosuppressant1465 3     
irritable bowel syndrome5   11  3 
macular degeneration64  11    
male sexual dysfunction5       5 
multiple sclerosis104  22 11 
muscle relaxant10   4213  
neuroleptic9    16 2 
nootropic8   35    
osteoporosis63  21    
platelet aggregation inhibitor4   3 1   
respiratory distress syndrome741  11   
urinary incontinence6    23 1 
vasodilation5   32    
vulnerary85  21    
grand total13281895442683591495515694
a

Diseases where ≤3 drugs approved 1981–2014: 234 drugs fall into this category and are subdivided as follows: B, 81; N, 15; ND, 46; S, 47, S/NM. 15; S*, 4; S*/NM, 18. The diseases covered the following; 5α-reductase inhibitor, ADHD, CAPS, CHF, CNS stimulant, Castleman’s disease, Crohn’s disease, Cushing’s syndrome, Fabry’s disease, Hunter syndrome, inborn errors of bile synthesis, inflammatory bowel disease, Japanese encephalitis, Lambert-Eaton myasthenic syndrome, Lyme disease, acute MI, MMRC, Morquio A syndrome, PAH, PCP/toxoplasmosis, PNH, Pompe’s disease, Turner syndrome, abortifacient, acromelagy, alcohol deterrent, allergic rhinitis, anabolic metabolism, analeptic, anemia, antisickle cell anemia, antismoking, antiacne, antiathersclerotic, anticonvulsant, antidiarrheal, antidote, antiemphysemic, antihyperuricemia, antihypotensive, antinarcolepsy, antinarcotic, antinauseant, antiperistaltic, antiprogestogenic, antirheumatic, antisecretory, antisepsis, antiseptic, antispasmodic, antispastic, antitussive, antityrosinaemia, antixerostomia, atrial fibrillation, benzodiazepine antagonist, β-lactamase inhibitor, blepharospasm, bone disorders, bone morphogenesis, bowel evacuant, cancer adjuvant, cardioprotective, cardiovascular disease, cartilage disorders, cervical dystonia, choleretic, chronic idiopathic constipation, cognition enhancer, congestive heart failure, constipation, coronary artery disease, cystinosis, cytoprotective, diabetic foot ulcers, diabetic neuropathies, digoxin toxicity, dispareunia, dry eye syndrome, dyslipidemia, dysuria, endometriosis, enzyme, expectorant, eye disorders, fertility inducer, free-running circadian disorder, gastroprotectant, genital warts, hematological, hemorrhage, hepatoprotectant, hereditary angioedema, homocystinuria, hyperammonemia, hypercholesterolemia (and familial), hyperparathyroidism, hyperphenylalaninemia, hypertriglyceridemia, hyperuricemia, hypoammonuric, hypocalciuric, hypogonadism, hyponatremia, idiopathic pulmonary fibrosis, idiopathic thrombocytopenia, immediate allergy, infertility (female), inflammatory bowel disease, insecticide, insomnia, joint lubricant, lipodystrophy (and in HIV), lipoprotein disorders, lipoprotein lipase deficiency, lupus erythematosus, mucolytic, mucopolysaccharidosis, mucositis, myleodysplasia, narcolepsy, nasal decongestant, neuropathic pain, neuroprotective, neutropenia, ocular inflammation, opiate detoxification, opiod-induced constipation, osteoarthritis, overactive bladder, ovulation, pancreatic disorders, pancreatitis, pertussis, photosensitizer, phytotoxicity in adults, pituitary disorders, porphyria, premature birth, premature ejaculation, progestogen, psychostimulant, pulmonary arterial hypertension, purpura fulminans, rattlesnake antivenom, reproduction, restenosis, schizophrenia, sclerosant, secondary hyperthryoidism, sedative, short bowel syndrome, skin photodamage, smoking cessation, strabismus, subarachnoid hemorrhage, thrombocytopenia, treatment of GH deficiency, ulcerative colitis, urea cycle disorders, uremic pruritis, urolithiasis, vaccinia complications, varicella (chicken pox), vasoprotective, venous thromboembolism.

Table 3. Antibacterial Drugs from 1/1/1981 to 12/31/2014 Organized Alphabetically by Generic Name within Source
generic nametrade nameyear introducedvolumepagesource
raxibacumabABthrax2012I 336061 B
carumonamAmasulin1988ARMC 24298N
daptomycinCubicin2003ARMC 39347N
fidaxomicinDificid2011DT 48(1)40N
fosfomycin trometamolMonuril1988I 112334 N
isepamicinIsepacin1988ARMC 24305N
micronomicin sulfateSagamicin1982P091082 N
miokamycinMiocamycin1985ARMC 21329N
mupirocinBactroban1985ARMC 21330N
netilimicin sulfateNetromicine1981I 070366 N
RV-11Zalig1989ARMC 25318N
teicoplaninTargocid1988ARMC 24311N
apalcillin sodiumLumota1982I 091130 ND
arbekacinHabekacin1990ARMC 26298ND
aspoxicillinDoyle1987ARMC 23328ND
astromycin sulfateFortimicin1985ARMC 21324ND
azithromycinSunamed1988ARMC 24298ND
aztreonamAzactam1984ARMC 20315ND
biapenemOmegacin2002ARMC 38351ND
cefbuperazone sodiumTomiporan1985ARMC 21325ND
cefcapene pivoxilFlomox1997ARMC 33330ND
cefdinirCefzon1991ARMC 27323ND
cefditoren pivoxilMeiact1994ARMC 30297ND
cefepimeMaxipime1993ARMC 29334ND
cefetamet pivoxil HClGlobocef1992ARMC 28327ND
cefiximeCefspan1987ARMC 23329ND
cefmenoxime HClTacef1983ARMC 19316ND
cefminox sodiumMeicelin1987ARMC 23330ND
cefodizime sodiumNeucef1990ARMC 26300ND
cefonicid sodiumMonocid1984ARMC 20316ND
cefoperazone sodiumCefobis1981I 127130 ND
ceforanidePrecef1984ARMC 20317ND
cefoselisWincef1998ARMC 34319ND
cefotetan disodiumYamatetan1984ARMC 20317ND
cefotiam HClPansporin1981I 091106 ND
cefozopran HClFirstcin1995ARMC 31339ND
cefpimizoleAjicef1987ARMC 23330ND
cefpiramide sodiumSepatren1985ARMC 21325ND
cefpirome sulfateCefrom1992ARMC 28328ND
cefpodoxime proxetilBanan1989ARMC 25310ND
cefprozilCefzil1992ARMC 28328ND
cefsoludin sodiumTakesulin1981I 091108 ND
ceftaroline fosamil acetateTeflaro2011DT 48(1)40ND
ceftazidimeFortam1983ARMC 19316ND
cefteram pivoxilTomiron1987ARMC 23330ND
CeftibutenSeftem1992ARMC 28329ND
ceftizoxime sodiumEpocelin1982I 070260 ND
ceftobiprole medocarilZeftera2008ARMC 44589ND
ceftriaxone sodiumRocephin1982I 091136 ND
cefuroxime axetilZinnat1987ARMC 23331ND
cefuzonam sodiumCosmosin1987ARMC 23331ND
cetolozane/tazobactamZerbaxa2014DT 51(1)47ND
clarithromycinKlaricid1990ARMC 26302ND
dalbavancinDalavance2014DT 51(!)47ND
dalfopristinSynercid1999ARMC 35338ND
dirithromycinNortron1993ARMC 29336ND
doripenemFinibax2005DNP 1942ND
ertapenem sodiumInvanz2002ARMC 38353ND
erythromycin acistrateErasis1988ARMC 24301ND
flomoxef sodiumFlumarin1988ARMC 24302ND
flurithromycin ethylsuccinateRitro1997ARMC 33333ND
fropenamFarom1997ARMC 33334ND
imipenem/cilastatinZienam1985ARMC 21328ND
lenampicillin HCIVaracillin1987ARMC 23336ND
loracarbefLorabid1992ARMC 28333ND
meropenemMerrem1994ARMC 30303ND
moxalactam disodiumShiomarin1982I 070301 ND
oritavancinOrbactiv2014DT 51(1)47ND
panipenem/betamipronCarbenin1994ARMC 30305ND
quinupristinSynercid1999ARMC 35338ND
retapamulinAltabax2007ARMC 43486ND
rifabutinMycobutin1992ARMC 28335ND
rifamixinNormix1987ARMC 23341ND
rifapentineRifampin1988ARMC 24310ND
rifaximinRifacol1985ARMC 21332ND
rokitamycinRicamycin1986ARMC 22325ND
roxithromycinRulid1987ARMC 23342ND
sultamycillin tosylateUnasyn1987ARMC 23343ND
tazobactam sodiumTazocillin1992ARMC 28336ND
telavancin HClVibativ2009DNP 2315ND
telithromycinKetek2001DNP 1535ND
temocillin disodiumTemopen1984ARMC 20323ND
tigecyclineTygacil2005DNP 1942ND
balafloxacinQ-Roxin2002ARMC 38351S
bedaquilineSirturo20121 386239 S
besifloxacinBesivance2009DNP 2320S
ciprofloxacinCiprobay1986ARMC 22318S
enoxacinFlumark1986ARMC 22320S
finafloxacin hydrochlorideXtoro2014DT 51(1)48S
fleroxacinQuinodis1992ARMC 28331S
garenoxacinGeninax2007ARMC 43471S
gatilfloxacinTequin1999ARMC 35340S
gemifloxacin mesilateFactive2003ARMC 40458S
grepafloxacinVaxor1997DNP 1123S
levofloxacinFloxacin1993ARMC 29340S
linezolidZyvox2000DNP 1421S
lomefloxacinUniquin1989ARMC 25315S
moxifloxacin HClAvelox1999ARMC 35343S
nadifloxacinAcuatim1993ARMC 29340S
nemonoxacinTaigexyn2014DT 51(1)48S
norfloxacinNoroxin1983ARMC 19322S
ofloxacinTarivid1985ARMC 21331S
pazufloxacinPasil2002ARMC 38364S
pefloxacin mesylatePerflacine1985ARMC 21331S
prulifloxacinSword2002ARMC 38366S
rufloxacin hydrochlorideQari1992ARMC 28335S
sitafloxacin hydrateGracevit2008DNP 2215S
sparfloxacinSpara1993ARMC 29345S
taurolidineTaurolin1988I 107771 S
tedizolid phosphate sodiumSivextro2014DT 51(1)47S
temafloxacin hydrochlorideTemac1991ARMC 27334S
tosufloxacinOzex1990ARMC 26310S
trovafloxacin mesylateTrovan1998ARMC 34332S
brodimoprinHyprim1993ARMC 29333S*/NM
 Bexsero2013DT 50(1)69V
 Prevenar 132009DNP 2317V
 Quattrovac2012I 770186 V
 Synflorix2009DNP 2317V
 Typbar2013DT 50(1)68V
ACWY meningoccal PS vaccineMencevax1981I 420128 V
BK-4SPTetrabik2012I 697562 V
botulism antitoxinBat2013DT 50(1)77V
DTPw-HepB-HibQuinvaxem2006DNP 2026V
DTP vaccinesDaptacel2002I 319668 V
H. influenzae b vaccineHibtitek1989DNP 0324V
H. influenzae b vaccineProhibit1989DNP 0324V
hexavalent vaccineHexavac2000DNP 1422V
hexavalent vaccineInfantrix HeXa2000DNP 1422V
Hib-MenCY-TTMenhibrix2012I 421742 V
MCV-4Menactra2005DNP 1943V
MenACWY-CRMMenveo2010I 341212 V
MenACWY-TTNimenrix2012I 421745 V
meningitis b vaccineMeNZB2004DNP 1829V
meningococcal vaccineMenigetec1999DNP 1422V
meningococcal vaccineNeisVac-C2000DNP 1422V
meningococcal vaccineMenjugate2000DNP 1422V
MnB rLP2086Trumenba2014DT 51(1)51V
oral cholera vaccineOrochol1994DNP 0830V
pneumococcal vaccinePrevnar2000DNP 1422V
PsA-TTMenAfriVac2010I 437718 V
Vi polysaccharide typhoid vaccineTypherix1998DNP 1235V
Table 4. Antifungal Drugs from 1/1/1981 to 12/31/2010 Organized Alphabetically by Generic Name within Source
generic nametrade nameyear introducedvolumepagesource
interferon gamma-n1OGamma1001996DNP 1013B
anidulafunginEraxis2006DNP 2024ND
caspofungin acetateCancidas2001DNP 1536ND
micafungin sodiumFungard2002ARMC 38360ND
amorolfine hydrochlorideLoceryl1991ARMC 27322S
butoconazoleFemstat1986ARMC 22318S
ciclopirox olamineLoprox1982I 070449 S
cloconazole HCIPilzcin1986ARMC 22318S
eberconazoleEbernet2005DNP 1942S
efinaconazoleJublia2013DT 50(1)66S
fenticonazole nitrateLomexin1987ARMC 23334S
fluconazoleDiflucan1988ARMC 24303S
flutrimazoleMicetal1995ARMC 31343S
fosfluconazoleProdif2003DNP 1749S
itraconazoleSporanox1988ARMC 24305S
ketoconazoleNizoral1981I 116505 S
lanoconazoleAstat1994ARMC 30302S
luliconazoleLulicon2005DNP 1942S
naftifine HCIExoderil1984ARMC 20321S
neticonazole HCIAtolant1993ARMC 29341S
oxiconazole nitrateOceral1983ARMC 19322S
posaconazoleNoxafil2005DNP 1942S
sertaconazole nitrateDermofix1992ARMC 28336S
sitafloxacin hydrateGracevit2008DNP 2215S
sulconazole nitrateExelderm1985ARMC 21332S
tavaboroleKerydin2014DT 51(1)51S
terconazoleGynoTerazol1983ARMC 19324S
tioconazoleTrosyl1983ARMC 19324S
voriconazoleVfend2002ARMC 38370S
butenafine hydrochlorideMentax1992ARMC 28327S/NM
liranaftateZefnart2000DNP 1421S/NM
terbinafine hydrochlorideLamisil1991ARMC 27334S/NM
Table 5. Antiviral Drugs from 1/1/1981 to 12/31/2014 Organized Alphabetically by Generic Name within Source
generic nametrade nameyear introducedvolumepagesource
 Oralgen2007I 415378 B
IGIV-HBNiuliva2009DNP 2316B
immunoglobulin intravenousGammagard Liquid2005I 231564 B
interferon alfaAlfaferone1987I 215443 B
interferon alfa-2bViraferon1985I 165805 B
interferon alfacon-1Infergen1997ARMC 33336B
interferon alfa-n1Wellferon1986I 125561 B
interferon alfa-n3Alferon N1990DNP 04104B
interferon betaFrone1985I115091 B
palivizumabSynagis1998DNP 1233B
peginterferon alfa-2aPegasys2001DNP 1534B
peginterferon alfa-2bPegintron2000DNP 1418B
resp syncytial virus IGRespiGam1996DNP 1011B
thymalfasinZadaxin1996DNP 1011B
enfuvirtideFuzeon2003ARMC 39350ND
laninamivir octanoateInavir2010I 340894 ND
oseltamivirTamiflu1999ARMC 35346ND
zanamivirRelenza1999ARMC 35352ND
daclatasvir dihydrochlorideDaklinza2014DT 51(1)48S
dasabuvirExviera2014DT 51(1)50S
delavirdine mesylateRescriptor1997ARMC 33331S
dolutegravirTivicay2013DT 50(1)63S
efavirenzSustiva1998ARMC 34321S
elvitegravirViteka2013DT 50(1)63S
foscarnet sodiumFoscavir1989ARMC 25313S
imiquimodAldara1997ARMC 33335S
maravirocCelsentri2007ARMC 43478S
nevirapineViramune1996ARMC 32313S
propagermaniumSerosion1994ARMC 30308S
raltegravir potassiumIsentress2007ARMC 43484S
rilpivirine hydrochlorideEdurant2011DT 48(1)41S
rimantadine HCIRoflual1987ARMC 23342S
asunaprevirSunvepra2014DT 51(1)48S/NM
cobicistatTybost2013DT 50(1)63S/NM
darunavirPrezista2006DNP 2025S/NM
ledipasvirHarvoni2014DT 51(1)48S/NM
peramivirPeramiFlu2010I 273549 S/NM
abacavir sulfateZiagen1999ARMC 35333S*
acyclovirZovirax1981I 091119 S*
adefovir dipivoxilHepsera2002ARMC 38348S*
cidofovirVistide1996ARMC 32306S*
clevudineLevovir2007ARMC 43466S*
didanosineVidex1991ARMC 27326S*
emtricitabineEmtriva2003ARMC 39350S*
entecavirBaraclude2005DNP 1939S*
epervudineHevizos1988I 157373 S*
etravirineIntelence2008DNP 2215S*
famciclovirFamvir1994ARMC 30300S*
ganciclovirCymevene1988ARMC 24303S*
inosine pranobexImunovir1981I 277341 S*
lamivudineEpivir1995ARMC 31345S*
penciclovirVectavir1996ARMC 32314S*
sofosbuvirSolvadi2013DT 50(1)64S*
sorivudineUsevir1993ARMC 29345S*
stavudineZerit1994ARMC 30311S*
telbividineSebivo2006DNP 2022S*
tenofovir disoproxil fumarateViread2001DNP 1537S*
valaciclovir HClValtrex1995ARMC 31352S*
valganciclovirValcyte2001DNP 1536S*
zalcitabineHivid1992ARMC 28338S*
zidovudineRetrovir1987ARMC 23345S*
amprenavirAgenerase1999ARMC 35334S*/NM
atazanavirReyataz2003ARMC 39342S*/NM
boceprevirVictrelis2011DT 48(1)41S*/NM
favipiravirAvigan2014DT 51(1)50S*/NM
fomivirsen sodiumVitravene1998ARMC 34323S*/NM
fosamprenevirLexiva2003ARMC 39353S*/NM
indinavir sulfateCrixivan1996ARMC 32310S*/NM
lopinavirKaletra2000ARMC 36310S*/NM
neflinavir mesylateViracept1997ARMC 33340S*/NM
ombitasvirViekira Pak2014DT 51(1)50S*/NM
paritaprevirViekira Pak2014DT 51(1)50S*/NM
ritonavirNorvir1996ARMC 32317S*/NM
saquinavir mesylateInvirase1995ARMC 31349S*/NM
simeprevirSovirad2013DT 50(1)63S*/NM
telaprevirIncivek2011DT 48(1)41S*/NM
tipranavirAptivus2005DNP 1942S*/NM
vaniprevirVanihep2014DT 51(1)49S*/NM
 ACAM-20002007I 328985 V
 Bilive2005DNP 1943V
 Celtura2009DNP 2317V
 Celvapan2009DNP 2317V
 Daronix2007I 427024 V
 Fluval P2009DNP 2317V
 Fluzone Quadrivalent2013DT 50(1)68V
 Focetria2009DNP 2317V
 Grippol Neo2009DNP 2316V
 Hexyon2013DT 50(1)69V
 Imvanex2013DT 50(1)69V
 Optaflu2007I 410266 V
 Pandremix2009DNP 2317V
 Panenza2009DNP 2317V
 Panflu2008DNP 2216V
 Vaxiflu-S2010I 698015 V
 VariZIG2005I 230590 V
 Vepacel2012I 768351 V
9vHPVGardasil 92014DT 51(1)52V
HPV vaccineGardasil2006DNP 2026V
anti-Hep B immunoglobulinHepaGam B2006DNP 2027V
antirabies vaccineRabirix2006DNP 2027V
attenuated chicken pox vaccineMerieux Varicella1993DNP 0731V
BBIL/JEVJenvac2013DT 50(1)68V
chimerivax-JEImojev2012I 292954 V
CSL-401Panvax2008DNP 2216V
FLU-Q-QIVFluarix Quadrivalent2012DT 50(1)68V
GSK-1562902APrepandrix2008DNP 2216V
GSK-2282512AFluarix Quadrivalent2012I 709665 V
H5N1 avian flu vaccine 2007I 440743 V
hepatitis a vaccineAimmugen1995DNP 0923V
hepatitis a vaccineHavrix1992DNP 0699V
hepatitis a vaccineVaqta1996DNP 1011V
hepatitis b vaccineBiken-HB1993DNP 0731V
hepatitis b vaccineBio-Hep B2000DNP 1422V
hepatitis b vaccineEngerix B1987I 137797 V
hepatitis b vaccineFendrix2005DNP 1943V
hepatitis b vaccineHepacure2000DNP 1422V
hepatitis b vaccineMeinyu1997DNP 1124V
hepatitis a and b vaccineAmbirix2003I 334416 V
HN-VACHNVAC2010I 684608 V
inact hepatitis a vaccineAvaxim1996DNP 1012V
influ A (H1N1) monovalent 2010I 678265 V
influenza vaccineInvivac2004I 391186 V
influenza vaccineOptaflu2008DNP 2216V
influenza virus (live)FluMist2003ARMC 39353V
influenza virus vaccineAfluria2007I 449226 V
KD-295 2014DT 51(1)52V
measles/rubella vaccine 2011DT 48(1)44V
Medi-3250FluMist Quadrivalent2012I 669909 V
MR vaccineMearubik2005DNP 1944V
rec hepatitis B vaccineSupervax2006DNP 2027V
rotavirus vaccineRotarix2005DNP 1829V
rotavirus vaccineRota-Shield1998DNP 1235V
rotavirus vaccineRotateq2006DNP 2026V
rubella vaccineErvevax1985I 115078 V
varicella virus vaccineVarivax1995DNP 0925V
VCIVPreFluCel2010I 444826 V
zoster vaccine liveZostavax2006DNP 2026V
Table 6. Antiparasitic Drugs from 1/1/1981 to 12/31/2014 Organized Alphabetically by Generic Name within Source
generic nametrade nameyear introducedvolumepagesource
artemisininArtemisin1987ARMC 23327N
ivermectinMectizan1987ARMC 23336N
arteetherArtemotil2000DNP 1422ND
artemetherArtemetheri1987I 90712 ND
artesunateArinate1987I 91299 ND
eflornithine HClOrnidyl1990DNP 04104ND
mefloquine HCIFansimef1985ARMC 21329ND
albendazoleEskazole1982I 129625 S
delamanidDeltyba2014DF 51(1)48S
halofantrineHalfan1988ARMC 24304S
lumefantrine?1987I 269095 S
quinfamideAmenox1984ARMC 20322S
atovaquoneMepron1992ARMC 28326S*
bulaquine/chloroquineAablaquin2000DNP 1422S*
trichomonas vaccineGynatren1986I 125543 V
Table 7. All Anti-infective (Antibacterial, Fungal, Parasitic, and Viral) Drugs (n = 326)
indicationtotalBNNDSS/NMS*S*/NMV
antibacterial1411117129  128
antifungal321 3253   
antiparasitic15 255 2 1
antiviral13814 4145241760
total326161383738261889
percentage1004.94.025.522.42.48.05.527.3
Table 8. Small-Molecule Anti-infective (Antibacterial, Fungal, Parasitic, and Viral) Drugs (n = 221)
indicationtotalNNDSS/NMS*S*/NM
antibacterial112117129  1
antifungal31 3253  
antiparasitic14255 2 
antiviral64 41452417
total22113837382618
percentage1005.937.633.03.611.88.1
Table 9. Anticancer Drugs from 1/1/1981 to 12/31/2014 Organized Alphabetically by Generic Name within Source
generic nametrade nameyear introducedvolumepagesource
 Rexin-G2007I 346431 B
131I-chTNT 2007I 393351 B
alemtuzumabCampath2001DNP 1538B
bevacizumabAvastin2004ARMC 40450B
blinatumomabBlincyto2014DT 51(1)55B
catumaxomabRemovab2009DNP 2318B
celmoleukinCeleuk1992DNP 06102B
cetuximabErbitux2003ARMC 39346B
denileukin diftitoxOntak1999ARMC 35338B
H-101 2005DNP 1946B
ibritumomabZevalin2002ARMC 38359B
interferon alfa2aRoferon-A1986I 204503 B
interferon, gamma-1aBiogamma1992ARMC 28332B
interleukin-2Proleukin1989ARMC 25314B
ipilimumabYervoy2011DT 48(1)45B
mobenakinOctin1999ARMC 35345B
mogamulizumabPoteligeo2012I 433141 B
nimotuzumabBIOMAb EFGR2006DNP 2029B
nivolumabOptivo2014DT 51(1)56B
obinutuzumabGazyva2013DT 50(1)70B
ofatumumabArzerra2009DNP 2318B
panitumumabVectibix2006DNP 2028B
pegaspargaseOncaspar1994ARMC 30306B
pembrolizumabKeytruda2014DT 51(1)56B
pertuzumabOmnitarg2012I 300439 B
racotumomabVaxira2013DT 50(1)72B
ramucirumabCyramza2014DT 51(1)55B
rituximabRituxan1997DNP 1125B
sipuleucel-TProvenge2010I 259673 B
tasonerminBeromun1999ARMC 35349B
teceleukinImumace1992DNP 06102B
tositumomabBexxar2003ARMC 39364B
trastuzumabHerceptin1998DNP 1235B
aclarubicinAclacin1981P090013 N
aminolevulinic acid HClLevulan2000DNP 1420N
angiotensin IIDelivert1994ARMC 30296N
arglabin?1999ARMC 35335N
homoharringtonineCeflatonin2012I 090682 N
ingenol mebutatePicato2012I 328987 N
masoprocolActinex1992ARMC 28333N
paclitaxelTaxol1993ARMC 29342N
paclitaxel nanoparticlesAbraxane2005DNP 1945N
paclitaxel nanoparticlesNanoxel2007I 422122 N
paclitaxel nanoparticlesGenexol-PM2007I 811264 N
paclitaxel nanoparticlesPICN2014DT 51(1)58N
pentostatinNipent1992ARMC 28334N
peplomycinPepleo1981I090889 N
romidepsinIstodax2010DNP 2318N
trabectedinYondelis2007ARMC 43492N
solamarginesCuraderm1989DNP 0325NB
abiratenone acetateZytiga2011DT 48(1)44ND
alitretinoinPanretin1999ARMC 35333ND
aminolevulinic-CO2CH3Metvix2001DNP 1534ND
amrubicin HClCalsed2002ARMC 38349ND
belotecan hydrochlorideCamtobell2004ARMC 40449ND
bf-200 alaAmeluz2012I 431098 ND
brentuximab vedotinAdcetris2011DT 48(1)45ND
cabazitaxelJevtana2010I 287186 ND
carfilzomibKyprolis2012I 413092 ND
cladribineLeustatin1993ARMC 29335ND
cytarabine ocfosfateStarsaid1993ARMC 29335ND
docetaxelTaxotere1995ARMC 31341ND
elliptinium acetateCeliptium1983I091123 ND
epirubicin HCIFarmorubicin1984ARMC 20318ND
eribulinHalaven2010I 287199 ND
etoposide phosphateEtopophos1996DNP 1013ND
exemestaneAromasin1999DNP 1346ND
formestaneLentaron1993ARMC 29337ND
fulvestrantFaslodex2002ARMC 38357ND
gemtuzumab ozogamicinMylotarg2000DNP 1423ND
hexyl aminolevulinateHexvix2004I 300211 ND
idarubicin hydrochlorideZavedos1990ARMC 26303ND
irinotecan hydrochlorideCampto1994ARMC 30301ND
ixabepiloneIxempra2007ARMC 43473ND
mifamurtideJunovan2010DNP 2318ND
miltefosineMiltex1993ARMC 29340ND
pirarubicinPinorubicin1988ARMC 24309ND
pralatrexateFolotyn2009DNP 2318ND
talaporfin sodiumLaserphyrin2004ARMC 40469ND
temsirolimusToricel2007ARMC 43490ND
topotecan HClHycamptin1996ARMC 32320ND
trastuzumab emtansineKadcyla2013DT 50(1)69ND
triptorelinDecapeptyl1986I 090485 ND
valrubicinValstar1999ARMC 35350ND
vapreotide acetateDocrised2004I 135014 ND
vinflunineJavlor2010I 219585 ND
vinorelbineNavelbine1989ARMC 25320ND
zinostatin stimalamerSmancs1994ARMC 30313ND
aminoglutethimideCytadren1981I 070408 S
amsacrineAmsakrin1987ARMC 23327S
arsenic trioxideTrisenox2000DNP 1423S
bisantrene hydrochlorideZantrene1990ARMC 26300S
carboplatinParaplatin1986ARMC 22318S
flutamideDrogenil1983ARMC 19318S
fotemustineMuphoran1989ARMC 25313S
heptaplatin/SK-2053RSunpla1999ARMC 35348S
lobaplatinLobaplatin1998DNP 1235S
lonidamineDoridamina1987ARMC 23337S
miriplatin hydrateMiripla2010DNP 2317S
nedaplatinAqupla1995ARMC 31347S
nilutamideAnadron1987ARMC 23338S
olaparibLynparza2014DT 51(1)56S
oxaliplatinEloxatin1996ARMC 32313S
plerixafor hydrochlorideMozobil2009DNP 2217S
pomalidomidePomalyst2013DT 50(1)70S
porfimer sodiumPhotofrin1993ARMC 29343S
ranimustineCymerine1987ARMC 23341S
sobuzoxaneParazolin1994ARMC 30310S
sorafenibNexavar2005DNP 1945S
vismodegibErivedge2012I 473491 S
zoledronic acidZometa2000DNP 1424S
alectinib hydrochlorideAlecensa2014DT 51(1)56S/NM
anastrozoleArimidex1995ARMC 31338S/NM
apatinib mesylateAitan2014DT 51(1)56S/NM
bicalutamideCasodex1995ARMC 31338S/NM
bortezomibVelcade2003ARMC 39345S/NM
camostat mesylateFoipan1985ARMC 21325S/NM
ceritinibZykadia2014DT 51(1)55S/NM
dasatinibSprycel2006DNP 2027S/NM
enzalutamideXtandi2012I 438422 S/NM
erlotinib hydrochlorideTarceva2004ARMC 40454S/NM
fadrozole HClAfema1995ARMC 31342S/NM
gefitinibIressa2002ARMC 38358S/NM
imatinib mesilateGleevec2001DNP 1538S/NM
lapatinib ditosylateTykerb2007ARMC 43475S/NM
letrazoleFemara1996ARMC 32311S/NM
nilotinib hydrochlorideTasigna2007ARMC 43480S/NM
pazopanibVotrient2009DNP 2318S/NM
sunitinib malateSutent2006DNP 2027S/NM
temoporfinFoscan2002I 158118 S/NM
toremifeneFareston1989ARMC 25319S/NM
azacytidineVidaza2004ARMC 40447S*
capecitabineXeloda1998ARMC 34319S*
carmofurMifurol1981I 091100 S*
clofarabineClolar2005DNP 1944S*
decitabineDacogen2006DNP 2027S*
doxifluridineFurtulon1987ARMC 23332S*
enocitabineSunrabin1983ARMC 19318S*
fludarabine phosphateFludara1991ARMC 27327S*
gemcitabine HClGemzar1995ARMC 31344S*
mitoxantrone HCINovantrone1984ARMC 20321S*
nelarabineArranon2006ARMC 42528S*
pixantrone dimaleatePixuri2012I 197776 S*
tipiracil hydrochlorideLonsurf2014DT 51(1)58S*
abarelixPlenaxis2004ARMC 40446S*/NM
afatinibGilotrif2013DT 50(1)69S*/NM
axitinibInlyta2012I 38296 S*/NM
belinostatBeleodaq2014DT 51(1)56S*/NM
bexaroteneTargretine2000DNP 1423S*/NM
bosutinibBosulif2012I 301996 S*/NM
cabozantinib S-malateCometriq2012I 379934 S*/NM
crizotinibXalkori2011DT 48(1)45S*/NM
dabrafenib mesilateTafinlar2013DT 50(1)69S*/NM
degarelixFirmagon2009DNP 2216S*/NM
ibrutinibImbruvica2013DT 50(1)71S*/NM
idelalisibZydelig2014DT 51(1)54S*/NM
pemetrexed disodiumAlimta2004ARMC 40463S*/NM
ponatinibIclusig2013DT 50(1)70S*/NM
radotinibSupect2012I 395674 S*/NM
raltiterxedTomudex1996ARMC 32315S*/NM
regorafenibStivarga2012I 395674 S*/NM
ruxolitinib phosphateJakafi2011DT 48(1)47S*/NM
tamibaroteneAmnoid2005DNP 1945S*/NM
temozolomideTemodal1999ARMC 35350S*/NM
trametinib DMSOMekinist2013DT 50(1)69S*/NM
vandetanibCaprelsa2011DT 48(1)45S*/NM
vemurafenibZeboraf2011DT 48(1)45S*/NM
vorinostatZolinza2006DNP 2027S*/NM
 Cervarix2007I 309201 V
autologous tumor cell-BCGOncoVAX2008DNP 2217V
bcg liveTheraCys1990DNP 04104V
melanoma theraccineMelacine2001DNP 1538V
vitespenOncophage2008DNP 2217V
Table 10. All Anticancer Drugs (Late 1930s to 12/31/2014) Organized Alphabetically by Generic Name within Source
generic nameyear introducedreferencepagesource
131I-chTNT2007I 393351 B
alemtuzumab2001DNP 1538B
aldesleukin1992ARMC 25314B
bevacizumab2004ARMC 40450B
catumaxomab2009DNP 2318B
celmoleukin1992DNP 06102B
cetuximab2003ARMC 39346B
denileukin diftitox1999ARMC 35338B
H-1012005DNP 1946B
ibritumomab2002ARMC 38359B
interferon alfa2a1986I 204503 B
interferon, gamma-1a1992ARMC 28332B
interleukin-21989ARMC 25314B
ipilimumab2011DT 48(1)45B
mobenakin1999ARMC 35345B
mogamulizumab2012I 433141 B
nimotuzumab2006DNP 2029B
nivolumab2014DT 51(1)56B
obinutuzumab2013DT 50(1)70B
ofatumumab2009DNP 2318B
panitumumab2006DNP 2028B
pegaspargase1994ARMC 30306B
pembrolizumab2014DT 51(1)56B
pertuzumab2012I 300439 B
racotumomab2013DT 50(1)72B
ramucirumab2014DT 51(1)55B
Rexin-G (trade name)2007I 346431 B
rituximab1997DNP 1125B
sipuleucel-T2010I 259673 B
tasonermin1999ARMC 35349B
teceleukin1992DNP 06102B
tositumomab2003ARMC 39364B
trastuzumab1998DNP 1235B
PICN (Trade Name)2014DT 51(1)58N
aclarubicin1981I 090013 N
actinomycin D1964FDA N
angiotensin II1994ARMC 30296N
arglabin1999ARMC 35335N
asparaginase1969FDA N
bleomycin1966FDA N
carzinophilin1954Japan Antibiotics N
chromomycin A31961Japan Antibiotics N
daunomycin1967FDA N
doxorubicin1966FDA N
homoharringtonine2012I 090682 N
ingenol mebutate2012I 328987 N
leucovorin1950FDA N
masoprocol1992ARMC 28333N
mithramycin1961FDA N
mitomycin C1956FDA N
neocarzinostatin1976Japan Antibiotics N
paclitaxel1993ARMC 29342N
paclitaxel nanopart (Abraxane)2005DNP 1945N
paclitaxel nanopart (Nanoxel)2007I 422122 N
paclitaxel nanopart (Genexol-PM)2007I 811264 N
pentostatin1992ARMC 28334N
peplomycin1981I 090889 N
romidepsin2010DNP 2318N
sarkomycin1954FDA N
streptozocinpre-1977Carter N
testosteronepre-1970Cole N
trabectedin2007ARMC 43492N
vinblastine1965FDA N
vincristine1963FDA N
solamargines1989DNP 0325NB
abiratenone acetate2011DT 48(1)44ND
alitretinoin1999ARMC 35333ND
aminolevulinic-CO2CH32001DNP 1534ND
amrubicin HCl2002ARMC 38349ND
belotecan hydrochloride2004ARMC 40449ND
bf-200 ala2012I 431098 ND
brentuximab vedotin2011DT 48(1)45ND
cabazitaxel2010I 287186 ND
calusterone1973FDA ND
carfilzomib2012I 413092 ND
cladribine1993ARMC 29335ND
cytarabine ocfosfate1993ARMC 29335ND
dexamethasone1958FDA ND
docetaxel1995ARMC 31341ND
dromostanolone1961FDA ND
elliptinium acetate1983P091123 ND
epirubicin HCI1984ARMC 20318ND
eribulin2010I 287199 ND
estramustine1980FDA ND
ethinyl estradiolpre-1970Cole ND
etoposide1980FDA ND
etoposide phosphate1996DNP 1013ND
exemestane1999DNP 1346ND
fluoxymesteronepre-1970Cole ND
formestane1993ARMC 29337ND
fosfestrolpre-1977Carter ND
fulvestrant2002ARMC 38357ND
gemtuzumab ozogamicin2000DNP 1423ND
hexyl aminolevulinate2004I 300211 ND
histrelin2004I 109865 ND
hydroxyprogesteronepre-1970Cole ND
idarubicin hydrochloride1990ARMC 26303ND
irinotecan hydrochloride1994ARMC 30301ND
ixabepilone2007ARMC 43473ND
medroxyprogesterone acetate1958FDA ND
megesterol acetate1971FDA ND
methylprednisolone1955FDA ND
methyltestosterone1974FDA ND
mifamurtide2010DNP 2318ND
miltefosine1993ARMC 29340ND
mitobronitol1979FDA ND
nadrolone phenylpropionate1959FDA ND
norethindrone acetatepre-1977Carter ND
pirarubicin1988ARMC 24309ND
pralatrexate2009DNP 2318ND
prednisolonepre-1977Carter ND
prednisonepre-1970Cole ND
talaporfin sodium2004ARMC 40469ND
temsirolimus2007ARMC 43490ND
teniposide1967FDA ND
testolactone1969FDA ND
topotecan HCl1996ARMC 32320ND
trastuzumab emtansine2013DT 50(1)69ND
triamcinolone1958FDA ND
triptorelin1986I 090485 ND
valrubicin1999ARMC 35350ND
vapreotide acetate2004I 135014 ND
vindesine1979FDA ND
vinflunine2010I 219585 ND
vinorelbine1989ARMC 25320ND
zinostatin stimalamer1994ARMC 30313ND
amsacrine1987ARMC 23327S
arsenic trioxide2000DNP 1423S
bisantrene hydrochloride1990ARMC 26300S
busulfan1954FDA S
carboplatin1986ARMC 22318S
carmustine (BCNU)1977FDA S
chlorambucil1956FDA S
chlortrianisenepre-1981Boyd S
cis-diamminedichloroplatinum1979FDA S
cyclophosphamide1957FDA S
dacarbazine1975FDA S
diethylstilbestrolpre-1970Cole S
flutamide1983ARMC 19318S
fotemustine1989ARMC 25313S
heptaplatin/SK-2053R1999ARMC 35348S
hexamethylmelamine1979FDA S
hydroxyurea1968FDA S
ifosfamide1976FDA S
levamisolepre-1981Boyd S
lobaplatin1998DNP 1235S
lomustine (CCNU)1976FDA S
lonidamine1987ARMC 23337S
mechlorethanamine1958FDA S
melphalan1961FDA S
miriplatin hydrate2010DNP 2317S
mitotane1970FDA S
nedaplatin1995ARMC 31347S
nilutamide1987ARMC 23338S
nimustine hydrochloridepre-1981Boyd S
oxaliplatin1996ARMC 32313S
pamidronate1987ARMC 23326S
pipobroman1966FDA S
plerixafor hydrochloride2009DNP 2217S
porfimer sodium1993ARMC 29343S
procarbazine1969FDA S
ranimustine1987ARMC 23341S
razoxanepre-1977Carter S
semustine (MCCNU)pre-1977Carter S
sobuzoxane1994ARMC 30310S
sorafenib2005DNP 1945S
thiotepa1959FDA S
triethylenemelaminepre-1981Boyd S
zoledronic acid2000DNP 1424S
alectinib hydrochloride2014DT 51(1)56S/NM
anastrozole1995ARMC 31338S/NM
apatinib mesylate2014DT 51(1)56S/NM
bicalutamide1995ARMC 31338S/NM
bortezomib2003ARMC 39345S/NM
camostat mesylate1985ARMC 21325S/NM
dasatinib2006DNP 2027S/NM
enzalutamide2012I 438422 S/NM
erlotinib hydrochloride2004ARMC 40454S/NM
fadrozole HCl1995ARMC 31342S/NM
gefitinib2002ARMC 38358S/NM
imatinib mesilate2001DNP 1538S/NM
lapatinib ditosylate2007ARMC 43475S/NM
letrazole1996ARMC 32311S/NM
nafoxidinepre-1977Carter S/NM
nilotinib hydrochloride2007ARMC 43480S/NM
pazopanib2009DNP 2318S/NM
sunitinib malate2006DNP 2027S/NM
tamoxifen1973FDA S/NM
temoporfin2002I 158118 S/NM
toremifene1989ARMC 25319S/NM
aminoglutethimide1981(?)FDA S*
azacytidine2004ARMC 40447S*
capecitabine1998ARMC 34319S*
carmofur1981I 091100 S*
clofarabine2005DNP 1944S*
cytosine arabinoside1969FDA S*
decitabine2006DNP 2027S*
doxifluridine1987ARMC 23332S*
enocitabine1983ARMC 19318S*
floxuridine1971FDA S*
fludarabine phosphate1991ARMC 27327S*
fluorouracil1962FDA S*
ftorafur1972FDA S*
gemcitabine HCl1995ARMC 31344S*
mercaptopurine1953FDA S*
methotrexate1954FDA S*
mitoxantrone HCI1984ARMC 20321S*
nelarabine2006ARMC 42528S*
pixantrone dimaleate2012I 197776 S*
thioguanine1966FDA S*
tipiracil hydrochloride2014DT 51(1)58S*
uracil mustard1966FDA S*
abarelix2004ARMC 40446S*/NM
afatinib2013DT 50(1)69S*/NM
axitinib2012I 38296 S*/NM
belinostat2014DT 51(1)56S*/NM
bexarotene2000DNP 1423S*/NM
bosutinib2012I 301996 S*/NM
cabozantinib S-malate2012I 301996 S*/NM
crizotinib2012I 379934 S*/NM
dabrafenib mesilate2011DT 48(1)45S*/NM
degarelix2009DNP 2216S*/NM
ibrutinib2013DT 50(1)71S*/NM
idelalisib2014DT 51(1)54S*/NM
pemetrexed disodium2004ARMC 40463S*/NM
ponatinib2013DT 50(1)70S*/NM
radotinib2012I 395674 S*/NM
raltiterxed1996ARMC 32315S*/NM
regorafenib2012I 395674 S*/NM
ruxolitinib phosphate2011DT 48(1)47S*/NM
tamibarotene2005DNP 1945S*/NM
Temozolomide1999ARMC 35350S*/NM
trametinib DMSO2013DT 50(1)69S*/NM
vandetanib2011DT 48(1)45S*/NM
vemurafenib2011DT 48(1)45S*/NM
vorinostat2006DNP 2027S*/NM
autologous tumor cell-BCG2008DNP 2217V
bcg live1990DNP 04104V
Cervarix (trade name)2007I 309201 V
melanoma theraccine2001DNP 1538V
vitespen2008DNP 2217V
Table 11. Antidiabetic Drugs from 01.01.1981 to 12.31.2014 Organized Alphabetically by Generic Name within Source/Year
generic nametrade nameyear introducedvolumepagesource
isophane insulinHumulin N1982I 091583 B
porcine isophane insulinPork Insulatard1982I 302757 B
human insulin Zn suspensionHumulin L1985I 302828 B
human insulin zinc suspensionHumulin Zn1985I 091584 B
soluble insulinVelosulin BR1986I 091581 B
human neutral insulinNovolin R1991I 182551 B
hu neutral insulinInsuman1992I 255451 B
mecaserminSomazon1994DNP 0828B
insulin lisproHumalog1996ARMC 32310B
porcine neutral insulinPork Actrapid1998I 302749 B
insulin aspartNovoRapid1999DNP 1341B
insulin glargineLantus2000DNP 1419B
insulin aspart/IA protamineNovoMix 302001DNP 1534B
insulin determirLevemir2004DNP 1827B
insulin glulisineApidra2005DNP 1939B
oral insulinOral-lyn2005DNP 1939B
pulmonary insulinExubera2006DNP 2023B
insulin degludec/insulin asparDegludecPlus2012I 419438 B
insulin degludecDegludec2012I 470782 B
pulmonary insulinAfrezza2014DT 51(1)45B
albiglutideEperzan2014DT 51(1)45B
dulaglutideTrulicity2014DT 51(1)45B
vogliboseBasen1994ARMC 30313N
acarboseGlucobay1990DNP 0323ND
miglitolDiastabol1998ARMC 34325ND
extenatideByetta2005DNP 1940ND
triproamylin acetateNormylin2005DNP 1940ND
liraglutideVictoza2009DNP 2313ND
lixisenatideLyxumia2013DT 50(1)60ND
glimepirideAmaryl1995ARMC 31344S
repaglinidePrandin1998ARMC 34329S
pioglitazone NClActos1999ARMC 35346S
mitiglinide calcium hydrateGlufast2004ARMC 40460S
epalrestatKinedak1992ARMC 28330S/NM
troglitazoneRezulin1997ARMC 33344S/NM
rosiglitazone maleateAvandia1999ARMC 35348S/NM
sitagliptinJanuvia2006DNP 2023S/NM
vildagliptinGalvus2007ARMC 43494S/NM
saxagliptinOnglyza2009DNP 2313S/NM
alogliptin benzoateNesina2010I 405286 S/NM
linagliptinTradjenta2011DT 48(1)39S/NM
teneligliptin hydrobromideTenelia2012I 343981 S/NM
anagliptinSuiny2012I 426247 S/NM
tolrestatAlredase1989ARMC 25319S/NM
nateglinideStarsis1999ARMC 35344S*
dapagliflozinForxiga2012I 356099 S*/NM
canagliflozinInvokana2013DT 50(1)60S*/NM
empagliflozinJardiance2014DT 51(1)45S*/NM
ipragliflozin prolineSuglat2014DT 51(1)45S*/NM
tofogliflozinApleway2014DT 51(1)45S*/NM
luseogliflozinLusefi2014DT 51(1)45S*/NM

Disease Area Breakdowns

It should be noted before proceeding with this and subsequent sections that we altered some of the “disease nomenclature terminology”, for example, rolling in all antidiabetic treatments under one category rather than subdividing into types 1 and 2. Thus, a direct comparison of Table 2 in this review with its predecessor tables needs to take such modifications into account. Inspection of Table 2 demonstrates that, overall, the major disease areas that have been investigated (in terms of numbers of drugs approved) in the pharmaceutical industry continue to be infectious diseases (microbial, parasitic, and viral), cancer, hypertension, antidiabetic, and inflammation, all with over 50 approved drug therapies. It should be noted, however, that the numbers of approved drugs/disease do not correlate with the “value” as measured by sales. For example, the best-selling drug of all at the moment is atorvastatin (Lipitor), a hypocholesterolemic descended directly from a microbial natural product, which sold over (U.S.) $11 billion in 2004, and, if one includes sales by Pfizer and Astellas Pharma over the 2004 to 2014 time frames, sales have hovered in the range (U.S.) $12–14 billion depending upon the year. However, this figure is almost sure to be eclipsed in short order by the new drugs approved for hepatitis C treatments such as sofosbuvir (14), which is a masked nucleotide, but is currently classified by us as an “S*”, although it is obviously based upon an NP scaffold.

Anti-infectives in General

This is the major category by far including antiviral vaccines, with 326 (25%) of the total drug entities (1328 for indications ≥4; Table 2) falling into this one major human disease area. On further analysis (Tables 7 and 8), the influence of biologicals and vaccines in this disease complex is such that only 22% are synthetic in origin (Table 7). If one considers only small molecules (reducing the total by 105 to 221; Table 8), then the synthetic figure goes up to 33%, marginally greater than in our 2012 report. (4) As reported previously, (1-4) these synthetic drugs tend to be of two basic chemotypes, the azole-based antifungals and the quinolone-based antibacterials.

Anitbacterial Agents

Nine small-molecule drugs were approved in the antibacterial area from January 2011 to December 2014. One, fidaxomycin (15), was classified as an “N”; four were classified as “ND”, with the first, ceftaroline (16), being a semisynthetic cephalosporin, the second being another cephalosporin derivative, cetolozane (17a) in combination with the well-known β-lactamase inhibitor tazobactam (17b); the third was the modified glycopeptide dalvabancin (18); and the fourth was another of this class, oritavancin (19). The two synthetic molecules included the first novel anti-TB scaffold for many years, bedaquiline (20), and another “floxacin”, finafloxacin (21). Overall, in the antibacterial area, as shown in Table 7, small molecules account for 112 agents, with “N” and “ND” compounds accounting for just over 73% of the approved agents.
What should make biomedical scientists and physicians involved in antibacterial research in academia or industry very nervous is the recent report from Liu et al., (124) in the journal Lancet Infectious Disease in the middle of November 2015, where they reported that the class of compounds used effectively as the last resort (the peptidic colistins) now have a resistance determinant known as mcr-1 appearing in microbes in treated patients and animals.

Chart 3

Antifungal Agents

In this area, two drugs were approved in the 2011 to 2014 time frame. These were two synthetic compounds, one the azole antifungal efinaconazole (22) ,and the other, tavaborole (23), is the first example of this novel skeleton containing boron. It should be noted, however, that a natural product, boromycin, a complex macrolide first isolated from Streptomyces antibioticus, was reported by the Zahner group (125) in 1967 with antibacterial activity, and then in 1996, it was reisolated by Kohno et al. (126) as an anti-HIV agent from an unspeciated streptomycete. Its probable mode of action is as a specialized ionophore. In contrast to the antibacterial agents, the majority of antifungal agents in the years from 1981 to 2014 are synthetic in origin, as can be seen from inspection of Table 8, with 28 of the 31 approved drugs (90%) being classified as other than natural product based. The paucity of natural product sources can be seen in the modern treatment regimens that still use agents such as amphotericin and griseofulvin, which are both listed in the Integrity database as being launched in 1958.

Antiviral Drugs

In this area, as mentioned earlier, a significant number of the agents are vaccines, predominately directed against various serotypes of influenza, as would be expected from the avian flu outbreaks. In the time frame 2011 to 2014, and looking only at small molecules, 16 drugs were approved for basically two viral diseases, HIV, as would be expected, and hepatitis C (HCV), with drugs directed against specific RNA polymerases and HCV proteases. There were no drugs formally from the “N*” categories, but eight fell into the “S*” or “S*/NM” classifications. In 2011, two “S*/NM” drugs were approved, boceprevir (24) and telaprevir (25), both directed against HCV proteases. None in this classification were approved in 2012. However, as mentioned above, in 2013 one “S*” drug, sofosbuvir (14), was approved for use against HCV. This particular drug, a “masked nucleotide”, has the potential to become the best-selling drug of all time, as it currently is the only drug that cures HCV infections in roughly two months. However, its current nominal cost for this treatment is close to $90 000 per patient. The only other curative treatment for patients with HCV once a severe stage is reached is a liver transplant. Also in the same year, the “S*/NM” classified drug simeprevir (26) was approved and acts against HCV proteases.
In 2014, however, there was a relative flood of approvals including one very unusual action by the FDA. The outlier, before this action is covered, was the approval of the anti-influenza small-molecule drug favipiravir (27). In 2014, the FDA approved a combination therapy known as Viekira Pak against HCV proteases. Normally, this combination therapy would not have been included in the listings, but in this case, the FDA effectively approved two clinical candidates, ombitasvir (28), then in phase II, and paritaprevir (29), then in phase III, in a combination with the 1996-approved drug ritonavir (30), also a compound falling into the “S*/NM” classification. Finally, under this category, the HCV protease inhibitor vaniprevir (31) was also approved in 2014.

Chart 4

If we now move to the synthetic area for the time period 2011 to 2014, there were five drugs in the “S” classification and three in the “S/NM” classification. In the “S” classification, there was one approval in 2011 of rilpivirine (32), a reverse-transcriptase inhibitor, and none in 2012, but in 2013 there were two drugs approved as HIV integrase inhibitors, dolutegravir (33) and elvitegravir (34). Then, in 2014, two more anti-HCV drugs, daclatasvir (35) and dasabuvir (36), were approved. Under the “S/NM” classification, three drugs were approved, none in 2011 and 2012, one [cobicistat (37)] in 2013 as an HIV protease inhibitor, and then two anti-HCV drugs in 2014, asunaprevir (38) and ledipasvir (39). The latter drug is unusual in that it is part of a combination therapy with sofosbuvir (14) under the trade name Harvoni and thus may be in direct competition with the earlier drug.

Chart 5

To sum up, in contrast to the antibacterial and antifungal areas, in the antiviral case, as shown in Table 7, small molecules accounted for 64 drugs, with only four (or 6%) in the 34 years of coverage falling into the “ND” category. However, as mentioned earlier, we have consistently placed modified nucleosides, peptidomimetics, etc., into the “S*” or “S*/NM” category. If these are added to the four drugs mentioned above, then the other than synthetic molecules account for 45, or 70% overall.

Disease Areas without Current Natural Product Drugs

As reported in our earlier analyses, (1-4) there are still disease areas where at the present time the available drugs are totally synthetic in origin. These include antihistamines, diuretics, and hypnotics for indications with four or more approved drugs (cf., Table 2), and, as found in the earlier reviews, there are still a substantial number of indications in which there are three or less approved drugs that are also totally synthetic.

Disease Areas with “*/NM” Classified Drugs

As mentioned in our earlier reviews, (2-4) due to the introduction of the “NM” subcategory, indications such as antidepressants, bronchodilators, and cardiotonics now have substantial numbers that, although formally “S” or “S*”, fall into the “S/NM” or “S*/NM” subcategory, as the information in the literature points to their interactions at active sites as competitive inhibitors.

Anticancer Drugs 1981–2014

In this disease area (Table 9), in the time frame covered (01/1981–12/2014) there were 174 NCEs in total, with the number of nonbiologicals, aka small molecules, being 136 (78%), effectively the same percentage as the value of 77% in the last review. (4) Using the total of 136 as being equal to 100%, the breakdown was as follows, with the values from the last review inserted for comparison: “N” (17, 13% {11, 11%}), “NB” (1, 1% {1, 1%}), “ND” (38, 28% {32, 32%}), “S” (23, 17%, {20, 20%}), “S/NM” (20, 15% {16, 16% }), “S*” (13, 10% {11, 11%}), and “S*/NM” (24, 18% {8, 8%}). Thus, using our criteria, only 17% of the total number of small-molecule anticancer drugs were classifiable into the “S” (synthetic) category. Expressed as a proportion of the nonbiologicals/vaccines, then 113 of 136 (83%) were either natural products per se or were based thereon, or mimicked natural products in one form or another.
From a natural products perspective, in the antitumor area there were some significant aspects in the four years from 2011 to 2014. Another nanoparticular, paclitaxel (PICN), was approved in India in 2014 as the fourth variation on this drug delivery approach, and two plant-derived agents, omacetaxine mepesuccinate (homoharringtonine) (40) and ingenol mebutate (41) (as an agent against actinic keratosis, a precancerous condition, that if untreated usually leads to a melanoma), were approved in 2012 by the FDA. The history of homoharringtonine was described by Camp (127) and Kantarjian et al., (128) and that of the diterpenoid ingenol by a number of publications from Baran’s group, (129-131) all showing the levels to which researchers had gone to develop these agents. From an “ND” aspect, abiraterone (132) (42) was approved in 2011 with Adcetris, a dolastatin 10 derivative linked to an anti-CD33 monoclonal, (133, 134) being approved the same year. In 2012, the aminolaevulinic acid conjugate Ameluz was approved for photodynamic therapy, (135) and the same year saw the approval of carfilzomib (136) (43), the proteasome derivative that evolved from the work of Craig Crews (137) at Yale University. Then, in 2013 the maytansine–herceptin linked monoclonal antibody Kadcyla was approved. (138, 139) From the “S*” category, pixantrone (140) (44) was approved in 2012, with the uridine derivative tipiracil (141) (45) approved in 2014. Inspection of Table 9 shows that a significant number of PTKs were also approved in these years, with the numbers being predominately under the “S*/NM” category, although the HDAC inhibitor belinostat (142) (46) also was approved in 2014 and fell into the same category; thus the influence of natural products in the synthetic arena is still obvious.

Chart 6

Anticancer Drugs, Late 1930s to 2014

In this current review, we have continued as in our previous contributions (2-4) to reassess the influence of natural products and their mimics as leads to anticancer drugs from the beginnings of antitumor chemotherapy in the very late 1930s to the early 1940s. Using data from the FDA listings of antitumor drugs, plus our earlier data sources and with help from colleagues based worldwide, we have been able to specify the years in which all but 17 of the 246 drugs listed in Table 10 were approved. We then identified these 17 agents by inspection of three time-relevant textbooks on antitumor treatment, (103-105) and these were added to the overall listings using the names of the lead authors as the source citation.
Inspection of Figure 10 and Table 10 shows that, over the whole category of anticancer drugs approved worldwide, the 246 approved agents can be categorized as follows, with the figures for the 2012 review (4) (n = 206) being included for comparison: “B” (33, 13% {26; 13%}), “N” (30, 12% {27; 13%}), “NB” (1, 1% {1; 1%}), “ND” (62, 25% {57; 28%}), “S” (47, 19% {44; 21%}), “S/NM” (22, 9% {18; 9%}), “S*” (22, 9% {20; 10%}), “S*/NM” (24, 10% {8; 4%}), and “V” (5, 2% {5; 2%}). Removing the high-molecular-weight materials (biologicals and vaccines) reduces the overall number to 207 (100%). If we then use the number of nonsynthetics but include the naturally inspired agents (i.e., “N”, “ND”, “S/NM”, “S*”, “S*/NM”), this number is 160, or 77% of the total small molecules (having removed categories “B”, “NB”, and “V” from the overall total), effectively the same percentage as the 75% figure from the 2012 review. (4) If the two “/NM” categories are also removed, then the figure drops to 114, or 55%, compared to the 60% in our earlier reviews. This can be attributed to the large number of protein kinase inhibitors that fell into the “/SM” classifications in the last four years, thus increasing the denominator for small molecules. Etoposide phosphate and various nanopaticle formulations of Taxol have been included for the sake of completeness. It should again be pointed out that the 17 antitumor drugs shown on the right in Figure 11 are not duplicated in the rest of the bar graph; we simply have not been able to locate accurate data on their initial approval dates.

Small-Molecule Antidiabetic Drugs

In the case of these drugs and looking only at small molecules for both diabetes I and II, the numbers since our last review have increased by 10 to 29 (Table 11). One, lixisentide (47), approved in 2013, fell into the “ND” classification, as it, like extenatide (Byetta), is a derivative of exendin-4. (143) Under the classification “S/NM”, there were three approvals of drugs all targeted at the same enzyme complex, dipeptidyl peptidase IV (DPP-IV). The first was linagliptin (144) (48) in 2011, with the next two in 2012, teneligliptin (145) (49) and anagliptin (146) (50).
However, for “pride of place”, one cannot beat the six sodium-dependent glucose transporter inhibitors (SGLTi’s) that were approved between 2012 and 2014, all falling into the “S*/NM” classification. In 2012, dapagliflozin (147) (51) was approved in the EU; this was followed in 2013 by canagliflozin (148) (12) in the USA. In 2014, there were no less than four drugs launched all directed against this target. In alphabetical order, they were empaglifozin (149) (52) in the EU and the USA almost simultaneously, with the next three, ipragliflozin cocrystallized with l-proline (150) (53), luseogliflozin (151) (54), and tofoglflozin (152) (55), launched in Japan.

Discussion

Click to copy section linkSection link copied!

In contrast to the situation referred to in our previous three reviews, (2-4) the decline or leveling of the output of the R&D programs of the pharmaceutical companies may have begun to turn around when compared to earlier years in the 21st century. The figures for drugs of all types had dropped in 2006 to 40 NCEs launched, of which 19 (48%) were classified in the “other than small molecules”, being in the “B/V” categories.

Increases in Biologicals and Vaccines from 2007

In the eight years 2007–2014 as shown in the bar graph in Figure 2, the corresponding figures are as follows. In 2007, there were 44 NCEs launched, with 18 (41%) classified as “B/V”. In 2008, 38 NCEs were launched, with 14 (37%) classified as “B/V”. In 2009, 42 NCEs were launched, with 18 (43%) classified as “B/V”. Then, in 2010, there was a dip, where only 33 NCEs were launched, with 13 (39%) classified as “B/V”. In 2011, there was an increase of 1 to 34, with 7 (20%) classified as “B/V”; however the proportion of small molecules increased that year, so the divisor increased. In 2012, there was almost a doubling of NCEs to 60, but 25 (42%) fell into the “B/V” categories. This increase in 2012 in approved vaccines was due predominately to “avian influenza” treatments. In 2013, there was a drop to 47 NCEs, with 16 (34%) still attributable to the “B/V” categories. However, in 2014, the trend line for small-molecule NCEs began to move upward again, with 65 NCEs approved, of which 21 (32%) were in the “B/V” categories. Thus, one can see that, overall, of the total of 363 NCEs in these years, 132 (36%) fell into the “B/V” categories. However, as shown in Figure 7, although there were fluctuations in the overall numbers, a reasonable to substantial proportion of all small-molecule NCEs fell into the “N*” category; thus even in these days of advances in immunopharmacology-based treatments, natural-product-based small molecules are still in play.

Potential Sources of Natural Product Skeletons

Although combinatorial chemistry continues to play a major role in the drug development process, as mentioned earlier, it is noteworthy that the trend toward the synthesis of complex natural-product-like libraries has continued. Even including these newer methodologies, we still cannot find other de novo combinatorial compounds approved anywhere in the world than the three compounds (13) referred to earlier, although reliable data are still not available on approvals in Russia and the People’s Republic of China at this time.
A rapid analysis of the small-molecule entities approved from 2011 to 2014 has indicated that there were significant numbers of antitumor, antibacterial, and antifungal agents approved, as mentioned above. The antibacterial compounds were either NPs or based on their skeletons, although, as is now, “the norm” antifungal agents were synthetic in origin.

Genomic Sources of Novel NP Skeletons

If one asks the question “where will novel natural product skeletons come from in the future?”, the answer, we think, is from the massive amounts of genetic information now being amassed from microbial sources. There was always the comment made in previous years that only a very small proportion of the microbial world can be fermented. However, two excellent papers in the last two years have shown that genetic information can be “abstracted” from as yet uncultured microbes from sessile marine organisms. These were the “tour de force” by the Piel group in 2014, demonstrating that 31 of the then 32 known bioactive metabolites from the sponge Theonella swinhoei Y (yellow variant) were produced by a totally novel biochemical mechanism in an as yet uncultured microbe. (153) This was followed a year later by proof in the middle of 2015 from the Sherman group (154) that the source of the approved antitumor drug Yondelis, or Et743, is an as yet uncultured microbe in the tunicate Ecteinascidia turbinata, from which the Et743 complex was first isolated. Does this mean only from invertebrate sources? No, we consider that the information now coming from investigations on free-living microbes from often extreme sources (cold, hot, high pressure, etc.) will also provide novel skeletons for further work. (5, 8-11)
Similarly, if one moves to the plant kingdom, there is now a significant volume of published work that indicates that a fair number of what were thought to be “plant-derived” natural products are in fact produced “in part” and in some cases, such as maytansine, totally (155, 156) by interactions with endophytic microbes, frequently fungi. We currently say “in part” because the evidence for total production only by the isolated microbe is not yet finalized, and one cannot rule out horizontal gene transfer at this moment. However, the recent work by the Oberlies group (157) on the production of silybins by an endophytic fungus from the leaves of the milk thistle Silybum marianum demonstrated that these metabolites were produced by the isolated fungus when supplemented by a sterilized extract from the plant, a supplementation strategy well known in the days of antibiotic discovery but generally not used today by newer investigators studying these types of systems. People interested in this aspect of microbiology should also read the recent article from the Spiteller group demonstrating the production of cyclopeptides by a Fusarium species as “cross-talk” agents in plants, as this demonstrates the type of interaction we are referring to. (158)
Very recently, a series of reviews in the journal Natural Product Reports have further demonstrated the capabilities of modern techniques to help unlock the genomes of both cultivatable and “as yet uncultured” microbes from all sources. These should be read in conjunction with the articles referred to above on microbes isolated from marine invertebrates and plants, since together these aptly demonstrate the new technologies that can be brought to bear on the search for novel scaffolds from nature. (159-162)
In the period since our last review, other authors prominent in the natural product community have also published excellent reviews on natural products as drugs, (163, 164) and these, together with the review by Butler et al., (165) on natural product-based compounds in clinical trials, should also be read in conjunction with this review. In addition there were two very interesting reviews on small molecules, including natural products and close relatives, as protein–protein interaction inhibitors, which we also recommend reading to see how the role of NPs has expanded. (166, 167)
That synthetic chemists are not letting opportunities go by can be seen from the 2014 essay by Nicolaou (168) and a series of papers that cover synthetic approaches to the new drugs from 2009 to 2013. (169-173) It is highly probable that in the near future totally synthetic variations on complex natural products will be part of the therapeutic arsenal used by physicians. One has only to look at the extremely elegant syntheses of complex natural products reported recently by Baran and his co-workers to visualize the potential of coupling very active and interesting natural products with the skills of synthetic chemists in academia and industry. (131)
Two recent papers of interest to drug discovery and development that are quite relevant to the discussion are as follows. The first, which is quite sobering to read, intimates, with data, that the actual productivity of the pharmaceutical industry from a development aspect is lower than is evident from the press releases and other outlets that are often used to demonstrate success. (174) The second may be quite beneficial as far as natural products and/or their derivatives are concerned, as it now appears that phenotypic screening using high-content methodologies may be making a comeback over “targeted screening systems”. (175)
It is often not fully appreciated that the major hurdle in bringing a natural-product-based complex molecule to market is not the isolation, basic semisynthesis, or total synthesis, but the immense supply problems faced by process chemists in translating research laboratory discoveries to commercial items. Some recent examples of how these problems were overcome with natural products or their derivatives are given in a recent short review by one of the present authors. (176)
In this review, as we stated in 2003, 2007, and 2012, (2-4) we have yetagain demonstrated that natural products play a dominant role in the discovery of leads for the development of drugs for the treatment of human diseases. As we mentioned in earlier articles, some of our colleagues argued (though not in press, only in personal conversations at various fora) that the introduction of categories such as “S/NM” and “S*/NM” may well cause an overstatement of the role played by natural products in the drug discovery process. On the contrary, we would still argue that these further serve to illustrate the inspiration provided by Nature to receptive organic chemists in devising ingenious syntheses of structural mimics to compete with Mother Nature’s longstanding substrates. Even if we discount these categories, the continuing and overwhelming contribution of natural products to the expansion of the chemotherapeutic armamentarium is clearly evident, as demonstrated in Figures 6 and 7, and as we stated in our earlier papers, much of Nature’s “treasure trove of small molecules” remains to be explored, particularly from the marine and microbial environments.
To us, a multidisciplinary approach to drug discovery, involving the generation of truly novel molecular diversity from natural product sources, combined with total and combinatorial synthetic methodologies and including the manipulation of biosynthetic pathways, will continue to provide the best solution to the current productivity crisis facing the scientific community engaged in drug discovery and development.
Finally, the award of half of the 2015 Nobel Prize for Physiology or Medicine to Drs. Ŏmura and Campbell for their discovery and development of the avermectin/ivermectin complexes, with the other half being awarded to Prof. Tu for her discovery and development of artemisinin, is truly excellent news for the general public, as they may now begin to understand where these significant drugs were sourced. Two very recent publications cover some of the work that led to the awarding of this Nobel prize. The first by McKerrow (177) is a short description of the work performed by the three scientists, and the second, by Wang et al., (178) demonstrates the multiplicity of targets in the malaria parasite Plasmodium falciparum for artemisinin, none of which would have been recognized but for this agent.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnatprod.5b01055.

  • The drug data set (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • David J. Newman - NIH Special Volunteer, Wayne, Pennsylvania 19087, United States Email: [email protected]
  • Author
    • Gordon M. Cragg - NIH Special Volunteer, Bethesda, Maryland 20814, United States
  • Notes
    The authors declare no competing financial interest.
    No external funding was provided to the authors from any source. All analyses of data were performed subsequent to the formal retirement of the corresponding author from the NCI on January 10, 2015. Both authors, though retired from NCI, are still NIH Special Volunteers.

References

Click to copy section linkSection link copied!

This article references 178 other publications.

  1. 1
    Cragg, G. M.; Newman, D. J.; Snader, K. M. J. Nat. Prod. 1997, 60, 52 60 DOI: 10.1021/np9604893
  2. 2
    Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022 1037 DOI: 10.1021/np030096l
  3. 3
    Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461 477 DOI: 10.1021/np068054v
  4. 4
    Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311 335 DOI: 10.1021/np200906s
  5. 5
    Cragg, G. M.; Newman, D. J. Biochim. Biophys. Acta, Gen. Subj. 2013, 1830, 3670 3695 DOI: 10.1016/j.bbagen.2013.02.008
  6. 6
    Newman, D. J.; Giddings, L.-A. Phytochem. Rev. 2014, 13, 123 137 DOI: 10.1007/s11101-013-9292-6
  7. 7
    Newman, D. J.; Cragg, G. M. In Macrocycles in Drug Discovery; RSC Drug Discovery Series No. 40; Levin, J., Ed.; Royal Society of Chemistry: Cambridge, UK, 2014; pp 1 36.
  8. 8
    Giddings, L.-A.; Newman, D. J. Bioactive Compounds from Terrestrial Extremophiles; Springer: Heidelberg, 2015.
  9. 9
    Giddings, L.-A.; Newman, D. J. Bioactive Compounds from Marine Extremophiles; Springer: Heidelberg, 2015.
  10. 10
    Giddings, L.-A.; Newman, D. J. Bioactive Compounds from Extremophiles, Genomic Studies; Springer: Heidelberg, 2015.
  11. 11
    Newman, D. J.; Cragg, G. M.; Kingston, D. G. I. In The Practice of Medicinal Chemistry, 4th ed.; Wermuth, C. G.; Aldous, D.; Raboisson, P.; Rognan, D., Eds.; Elsevier: Amsterdam, 2015; pp 101 139.
  12. 12
    Pelish, H. E.; Westwood, N. J.; Feng, Y.; Kirchausen, T.; Shair, M. D. J. Am. Chem. Soc. 2001, 123, 6740 6741 DOI: 10.1021/ja016093h
  13. 13
    Spring, D. R. Org. Biomol. Chem. 2003, 1, 3867 3870 DOI: 10.1039/b310752n
  14. 14
    Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46 58 DOI: 10.1002/anie.200300626
  15. 15
    Zhonghong, G.; Reddy, P. T.; Quevillion, S.; Couve-Bonnaire, S.; Ayra, P. Angew. Chem., Int. Ed. 2005, 44, 1366 1368 DOI: 10.1002/anie.200462298
  16. 16
    Dandapani, S.; Marcaurelle, L. A. Curr. Opin. Chem. Biol. 2010, 14, 362 370 DOI: 10.1016/j.cbpa.2010.03.018
  17. 17
    Reayi, A.; Arya, P. Curr. Opin. Chem. Biol. 2005, 9, 240 247 DOI: 10.1016/j.cbpa.2005.04.007
  18. 18
    Keller, T. H.; Pichota, A.; Yin, Z. Curr. Opin. Chem. Biol. 2006, 10, 357 361 DOI: 10.1016/j.cbpa.2006.06.014
  19. 19
    Lipinski, C. A. Drug Discovery Today: Technol. 2004, 1, 337 341 DOI: 10.1016/j.ddtec.2004.11.007
  20. 20
    Macarron, R. Drug Discovery Today 2006, 11, 277 279 DOI: 10.1016/j.drudis.2006.02.001
  21. 21
    Koehn, F. E. MedChemComm 2012, 3, 854 865 DOI: 10.1039/c2md00316c
  22. 22
    Doak, B. C.; Over, B.; Giordanetto, F.; Kihlberg, J. Chem. Biol. 2014, 21, 1115 1142 DOI: 10.1016/j.chembiol.2014.08.013
  23. 23
    Camp, D.; Garavelas, A.; Campitelli, M. J. Nat. Prod. 2015, 78, 1370 1382 DOI: 10.1021/acs.jnatprod.5b00255
  24. 24
    Macarron, R.; Banks, M. N.; Bojanic, D.; Burns, D. J.; Cirovic, D. A.; Garyantes, T.; Green, D. V. S.; Hertzberg, R. P.; Janzen, W. P.; Paslay, J. W.; Schopfer, U.; Sittampalam, G. S. Nat. Rev. Drug Discovery 2011, 10, 188 195 DOI: 10.1038/nrd3368
  25. 25
    Macarron, R. Nat. Chem. Biol. 2015, 11, 904 905 DOI: 10.1038/nchembio.1937
  26. 26
    Wassermann, A. M.; Lounkine, E.; Hoepfner, D.; Le Goff, G.; King, F. J.; Studer, C.; Peltier, J. M.; Grippo, M. L.; Prindle, V.; Tao, J.; Schuffenhauer, A.; Wallace, I. M.; Chen, S.; Krastel, P.; Cobos-Correa, A.; Parker, C. N.; Davies, J. W.; Glick, M. Nat. Chem. Biol. 2015, 11, 958 966 DOI: 10.1038/nchembio.1936
  27. 27
    Bisson, J.; McAlpine, J. B.; Friesen, J. B.; Chen, S.-N.; Graham, J.; Pauli, G. F. J. Med. Chem. 2015,  DOI: 10.1021/acs.jmedchem.5b01009
  28. 28
    Baell, J.; Walters, M. A. Nature 2014, 513, 481 483 DOI: 10.1038/513481a
  29. 29
    Erlanson, D. A. J. Med. Chem. 2015, 58, 2088 2090 DOI: 10.1021/acs.jmedchem.5b00294
  30. 30
    Ryan, N. J. Drugs 2014, 74, 1709 1714 DOI: 10.1007/s40265-014-0287-4
  31. 31
    Hoelder, S.; Clarke, P. A.; Workman, P. Mol. Oncol. 2012, 6, 155 176 DOI: 10.1016/j.molonc.2012.02.004
  32. 32
    Bergmann, W.; Feeney, R. J. J. Am. Chem. Soc. 1950, 72, 2809 2810 DOI: 10.1021/ja01162a543
  33. 33
    Bergmann, W.; Feeney, R. J. J. Org. Chem. 1951, 16, 981 987 DOI: 10.1021/jo01146a023
  34. 34
    Bergmann, W.; Burke, D. C. J. Org. Chem. 1955, 20, 1501 1507 DOI: 10.1021/jo01128a007
  35. 35
    Bertin, M. J.; Schwartz, S. L.; Lee, J.; Korobeynikov, A.; Dorrestein, P. C.; Gerwick, L.; Gerwick, W. H. J. Nat. Prod. 2015, 78, 493 499 DOI: 10.1021/np5009762
  36. 36
    Szychowski, J.; Truchon, J.-F.; Bennani, Y. L. J. Med. Chem. 2014, 57, 9292 9308 DOI: 10.1021/jm500941m
  37. 37
    Bathula, S. R.; Akondi, S. M.; Mainkar, P. S.; Chandrasekhar, S. Org. Biomol. Chem. 2015, 13, 6432 6448 DOI: 10.1039/C5OB00403A
  38. 38
    Thaker, M. N.; Wright, G. D. ACS Synth. Biol. 2015, 4, 195 206 DOI: 10.1021/sb300092n
  39. 39
    Stockdale, T. P.; Williams, C. M. Chem. Soc. Rev. 2015, 44, 7737 7763 DOI: 10.1039/C4CS00477A
  40. 40
    Yoganathan, S.; Miller, S. J. J. Med. Chem. 2015, 58, 2367 2377 DOI: 10.1021/jm501872s
  41. 41
    Novaes, L. F. T.; Avila, C. M.; Pelizzaro-Rocha, K. J.; Vendramini-Costa, D. B.; Dias, M. P.; Trivella, D. B. B.; de Carvalho, J. E.; Ferreira-Halder, C. V.; Pilli, R. A. ChemMedChem 2015, 10, 1687 1699 DOI: 10.1002/cmdc.201500246
  42. 42
    Nicolaou, K. C. Chem. Biol. 2014, 21, 1039 1045 DOI: 10.1016/j.chembiol.2014.07.020
  43. 43
    Allen, R. C. In Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1984; Vol. 19, pp 313 326.
  44. 44
    Allen, R. C. In Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1985; Vol. 20, pp 315 325.
  45. 45
    Allen, R. C. In Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1986; Vol. 21, pp 323 335.
  46. 46
    Allen, R. C. In Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1987; Vol. 22, pp 315 330.
  47. 47
    Ong, H. H.; Allen, R. C. In Annual Reports in Medicinal Chemistry; Allen, R. C., Ed.; Academic Press: San Diego, 1988; Vol. 23, pp 325 348.
  48. 48
    Ong, H. H.; Allen, R. C. In Annual Reports in Medicinal Chemistry; Allen, R. C., Ed.; Academic Press: San Diego, 1989; Vol. 24, pp 295 315.
  49. 49
    Ong, H. H.; Allen, R. C. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1990; Vol. 25, pp 309 322.
  50. 50
    Strupczewski, J. D.; Ellis, D. B.; Allen, R. C. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1991; Vol. 26, pp 297 313.
  51. 51
    Strupczewski, J. D.; Ellis, D. B. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1992; Vol. 27, pp 321 337.
  52. 52
    Strupczewski, J. D.; Ellis, D. B. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1993; Vol. 28, pp 325 341.
  53. 53
    Cheng, X.-M. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1994; Vol. 29, pp 331 354.
  54. 54
    Cheng, X.-M. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1995; Vol. 30, pp 295 317.
  55. 55
    Cheng, X.-M. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1996; Vol. 31, pp 337 355.
  56. 56
    Galatsis, P. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1997; Vol. 32, pp 305 326.
  57. 57
    Galatsis, P. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1998; Vol. 33, pp 327 353.
  58. 58
    Gaudilliere, B. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: San Diego, 1999; Vol. 34, pp 317 338.
  59. 59
    Gaudilliere, B.; Berna, P. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: San Diego, 2000; Vol. 35, pp 331 355.
  60. 60
    Gaudilliere, B.; Bernardelli, P.; Berna, P. In Annual Reports in Medicinal Chemistry; Doherty, A. M, Ed.; Academic Press: San Diego, 2001; Vol. 36, pp 293 318.
  61. 61
    Bernardelli, P.; Gaudilliere, B.; Vergne, F. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: Amsterdam, 2002; Vol. 37, pp 257 277.
  62. 62
    Boyer-Joubert, C.; Lorthiois, E.; Moreau, F. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: Amsterdam, 2003; Vol. 38, pp 347 374.
  63. 63
    Hegde, S.; Carter, J. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: Amsterdam, 2004; Vol. 39, pp 337 368.
  64. 64
    Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: Amsterdam, 2005; Vol. 40, pp 443 473.
  65. 65
    Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Wood, A., Ed.; Academic Press: Amsterdam, 2006; Vol. 41, pp 439 477.
  66. 66
    Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2007; Vol. 42, pp 505 554.
  67. 67
    Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2008; Vol. 43, pp 455 497.
  68. 68
    Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2009; Vol. 44, pp 577 632.
  69. 69
    Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2010; Vol. 45, pp 467 537.
  70. 70
    Bronson, J.; Dhar, M.; Ewing, W.; Lonberg, N. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2011; Vol. 46, pp 433 502.
  71. 71
    Bronson, J.; Dhar, M.; Ewing, W.; Lonberg, N. In Annual Reports in Medicinal Chemistry; Desai, M. C., Ed.; Academic Press: Amsterdam, 2012; Vol. 47, pp 499 569.
  72. 72
    Bronson, J.; Black, A.; Dhar, T. G. M.; Ellsworth, B. A.; Merritt, J. R. In Annual Reports in Medicinal Chemistry; Desai, M. C., Ed.; Academic Press: Amsterdam, 2013; Vol. 48, pp 471 546.
  73. 73
    Bronson, J.; Black, A.; Dhar, M.; Ellsworth, B.; Merritt, J. R. In Annual Reports in Medicinal Chemistry; Desai, M. C., Ed.; Academic Press: Amsterdam, 2014; Vol. 49, pp 437 508.
  74. 74
    Bronson, J.; Black, A.; Dhar, M.; Ellsworth, B. A.; Merritt, J. R.; Peese, K.; Pashine, A. In 2015 Medicinal Chemistry Reviews; Desai, M. C., Ed.; Medicinal Chemistry Division ACS: Washington DC, 2015; Vol. 50, pp 461 576.
  75. 75
    Prous, J. R. Drug News Persp. 1990, 3, 19 29
  76. 76
    Prous, J. R. Drug News Persp. 1991, 4, 96 109
  77. 77
    Prous, J. R. Drug News Persp. 1992, 5, 93 101
  78. 78
    Prous, J. R. Drug News Persp. 1993, 6, 95 106
  79. 79
    Prous, J. R. Drug News Persp 1994, 7, 26 36
  80. 80
    Prous, J. R. Drug News Persp. 1995, 8, 24 37
  81. 81
    Prous, J. R. Drug News Persp. 1996, 9, 19 32
  82. 82
    Graul, A. I. Drug News Persp. 1997, 10, 5 18
  83. 83
    Graul, A. I. Drug News Persp. 1998, 11, 15 32
  84. 84
    Graul, A. I. Drug News Persp. 1999, 12, 27 43
  85. 85
    Graul, A. I. Drug News Persp. 2000, 13, 37 53
  86. 86
    Graul, A. I. Drug News Persp. 2001, 14, 12 31
  87. 87
    Graul, A. I. Drug News Persp. 2002, 15, 29 43
  88. 88
    Graul, A. I. Drug News Persp. 2003, 16, 22 39
  89. 89
    Graul, A. I. Drug News Persp. 2004, 17, 43 57
  90. 90
    Graul, A. I.; Prous, J. R. Drug News Persp. 2005, 18, 21 36
  91. 91
    Graul, A. I.; Prous, J. R. Drug News Persp. 2006, 19, 33 53
  92. 92
    Graul, A. I.; Sorbera, L. A.; Bozzo, J.; Serradell, N.; Revel, L.; Prous, J. R. Drug News Persp. 2007, 20, 17 44
  93. 93
    Graul, A. I.; Prous, J. R.; Barrionuevo, M.; Bozzo, J.; Castañer, R.; Cruces, E.; Revel, L.; Rosa, E.; Serradell, N.; Sorbera, L. A. Drug News Persp. 2008, 21, 7 35
  94. 94
    Graul, A. I.; Revel, L.; Barrionuevo, M.; Cruces, E.; Rosa, E.; Vergés, C.; Lupone, B.; Diaz, N.; Castañe, R. Drug News Perspect. 2009, 22, 7 27 DOI: 10.1358/dnp.2009.22.1.1303754
  95. 95
    Graul, A. I.; Sorbera, L. A.; Pina, P.; Tell, M.; Cruces, E.; Rosa, E.; Stringer, M.; Castañer, R.; Revel, L. Drug News Perspect. 2010, 23, 7 36 DOI: 10.1358/dnp.2010.23.1.1440373
  96. 96
    Graul, A. I.; Cruces, E. Drugs Today 2011, 47, 27 51 DOI: 10.1358/dot.2011.47.1.1587820
  97. 97
    Graul, A. I.; Cruces, E.; Dulsat, C.; Arias, E.; Stringer, M. Drugs Today 2012, 48, 33 77 DOI: 10.1358/dot.2012.48.1.1769676
  98. 98
    Graul, A. I.; Lupone, B.; Cruces, E.; Stringer, M. Drugs Today 2013, 49, 33 38
  99. 99
    Graul, A. I.; Cruces, E.; Stringer, M. Drugs Today 2014, 50, 51 100 DOI: 10.1358/dot.2014.50.1.2116673
  100. 100
    Graul, A. I.; Navarro, D.; Dulsat, G.; Cruces, E.; Tracy, M. Drugs Today 2014, 50, 133 158 DOI: 10.1358/dot.2014.50.2.2122810
  101. 101
    Graul, A. I.; Stringer, M. Drugs Today 2015, 51, 37 87 DOI: 10.1358/dot.2015.51.1.2279964
  102. 102
    Newman, D. J.; Cragg, G. M.; O’Keefe, B. R. In Modern Biopharmaceuticals, Design, Development and Optimization; Knablein, J., Ed.; Wiley-VCH: Weinheim, 2005; Vol. 2, pp 451 496.
  103. 103
    Boyd, M. R. In Current Therapy in Oncology; Neiderhuber, J., Ed.; Decker: Philadelphia, 1993; pp 11 22.
  104. 104
    Cole, W. H. Chemotherapy of Cancer; Lea and Febiger: Philadelphia, 1970; p 349.
  105. 105
    Sweetman, S. C. Martindale, The Complete Drug Reference, 33rd ed.; The Pharmaceutical Press: London, 2002.
  106. 106
    Fabbro, D.; Cowan-Jacob, S. W.; Moebitz, H. Br. J. Pharmacol. 2015, 172, 2675 2700 DOI: 10.1111/bph.13096
  107. 107
    Fabbro, D.; Ruetz, S.; Buchdunger, E.; Cowan-Jacob, S. W.; Fendrich, G.; Liebtanz, J.; Mestan, J.; O’Reilly, T.; Traxler, P.; Chaudhuri, B.; Fretz, H.; Zimmermann, J.; Meyer, T.; Caravatti, G.; Furet, P.; Manley, P. W. Pharmacol. Ther. 2002, 93, 79 98 DOI: 10.1016/S0163-7258(02)00179-1
  108. 108
    Vijayan, R. S. K.; He, P.; Modi, V.; Duong-Ly, K. C.; Ma, H.; Peterson, J. R.; Dunbrack, J. R. L.; Levy, R. M. J. Med. Chem. 2015, 58, 466 479 DOI: 10.1021/jm501603h
  109. 109
    Tiligada, E.; Ishii, M.; Riccardi, C.; Spedding, M.; Simon, H.-U.; Teixeira, M. M.; Cuervo, M. L. C.; Holgate, S. T.; Levi-Schaffer, F. Br. J. Pharmacol. 2015, 172, 4217 4227 DOI: 10.1111/bph.13219
  110. 110
    Evans, B. E.; Rittle, K. E.; Homnick, C. F.; Springer, J. P.; Hirshfield, J.; Veber, D. F. J. Org. Chem. 1985, 50, 4615 4625 DOI: 10.1021/jo00223a037
  111. 111
    DeSolms, S. J.; Giuliani, E. A.; Guare, J. P.; Vacca, J. P.; Sanders, W. M.; Graham, S. L.; Wiggins, J. M.; Darke, P. L.; Sigal, I. S. J. Med. Chem. 1991, 34, 2852 2857 DOI: 10.1021/jm00113a025
  112. 112
    Ripka, A. S.; Rich, D. H. Curr. Opin. Chem. Biol. 1998, 4, 439 452 DOI: 10.1016/S1367-5931(98)80119-1
  113. 113
    Schechter, I.; Berger, A. Biochem. Biophys. Res. Commun. 1967, 27, 157 162 DOI: 10.1016/S0006-291X(67)80055-X
  114. 114
    Rahuel, J.; Rasetti, V.; Maibaum, J.; Rueger, H.; Goschke, R.; Cohen, N.-C.; Stutz, S.; Cumin, F.; Fuhrer, W.; Wood, J. M.; Grutter, M. G. Chem. Biol. 2000, 7, 493 504 DOI: 10.1016/S1074-5521(00)00134-4
  115. 115
    Wood, J. M.; Maibaum, J.; Rahuel, J.; Grutter, M. G.; Cohen, N.-C.; Rasetti, V.; Ruger, H.; Goschke, R.; Stutz, S.; Fuhrer, W.; Schilling, W.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Baum, H.-P.; Schnell, C. R.; Herold, P.; Mah, R.; Jensen, C.; O’Brien, E.; Stanton, A.; Bedigian, M. P. Biochem. Biophys. Res. Commun. 2003, 308, 698 705 DOI: 10.1016/S0006-291X(03)01451-7
  116. 116
    Webb, R. L.; Schiering, N.; Sedrani, R.; Maibaum, J. J. Med. Chem. 2010, 53, 7490 7520 DOI: 10.1021/jm901885s
  117. 117
    Politi, A.; Leonis, G.; Tzoupis, H.; Ntountaniotis, D.; Papadopoulos, M. G.; Grdadolnik, S. G.; Mavromoustakos, T. Mol. Inf. 2011, 30, 973 985 DOI: 10.1002/minf.201100077
  118. 118
    Tzoupis, H.; Leonis, G.; Megariotis, G.; Supuran, C. T.; Mavromoustakos, T.; Papadopoulos, M. G. J. Med. Chem. 2012, 55, 5784 5796 DOI: 10.1021/jm300180r
  119. 119
    Palomo, J. M. RSC Adv. 2014, 4, 32658 32672 DOI: 10.1039/C4RA02458C
  120. 120
    Over, B.; Wetzel, S.; Grutter, C.; Nakai, Y.; Renner, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2013, 5, 21 28 DOI: 10.1038/nchem.1506
  121. 121
    Bauer, A.; Bronstrup, M. Nat. Prod. Rep. 2014, 31, 35 60 DOI: 10.1039/C3NP70058E
  122. 122
    Kuttruff, C. A.; Eastgate, M. D.; Baran, P. S. Nat. Prod. Rep. 2014, 31, 419 432 DOI: 10.1039/C3NP70090A
  123. 123
    Maier, M. E. Org. Biomol. Chem. 2015, 13, 5302 5345 DOI: 10.1039/C5OB00169B
  124. 124
    Liu, Y.-Y.; Wang, Y.; Walsh, T. R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.-F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.-H.; Shen, J. Lancet Infect. Dis. 2015,  DOI: 10.1016/S1473-3099(15)00424-7
  125. 125
    Hütter, R.; Keller-Schien, W.; Knüsel, F.; Prelog, V.; Rodgers, G. C., jr.; Suter, P.; Vogel, G.; Voser, W.; Zähner, H. Helv. Chim. Acta 1967, 50, 1533 1539 DOI: 10.1002/hlca.19670500612
  126. 126
    Kohno, J.; Kawahata, T.; Otake, T.; Morimoto, M.; Mori, H.; Ueba, N.; Nishio, M.; Kinumaki, A.; Komatsubara, S.; Kawashima, K. Biosci., Biotechnol., Biochem. 1996, 60, 1036 1037 DOI: 10.1271/bbb.60.1036
  127. 127
    Camp, D. Drugs Future 2013, 38, 245 256 DOI: 10.1358/dof.2013.038.04.1940442
  128. 128
    Kantarjian, H. M.; O’Brien, S.; Cortes, J. Clin. Lymphoma, Myeloma Leuk. 2013, 13, 530 533 DOI: 10.1016/j.clml.2013.03.017
  129. 129
    Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396 407 DOI: 10.1038/nchembio.2007.1
  130. 130
    McKerrall, S. J.; Jørgensen, L.; Kuttruff, C. A.; Ungeheuer, F.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5799 5810 DOI: 10.1021/ja501881p
  131. 131
    Michaudel, Q.; Ishihara, Y.; Baran, P. S. Acc. Chem. Res. 2015, 48, 712 721 DOI: 10.1021/ar500424a
  132. 132
    Shah, S.; Ryan, C. J. Drugs Future 2009, 34, 873 880 DOI: 10.1358/dof.2009.034.11.1441113
  133. 133
    Doronina, S. O.; Mendelsohn, B. A.; Bovee, T. D.; Cerveny, C. G.; Alley, S. C.; Meyer, D. L.; Oflazoglu, E.; Toki, B. E.; Sanderson, R. J.; Zabinski, R. F.; Wahl, A. F.; Senter, P. D. Bioconjugate Chem. 2006, 17, 114 124 DOI: 10.1021/bc0502917
  134. 134
    Smaglo, B. G.; Aldeghaither, D.; Weiner, L. M. Nat. Rev. Clin. Oncol. 2014, 11, 637 648 DOI: 10.1038/nrclinonc.2014.159
  135. 135
    Tzogani, K.; Straube, M.; Hoppe, U.; Kiely, P.; O’Dea, G.; Enzmann, H.; Salmon, P.; Salmonson, T.; Pignatti, F. J. Dermatol. Treat. 2014, 25, 371 374 DOI: 10.3109/09546634.2013.789474
  136. 136
    Teicher, B. A.; Tomaszewski, J. E. Biochem. Pharmacol. 2015, 96, 1 9 DOI: 10.1016/j.bcp.2015.04.008
  137. 137
    Kim, K. B.; Crews, C. M. Nat. Prod. Rep. 2013, 30, 600 604 DOI: 10.1039/c3np20126k
  138. 138
    Kuemler, I.; Mortensen, C. E.; Nielsen, D. L. Drugs Future 2011, 36, 825 832 DOI: 10.1358/dof.2011.036.11.1711891
  139. 139
    Ansell, S. M. Expert Opin. Invest. Drugs 2011, 20, 99 105 DOI: 10.1517/13543784.2011.542147
  140. 140
    Péan, E.; Flores, B.; Hudson, I.; Sjöberg, J.; Dunder, K.; Salmonson, T.; Gisselbrecht, C.; Laane, E.; Pignatti, F. Oncologist 2013, 18, 625 633 DOI: 10.1634/theoncologist.2013-0020
  141. 141
    Yano, S.; Kazuno, H.; Sato, T.; Suzuki, N.; Emura, T.; Wierzba, K.; Yamashita, J.; Tada, Y.; Yamada, Y.; Fukushima, M.; Asao, T. Bioorg. Med. Chem. 2004, 12, 3443 3450 DOI: 10.1016/j.bmc.2004.04.046
  142. 142
    Lee, H. Z.; Kwitkowski, V. E.; Del Valle, P. L.; Ricci, M. S.; Saber, H.; Habtemariam, B. A.; Bullock, J.; Bloomquist, E.; Li, S. Y.; Chen, X. H.; Brown, J.; Mehrotra, N.; Dorff, S.; Charlab, R.; Kane, R. C.; Kaminskas, E.; Justice, R.; Farrell, A. T.; Pazdur, R. Clin. Cancer Res. 2015, 21, 2666 2670 DOI: 10.1158/1078-0432.CCR-14-3119
  143. 143
    Thorkildsen, C.; Neve, S.; Larsen, B. J.; Meier, E.; Petersen, J. S. J. Pharmacol. Exp. Ther. 2003, 307, 490 496 DOI: 10.1124/jpet.103.051987
  144. 144
    Wang, Y.; Serradell, N.; Rosa, E.; Castaner, R. Drugs Future 2008, 33, 473 477 DOI: 10.1358/dof.2008.033.06.1215244
  145. 145
    Yoshida, T.; Akahoshi, F.; Sakashita, H.; Kitajima, H.; Nakamura, M.; Sonda, S.; Takeuchi, M.; Tanaka, Y.; Ueda, N.; Sekiguchi, S.; Ishige, T.; Shima, K.; Nabeno, M.; Abe, Y.; Anabuki, J.; Soejima, A.; Yoshida, K.; Takashina, Y.; Ishii, S.; Kiuchi, S.; Fukuda, S.; Tsutsumiuchi, R.; Kosaka, K.; Murozono, T.; Nakamaru, Y.; Utsumi, H.; Masutomi, N.; Kishida, H.; Miyaguchi, I.; Hayashi, Y. Bioorg. Med. Chem. 2012, 20, 5705 5719 DOI: 10.1016/j.bmc.2012.08.012
  146. 146
    Kato, N.; Oka, M.; Murase, T.; Yoshida, M.; Sakairi, M.; Yamashita, S.; Yasuda, Y.; Yoshikawa, A.; Hayashi, Y.; Makino, M.; Takeda, M.; Mirensha, Y.; Kakigami, T. Bioorg. Med. Chem. 2011, 19, 7221 7227 DOI: 10.1016/j.bmc.2011.09.043
  147. 147
    Cole, P.; Vicente, M.; Castañer, R. Drugs Future 2008, 33, 745 751 DOI: 10.1358/dof.2008.033.09.1251351
  148. 148
    Chao, E. C. Drugs Future 2011, 36, 351 357 DOI: 10.1358/dof.2011.036.05.1590789
  149. 149
    White, J. R., Jr. Ann. Pharmacother. 2015, 49, 582 598 DOI: 10.1177/1060028015573564
  150. 150
    Imamura, M.; Nakanishi, K.; Suzuki, T.; Ikegai, K.; Shiraki, R.; Ogiyama, T.; Murakami, T.; Kurosaki, E.; Noda, A.; Kobayashi, Y.; Yokota, M.; Koide, T.; Kosakai, K.; Ohkura, Y.; Takeuchi, M.; Tomiyama, H.; Ohta, M. Bioorg. Med. Chem. 2012, 20, 3263 3279 DOI: 10.1016/j.bmc.2012.03.051
  151. 151
    Tiwari, A. Drugs Future 2012, 37, 637 643 DOI: 10.1358/dof.2012.037.09.1848191
  152. 152
    Poole, R. M.; Prossler, J. E. Drugs 2014, 74, 939 944 DOI: 10.1007/s40265-014-0229-1
  153. 153
    Wilson, M. C.; Mori, T.; Rückert, C.; Uria, A. R.; Helf, M. J.; Takada, K.; Gernert, C.; Steffens, U. A. E.; Heycke, N.; Schmitt, S.; Rinke, C.; Helfrich, E. J. N.; Brachmann, A. O.; Gurgui, C.; Wakimoto, T.; Kracht, M.; Crüsemann, M.; Hentschel, U.; Abe, I.; Matsunaga, S.; Kalinowski, J.; Takeyama, H.; Piel, J. Nature 2014, 506, 58 62 DOI: 10.1038/nature12959
  154. 154
    Schofield, M. M.; Jain, S.; Porat, D.; Dick, G. J.; Sherman, D. H. Environ. Microbiol. 2015, 17, 3964 3975 DOI: 10.1111/1462-2920.12908
  155. 155
    Kusari, S.; Lamshöft, M.; Kusari, P.; Gottfried, S.; Zühlke, S.; Louven, K.; Hentschel, U.; Kayser, O.; Spiteller, M. J. Nat. Prod. 2014, 77, 2577 2584 DOI: 10.1021/np500219a
  156. 156
    Kusari, P.; Kusari, S.; Spiteller, M.; Kayser, O. Appl. Microbiol. Biotechnol. 2015, 99, 5383 5390 DOI: 10.1007/s00253-015-6660-8
  157. 157
    El-Elimat, T.; Raja, H. A.; Graf, T. N.; Faeth, S. H.; Cech, N. B.; Oberlies, N. H. J. Nat. Prod. 2014, 77, 193 199 DOI: 10.1021/np400955q
  158. 158
    Wang, W.-X.; Kusari, S.; Sezgin, S.; Lamshöft, M.; Kusari, P.; Kayser, O.; Spiteller, M. Appl. Microbiol. Biotechnol. 2015, 99, 7651 7662 DOI: 10.1007/s00253-015-6653-7
  159. 159
    Luo, Y.; Enghiad, B.; Zhao, H. Nat. Prod. Rep. 2016,  DOI: 10.1039/C5NP00085H
  160. 160
    Mohimani, H.; Pevzner, P. A. Nat. Prod. Rep. 2016, 33, 73 86 DOI: 10.1039/C5NP00050E
  161. 161
    Winn, M.; Fyans, J. K.; Zhuo, Y.; Micklefield, J. Nat. Prod. Rep. 2016,  DOI: 10.1039/C5NP00099H
  162. 162
    Zarins-Tutt, J. S.; Barberi, T. T.; Gao, H.; Mearns-Spragg, A.; Zhang, L.; Newman, D. J.; Goss, R. J. M. Nat. Prod. Rep. 2016, 33, 54 72 DOI: 10.1039/C5NP00111K
  163. 163
    Martinez, J. P.; Sasse, F.; Bronstrup, M.; Diez, J.; Meyerhans, A. Nat. Prod. Rep. 2015, 32, 29 48 DOI: 10.1039/C4NP00085D
  164. 164
    Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. Nat. Rev. Drug Discovery 2015, 14, 111 129 DOI: 10.1038/nrd4510
  165. 165
    Butler, M. S.; Robertson, A. A. B.; Cooper, M. A. Nat. Prod. Rep. 2014, 31, 1612 1661 DOI: 10.1039/C4NP00064A
  166. 166
    Aeluri, M.; Chamakuri, S.; Dasari, B.; Guduru, S. K. R.; Jimmidi, R.; Jogula, S.; Arya, P. Chem. Rev. 2014, 114, 4640 4694 DOI: 10.1021/cr4004049
  167. 167
    Milroy, L.-G.; Grossmann, T. N.; Hennig, S.; Brunsveld, L.; Ottmann, C. Chem. Rev. 2014, 114, 4695 4748 DOI: 10.1021/cr400698c
  168. 168
    Nicolaou, K. C. Angew. Chem., Int. Ed. 2014, 53, 2 15 DOI: 10.1002/anie.201402816
  169. 169
    Liu, K. K.-C.; Sakya, S. M.; O’Donnell, C. J.; Flick, A. C.; Li, J. W.-H. Bioorg. Med. Chem. 2011, 19, 1136 1154 DOI: 10.1016/j.bmc.2010.12.038
  170. 170
    Liu, K. K.-C.; Sakya, S. M.; O’Donnell, C. J.; Flick, A. C.; Ding, H. X. Bioorg. Med. Chem. 2012, 20, 1155 1174 DOI: 10.1016/j.bmc.2011.12.049
  171. 171
    Ding, H. X.; Liu, K. K.-C.; Sakya, S. M.; Flick, A. C.; O’Donnell, C. J. Bioorg. Med. Chem. 2013, 21, 2795 2825 DOI: 10.1016/j.bmc.2013.02.061
  172. 172
    Ding, H. X.; Leverett, C. A.; Kyne, R. E., Jr.; Liu, K. K.-C.; Sakya, S. M.; Flick, A. C.; O’Donnell, C. J. Bioorg. Med. Chem. 2014, 22, 2005 2032 DOI: 10.1016/j.bmc.2014.02.017
  173. 173
    Ding, H. X.; Leverett, C. A.; Kyne, R. E., Jr.; Liu, K. K.-C.; Fink, S. J.; Flick, A. C.; O’Donnell, C. J. Bioorg. Med. Chem. 2015, 23, 1895 1922 DOI: 10.1016/j.bmc.2015.02.056
  174. 174
    Hay, M.; Thomas, D. W.; Craighead, J. L.; Economides, C.; Rosenthal, J. Nat. Biotechnol. 2014, 32, 40 51 DOI: 10.1038/nbt.2786
  175. 175
    Moffat, J. G.; Rudolph, J.; Bailey, D. Nat. Rev. Drug Discovery 2014, 13, 588 602 DOI: 10.1038/nrd4366
  176. 176
    Newman, D. J. Pharmacol. Ther. 2015,  DOI: 10.1016/j.pharmthera.2015.12.002
  177. 177
    McKerrow, J. H. Nat. Prod. Rep. 2015, 32, 1610 1611 DOI: 10.1039/C5NP90043C
  178. 178
    Wang, J.; Zhang, C.-J.; Chia, W. N.; Loh, C. C. Y.; Li, Z.; Lee, Y. M.; He, Y.; Yuan, L.-X.; Lim, T. K.; Liu, M.; Liew, C. X.; Lee, Y. Q.; Zhang, J.; Lu, N.; Lim, C. T.; Hua, Z.-C.; Liu, B.; Shen, H.-M.; Tan, K. S. W.; Lin, Q. Nat. Commun. 2015, 6, 10111 DOI: 10.1038/ncomms10111

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 4515 publications.

  1. Lanfei Ji, Sihao Deng, Jin-Bu Xu, Xiaohuan Li, Steven De Jonghe, Dominique Schols, Feng Gao. Synthesis of Thioloformate-Containing Lathyrane Diterpene Derivates via a [3,3] Sigmatropic Rearrangement and Their Anti-HIV Activity. Journal of Natural Products 2025, Article ASAP.
  2. Jimin Moon, Shinae Kim, Shuanghui Hua, Hyojin Lee, Jungtae Kim, Taeho Lee. Synthesis of a Natural Product-Based 5H-Thiazolo[5′,4′:5,6]pyrido[2,3-b]indole Derivative via Solid-Phase Synthesis. The Journal of Organic Chemistry 2025, 90 (8) , 3078-3086. https://doi.org/10.1021/acs.joc.4c03094
  3. Nathaniel J. Brittin, Josephine M. Anderson, Doug R. Braun, Scott R. Rajski, Cameron R. Currie, Tim S. Bugni. Machine Learning-Based Bioactivity Classification of Natural Products Using LC-MS/MS Metabolomics. Journal of Natural Products 2025, 88 (2) , 361-372. https://doi.org/10.1021/acs.jnatprod.4c01123
  4. Moumita Majhi, Sourav Kundu, Debgopal Jana, Sreyashi Sadhukhan, Alakesh Bisai. Total Synthesis of (+)-7,7′-Bistaxodione via Late-Stage Electrochemical Dimerization. The Journal of Organic Chemistry 2025, 90 (5) , 2077-2092. https://doi.org/10.1021/acs.joc.4c02907
  5. Zi-Chao Wang, Lei Gao, Song-Yang Liu, Peng Wang, Shi-Liang Shi. Facile Access to Quaternary Carbon Centers via Ni-Catalyzed Arylation of Alkenes with Organoborons. Journal of the American Chemical Society 2025, 147 (4) , 3023-3031. https://doi.org/10.1021/jacs.4c17313
  6. Yuan-Ze Xu, Yan Xu, Jianbo Wang. Synthesis of Carboxylic Acids Containing α-All-Carbon Quaternary Centers from Diazo Compounds and Trialkylboranes. The Journal of Organic Chemistry 2025, 90 (1) , 585-597. https://doi.org/10.1021/acs.joc.4c02508
  7. Yuming Wang, Zhou Tong, Jingchun Han, Chuangchuang Li, Xiuping Chen. Exploring Novel Antibiotics by Targeting the GroEL/GroES Chaperonin System. ACS Pharmacology & Translational Science 2025, 8 (1) , 10-20. https://doi.org/10.1021/acsptsci.4c00397
  8. Weiwei Xu, Yanan Sun, Yuqing Jiang, Xueyuan Yan, Zhixuan Gao, Haorui Wang, Genping Huang, Qi-Lin Zhou, Mengchun Ye. Enantioselective Carbonylative Cyclization of Alkenes with C–H Bonds for Synthesis of γ-Lactams Bearing an α-Quaternary Carbon. Journal of the American Chemical Society 2025, 147 (1) , 96-103. https://doi.org/10.1021/jacs.4c15875
  9. Qinlin Chen, Rundong Fan, Xinhao Deng, Jinxiu Chen, Wei Wang, Qiongjiao Yan, Fen-Er Chen. Visible-Light-Induced Markovnikov Hydroalkoxylation of α-Trifluoromethyl Alkenes with ortho-Diketones. The Journal of Organic Chemistry 2024, 89 (24) , 18571-18584. https://doi.org/10.1021/acs.joc.4c02519
  10. Joydip Das. Kratom Alkaloids for the Treatment of Alcohol Use Disorder. ACS Chemical Neuroscience 2024, 15 (24) , 4352-4359. https://doi.org/10.1021/acschemneuro.4c00675
  11. Sandip B. Bharate, (Editorial Advisory Board, Journal of Medicinal Chemistry)Craig W. Lindsley (Editor-in-Chief, Journal of Medicinal Chemistry). Natural Products Driven Medicinal Chemistry. Journal of Medicinal Chemistry 2024, 67 (23) , 20723-20730. https://doi.org/10.1021/acs.jmedchem.4c02736
  12. James G. Graham, Jonathan Bisson, Guy H. Harris, Zaijie Jim Wang, Donald P. Waller, Guido F. Pauli. Natural Products with Potential for the Treatment of Pain: Global Evidence from the NAPRALERT Database. Journal of Natural Products 2024, 87 (11) , 2665-2675. https://doi.org/10.1021/acs.jnatprod.4c00439
  13. Chetana Sanjai, Santosh L. Gaonkar, Sushruta S. Hakkimane. Harnessing Nature’s Toolbox: Naturally Derived Bioactive Compounds in Nanotechnology Enhanced Formulations. ACS Omega 2024, 9 (43) , 43302-43318. https://doi.org/10.1021/acsomega.4c07756
  14. Louisa Tham, Brodie W. Bulcock, Samuele Sala, Gareth L. Nealon, Gavin R. Flematti, Stephen A. Moggach, Matthew J. Piggott. Total Synthesis and Structural Reassignment of the Molt-Inhibiting Marine Alkaloid Erebusinone. Journal of Natural Products 2024, 87 (10) , 2499-2506. https://doi.org/10.1021/acs.jnatprod.4c00973
  15. Arindam Manna, Krishnendu Khamaru, Vijay Babu Pathi, Subhadip Sett, Prasanta Ghosh, Biswadip Banerji. Copper(II)-Mediated Dual Reactivity of 2-(5-Phenylisoxazol-3-yl)aniline: Directed Amination and Oxidative C(═O)─C Cleavage of Amides Enabling Direct Access to Urea Derivatives. Organic Letters 2024, 26 (41) , 8774-8779. https://doi.org/10.1021/acs.orglett.4c03104
  16. Kewei Chen, Chao Li, Shanliang Dong, Kemiao Hong, Jingjing Huang, Xinfang Xu. Gold-Catalyzed Alkyne Oxidative Cyclization/Mannich-Type Addition Cascade Reaction of Ynamides with 1,3,5-Triazinanes. The Journal of Organic Chemistry 2024, 89 (18) , 13623-13628. https://doi.org/10.1021/acs.joc.4c01784
  17. Kwo-Kwang Abraham Wang, Jupneet Singh, John S. Albin, Bradley L. Pentelute, Elizabeth M. Nolan. Class IIb Microcin MccM Interferes with Oxidative Phosphorylation in Escherichia coli. ACS Chemical Biology 2024, 19 (9) , 1953-1962. https://doi.org/10.1021/acschembio.4c00226
  18. Cristina Cuadrado, Francisco Cen-Pacheco, Antonio Hernández Daranas. Computationally Assisted Analysis of NMR Chemical Shifts as a Tool in Conformational Analysis. Organic Letters 2024, 26 (31) , 6529-6534. https://doi.org/10.1021/acs.orglett.4c01642
  19. Zhengyu Han, Yu Xue, Hongling Xie, Peinan Shang, Jianwei Sun, Hai Huang. Type of Tetrahydronaphthalene-Fused 1,5-Dipoles and Their Application in Polycyclic Compounds Synthesis. The Journal of Organic Chemistry 2024, 89 (15) , 10551-10556. https://doi.org/10.1021/acs.joc.4c00774
  20. Abdulrahman M. Eid, Abdallah Selim, Mohamed Khaled, Abdo A. Elfiky. Hybrid Virtual Screening Approach to Predict Novel Natural Compounds against HIV-1 CCR5. The Journal of Physical Chemistry B 2024, 128 (29) , 7086-7101. https://doi.org/10.1021/acs.jpcb.4c02083
  21. Larissa Knierim, Alexander Uhl, Axel Schmidt, Marcel Flemming, Theresa Höß, Jonas Treutwein, Jochen Strube. Pressurized Hot Water Extraction as Green Technology for Natural Products as Key Technology with Regard to Hydrodistillation and Solid–Liquid Extraction. ACS Omega 2024, 9 (29) , 31998-32010. https://doi.org/10.1021/acsomega.4c03771
  22. Kewei Chen, Su Zhou, Chao Li, Shanliang Dong, Kemiao Hong, Xinfang Xu. Enantioselective Construction of Quaternary Stereocenters via A Chiral Spiro Phosphoric Acid-Assisted Formal Gold Carbene gem-Dialkylation Reaction. Journal of the American Chemical Society 2024, 146 (28) , 19261-19270. https://doi.org/10.1021/jacs.4c04540
  23. Muhammad Ilyas, Anwar Ali Shad, Jehan Bakht, Peter Villalta, W. Thomas Shier. Insights into Metabolites Profiling and Pharmacological Investigation of Aconitum heterophyllum wall ex. Royle Stem through Experimental and Bioinformatics Techniques. ACS Omega 2024, 9 (25) , 26922-26940. https://doi.org/10.1021/acsomega.3c09668
  24. Vera P. Demertzidou, Maria Kourgiantaki, Alexandros L. Zografos. Expanding Natural Diversity: Tailored Enrichment of the 8,12-Sesquiterpenoid Lactone Chemical Space through Divergent Synthesis. Organic Letters 2024, 26 (22) , 4648-4653. https://doi.org/10.1021/acs.orglett.4c01374
  25. Samuel A. Bradley, Frederik G. Hansson, Beata J. Lehka, Daniela Rago, Pedro Pinho, Huadong Peng, Khem B. Adhikari, Ahmad K. Haidar, Lea G. Hansen, Daria Volkova, Maxence Holtz, Sergi Muyo Abad, Xin Ma, Konstantinos Koudounas, Sébastien Besseau, Nicolas Gautron, Céline Mélin, Jillian Marc, Caroline Birer Williams, Vincent Courdavault, Emil D. Jensen, Jay D. Keasling, Jie Zhang, Michael K. Jensen. Yeast Platforms for Production and Screening of Bioactive Derivatives of Rauwolscine. ACS Synthetic Biology 2024, 13 (5) , 1498-1512. https://doi.org/10.1021/acssynbio.4c00039
  26. Diksha Manhas, Sumit Dhiman, Harpreet Kour, Dilpreet Kour, Kuhu Sharma, Priya Wazir, Bhavna Vij, Ajay Kumar, Sanghapal D. Sawant, Zabeer Ahmed, Utpal Nandi. ADME/PK Insights of Crocetin: A Molecule Having an Unusual Chemical Structure with Druglike Features. ACS Omega 2024, 9 (19) , 21494-21509. https://doi.org/10.1021/acsomega.4c02116
  27. Tai-Ping Zhou, Jianqiang Feng, Yongchao Wang, Shengying Li, Binju Wang. Substrate Conformational Switch Enables the Stereoselective Dimerization in P450 NascB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. JACS Au 2024, 4 (4) , 1591-1604. https://doi.org/10.1021/jacsau.4c00075
  28. Shihao Cheng, Chenhu Dong, Yujie Ma, Xiaoyu Xu, Yu Zhao. Skeletal Transformations of Terpenoid Forskolin Employing an Oxidative Rearrangement Strategy. The Journal of Organic Chemistry 2024, 89 (8) , 5741-5745. https://doi.org/10.1021/acs.joc.4c00312
  29. David J. Newman. Non-Insulin-Based Drug Entities Used to Treat Diabetes Type 2 Disease (T2DM), Based on Natural Products from All Sources. Journal of Natural Products 2024, 87 (3) , 629-637. https://doi.org/10.1021/acs.jnatprod.3c00886
  30. Quan Fu, Jing Yuan, Tie-Hua Yang, Jin-Hao Su, Jing-Jing Zhang, Xue-Wen Wu, Hong-Ye Zhang, Wei-Lie Xiao, Chang-Bo Zheng, Xiao-Li Li. Protoilludane-Type and Related Nor-Sesquiterpenes from Phellinus hartigii and Their Anti-Hypertrophic Activities in Rat Cardiomyocytes. Journal of Natural Products 2024, 87 (2) , 297-303. https://doi.org/10.1021/acs.jnatprod.3c00985
  31. Yi Lien, Jake C. Lachowicz, Aigera Mendauletova, Cynthia Zizola, Thacien Ngendahimana, Anastasiia Kostenko, Sandra S. Eaton, John A. Latham, Tyler L. Grove. Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases. ACS Chemical Biology 2024, 19 (2) , 370-379. https://doi.org/10.1021/acschembio.3c00583
  32. Vipin R. Gavit, Sourav Kundu, Sovan Niyogi, Nanda Kishore Roy, Alakesh Bisai. Total Synthesis of Diterpenoid Quinone Methide Tumor Inhibitor, (+)-Taxodione. The Journal of Organic Chemistry 2024, 89 (3) , 1823-1835. https://doi.org/10.1021/acs.joc.3c02541
  33. Kang Wang, Chuan-Hui Xu, Lin Tong, Bin Wang, Ai-Hong Liu, Song-Wei Li, Shui-Chun Mao. Coriaceumins A–D, the First Nitrogen-Containing Crenulide Diterpenoids from the Brown Alga Dictyota coriacea Collected in the East China Sea. Journal of Natural Products 2024, 87 (1) , 121-131. https://doi.org/10.1021/acs.jnatprod.3c00898
  34. David A. Delgadillo, Jessica E. Burch, Lee Joon Kim, Lygia S. de Moraes, Kanji Niwa, Jason Williams, Melody J. Tang, Vincent G. Lavallo, Bhuwan Khatri Chhetri, Christopher G. Jones, Isabel Hernandez Rodriguez, Joshua A. Signore, Lewis Marquez, Riya Bhanushali, Sunmin Woo, Julia Kubanek, Cassandra Quave, Yi Tang, Hosea M. Nelson. High-Throughput Identification of Crystalline Natural Products from Crude Extracts Enabled by Microarray Technology and microED. ACS Central Science 2024, 10 (1) , 176-183. https://doi.org/10.1021/acscentsci.3c01365
  35. Sigitas Mikutis, Stefanie Lawrinowitz, Christian Kretzer, Lavinia Dunsmore, Laurynas Sketeris, Tiago Rodrigues, Oliver Werz, Gonçalo J. L. Bernardes. Machine Learning Uncovers Natural Product Modulators of the 5-Lipoxygenase Pathway and Facilitates the Elucidation of Their Biological Mechanisms. ACS Chemical Biology 2024, 19 (1) , 217-229. https://doi.org/10.1021/acschembio.3c00725
  36. Ananya Dutta, Satyajit Halder, Ishani Bhaumik, Utsab Debnath, Debashis Dhara, Anup Kumar Misra, Kuladip Jana. Novel Sulforaphane Analog Disrupts Phosphatidylinositol-3-Kinase-Protein Kinase B Pathway and Inhibits Cancer Cell Progression via Reactive Oxygen Species-Mediated Caspase-Independent Apoptosis. ACS Pharmacology & Translational Science 2024, 7 (1) , 195-211. https://doi.org/10.1021/acsptsci.3c00229
  37. Kai Guo, Ting-Ting Zhou, Shi-Hong Luo, Yan-Chun Liu, Yan Liu, Sheng-Hong Li. Leucosceptrane Sesterterpenoids as a New Type of Natural Immunosuppressive Agents in Treating Sepsis. Journal of Medicinal Chemistry 2024, 67 (1) , 513-528. https://doi.org/10.1021/acs.jmedchem.3c01759
  38. Sandip B. Bharate, (Editorial Advisory Board, Journal of Medicinal Chemistry)Craig W. Lindsley (Editor-in-Chief, Journal of Medicinal Chemistry). Call for Papers: Natural Products Driven Medicinal Chemistry. Journal of Medicinal Chemistry 2023, 66 (24) , 16455-16456. https://doi.org/10.1021/acs.jmedchem.3c02193
  39. Nahaa M. Alotaibi, Modhi O. Alotaibi, Nawaf Alshammari, Mohd Adnan, Mitesh Patel. Network Pharmacology Combined with Molecular Docking, Molecular Dynamics, and In Vitro Experimental Validation Reveals the Therapeutic Potential of Thymus vulgaris L. Essential Oil (Thyme Oil) against Human Breast Cancer. ACS Omega 2023, 8 (50) , 48344-48359. https://doi.org/10.1021/acsomega.3c07782
  40. Jiang Wang, Jing-Yi Yang, Pradeepraj Durairaj, Wei Wang, Shi Tang, Dayong Wang, Chao-Yun Cai, Ai-Qun Jia. Developing 3-(2-Isocyano-6-methylbenzyl)-1H-indole Derivatives to Enhance the Susceptibility of Serratia marcescens by Occluding Quorum Sensing. ACS Infectious Diseases 2023, 9 (12) , 2607-2621. https://doi.org/10.1021/acsinfecdis.3c00433
  41. Alice Yuan, Hayley Fong, Jennifer V. Nguyen, Sophia Nguyen, Payton Norman, Reiko Cullum, William Fenical, Anjan Debnath. High-Throughput Screen of Microbial Metabolites Identifies F1FO ATP Synthase Inhibitors as New Leads for Naegleria fowleri Infection. ACS Infectious Diseases 2023, 9 (12) , 2622-2631. https://doi.org/10.1021/acsinfecdis.3c00437
  42. Viney Kumar, Swati Haldar, Souvik Ghosh, Saakshi Saini, Poonam Dhankhar, Partha Roy. Pterostilbene-Isothiocyanate Inhibits Proliferation of Human MG-63 Osteosarcoma Cells via Abrogating β-Catenin/TCF-4 Interaction─A Mechanistic Insight. ACS Omega 2023, 8 (46) , 43474-43489. https://doi.org/10.1021/acsomega.3c02732
  43. Naza Jalal Awla, Alaadin M. Naqishbandi, Younis Baqi. Preventive and Therapeutic Effects of Silybum marianum Seed Extract Rich in Silydianin and Silychristin in a Rat Model of Metabolic Syndrome. ACS Pharmacology & Translational Science 2023, 6 (11) , 1715-1723. https://doi.org/10.1021/acsptsci.3c00171
  44. Morgane Rivoal, Laurent Dubuquoy, Régis Millet, Natascha Leleu-Chavain. Receptor Interacting Ser/Thr-Protein Kinase 2 as a New Therapeutic Target. Journal of Medicinal Chemistry 2023, 66 (21) , 14391-14410. https://doi.org/10.1021/acs.jmedchem.3c00593
  45. Ali Samie, Hoda Alavian, Zeinab Vafaei-Pour, Amir Hooshang Mohammadpour, Amir Hossein Jafarian, Noor Mohammad Danesh, Khalil Abnous, Seyed Mohammad Taghdisi. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Molecular Pharmaceutics 2023, 20 (10) , 5090-5107. https://doi.org/10.1021/acs.molpharmaceut.3c00398
  46. Jinfeng Ding, Tiantian Sun, Hongmei Wu, Hongwei Zheng, Sijia Wang, Dezhi Wang, Wenpei Shan, Yong Ling, Yanan Zhang. Novel Canthin-6-one Derivatives: Design, Synthesis, and Their Antiproliferative Activities via Inducing Apoptosis, Deoxyribonucleic Acid Damage, and Ferroptosis. ACS Omega 2023, 8 (34) , 31215-31224. https://doi.org/10.1021/acsomega.3c03358
  47. Fan Zhang, Tao Zeng, Ruibo Wu. QM/MM Modeling Aided Enzyme Engineering in Natural Products Biosynthesis. Journal of Chemical Information and Modeling 2023, 63 (16) , 5018-5034. https://doi.org/10.1021/acs.jcim.3c00779
  48. Zhantao Yang, Zhiqiang Yu, Yulin He, Wei Feng, Yinchao Zhang, Junjie Wang, Xiangtao Kong, Chun-Hua Yang. Rh-Catalyzed Borylative Cyclization of Acrylate-Containing 1,6-Enynes. Organic Letters 2023, 25 (30) , 5671-5675. https://doi.org/10.1021/acs.orglett.3c02154
  49. Xiao-yan Zhi, Yuan Zhang, Yang-fan Li, Ying Liu, Wen-peng Niu, Yang Li, Cheng-ran Zhang, Hui Cao, Xiao-juan Hao, Chun Yang. Discovery of Natural Sesquiterpene Lactone 1-O-Acetylbritannilactone Analogues Bearing Oxadiazole, Triazole, or Imidazole Scaffolds for the Development of New Fungicidal Candidates. Journal of Agricultural and Food Chemistry 2023, 71 (30) , 11680-11691. https://doi.org/10.1021/acs.jafc.3c02497
  50. Shan Yang, Tienan Wang, Aidang Lu, Qingmin Wang. Discovery of Chiral Diamine Derivatives Containing 1,2-Diphenylethylenediamine as Novel Antiviral and Fungicidal Agents. Journal of Agricultural and Food Chemistry 2023, 71 (29) , 10989-11000. https://doi.org/10.1021/acs.jafc.3c01247
  51. Lauren E. Wilbanks, Haylie E. Hennigan, Christina D. Martinez-Brokaw, Hani Lakkis, Sarah Thormann, Alyssa S. Eggly, Grace Buechel, Elizabeth I. Parkinson. Synthesis of Gamma-Butyrolactone Hormones Enables Understanding of Natural Product Induction. ACS Chemical Biology 2023, 18 (7) , 1624-1631. https://doi.org/10.1021/acschembio.3c00241
  52. Jia-Yu Shen, Qunfei Zhao, Qing-Li He. Application of CRISPR in Filamentous Fungi and Macrofungi: From Component Function to Development Potentiality. ACS Synthetic Biology 2023, 12 (7) , 1908-1923. https://doi.org/10.1021/acssynbio.3c00099
  53. Vilas R. Jagatap, Iqrar Ahmad, Dharmarajan Sriram, Jyothi Kumari, Darko Kwabena Adu, Blessing Wisdom Ike, Meenu Ghai, Siddique Akber Ansari, Irfan Aamer Ansari, Priscille Ornella Mefotso Wetchoua, Rajshekhar Karpoormath, Harun Patel. Isoflavonoid and Furanochromone Natural Products as Potential DNA Gyrase Inhibitors: Computational, Spectral, and Antimycobacterial Studies. ACS Omega 2023, 8 (18) , 16228-16240. https://doi.org/10.1021/acsomega.3c00684
  54. Shiyang Lu, Zhiwei Zhang, Amit Raj Sharma, Junko Nakajima-Shimada, Enjuro Harunari, Naoya Oku, Agus Trianto, Yasuhiro Igarashi. Bulbiferamide, an Antitrypanosomal Hexapeptide Cyclized via an N-Acylindole Linkage from a Marine Obligate Microbulbifer. Journal of Natural Products 2023, 86 (4) , 1081-1086. https://doi.org/10.1021/acs.jnatprod.2c01083
  55. Naresh M. Venneti, Jennifer L. Stockdill. Stretching Peptides’ Potential to Target Protein–Protein Interactions. ACS Central Science 2023, 9 (4) , 590-592. https://doi.org/10.1021/acscentsci.3c00364
  56. Erika Artukka, Robert Schnell, Kaisa Palmu, Petja Rosenqvist, Edit Szodorai, Jarmo Niemi, Pasi Virta, Gunter Schneider, Mikko Metsä-Ketelä. Pseudouridine-Modifying Enzymes SapB and SapH Control Entry into the Pseudouridimycin Biosynthetic Pathway. ACS Chemical Biology 2023, 18 (4) , 794-802. https://doi.org/10.1021/acschembio.2c00826
  57. Alexander W. Rand, Kevin J. Gonzalez, Christopher E. Reimann, Scott C. Virgil, Brian M. Stoltz. Total Synthesis of Strempeliopidine and Non-Natural Stereoisomers through a Convergent Petasis Borono–Mannich Reaction. Journal of the American Chemical Society 2023, 145 (13) , 7278-7287. https://doi.org/10.1021/jacs.2c13146
  58. Andrew R. Mahoney, Kelly M. Storek, William M. Wuest. Structure-Based Design of Promysalin Analogues to Overcome Mechanisms of Bacterial Resistance. ACS Omega 2023, 8 (13) , 12558-12564. https://doi.org/10.1021/acsomega.3c00884
  59. Deepak Kumar Tripathi, Nupur Nagar, Viney Kumar, Nidhi Joshi, Partha Roy, Krishna Mohan Poluri. Gallate Moiety of Catechin Is Essential for Inhibiting CCL2 Chemokine-Mediated Monocyte Recruitment. Journal of Agricultural and Food Chemistry 2023, 71 (12) , 4990-5005. https://doi.org/10.1021/acs.jafc.3c01283
  60. Ankita Sharma, Sandip B. Bharate. Synthesis and Biological Evaluation of Coumarin Triazoles as Dual Inhibitors of Cholinesterases and β-Secretase. ACS Omega 2023, 8 (12) , 11161-11176. https://doi.org/10.1021/acsomega.2c07993
  61. R.P. Vivek-Ananth, Karthikeyan Mohanraj, Ajaya Kumar Sahoo, Areejit Samal. IMPPAT 2.0: An Enhanced and Expanded Phytochemical Atlas of Indian Medicinal Plants. ACS Omega 2023, 8 (9) , 8827-8845. https://doi.org/10.1021/acsomega.3c00156
  62. Jiaxin Xie, Zhong Zheng, Xin Liu, Nan Zhang, Shinyoung Choi, Chuan He, Guangbin Dong. Asymmetric Total Synthesis of (+)-Phainanoid A and Biological Evaluation of the Natural Product and Its Synthetic Analogues. Journal of the American Chemical Society 2023, 145 (8) , 4828-4852. https://doi.org/10.1021/jacs.2c13889
  63. Neil L. Grenade, Dragos S. Chiriac, A. R. Ola Pasternak, Jonathan L. Babulic, Bronwyn E. Rowland, Graeme W. Howe, Avena C. Ross. Discovery of a Tambjamine Gene Cluster in Streptomyces Suggests Convergent Evolution in Bipyrrole Natural Product Biosynthesis. ACS Chemical Biology 2023, 18 (2) , 223-229. https://doi.org/10.1021/acschembio.2c00685
  64. Antonio Del Rio Flores, Maanasa Narayanamoorthy, Wenlong Cai, Rui Zhai, Siyue Yang, Yuanbo Shen, Kaushik Seshadri, Kyle De Matias, Zhaoqiang Xue, Wenjun Zhang. Biosynthesis of Isonitrile Lipopeptide Metallophores from Pathogenic Mycobacteria. Biochemistry 2023, 62 (3) , 824-834. https://doi.org/10.1021/acs.biochem.2c00611
  65. Neng Wang, Hang Wang, Lin-Xi Wan, Xiao-Huan Li, Xian-Li Zhou, Jia-Hong Li, Steven De Jonghe, Dominique Schols, Jin-Bu Xu, Feng Gao. Visible-Light-Promoted Tandem Thiol–Ene Click Reaction/Transannular Cyclization and Regioselective Cyclopropane Ring-Opening to Construct Sulfur-Containing Euphorbia Diterpenes. Organic Letters 2023, 25 (4) , 597-602. https://doi.org/10.1021/acs.orglett.2c04116
  66. Richiro Ushimaru, Ikuro Abe. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catalysis 2023, 13 (2) , 1045-1076. https://doi.org/10.1021/acscatal.2c05247
  67. Yu-Qing Zheng, Chen-Long Li, Wen-Bo Liu, Zhi-Xiang Yu. DFT Study of Mechanism and Stereochemistry of Nickel-Catalyzed trans-Arylative Desymmetrizing Cyclization of Alkyne-Tethered Malononitriles. The Journal of Organic Chemistry 2022, 87 (23) , 16079-16083. https://doi.org/10.1021/acs.joc.2c01269
  68. Jinyu Zhang, Bin Lu, Zhaoliang Ge, Le Wang, Xiaoming Wang. Selective Construction of All-Carbon Quaternary Centers via Relay Catalysis of Indole C–H Functionalization/Allylic Alkylation. Organic Letters 2022, 24 (45) , 8423-8428. https://doi.org/10.1021/acs.orglett.2c03543
  69. Yousef Dashti, Fatemeh Mazraati Tajabadi, Ling Juan Wu, Felaine Anne Sumang, Alexander Escasinas, Nicholas Edward Ellis Allenby, Jeff Errington. Discovery of Demurilactone A: A Specific Growth Inhibitor of L-Form Bacillus subtilis. ACS Infectious Diseases 2022, 8 (11) , 2253-2258. https://doi.org/10.1021/acsinfecdis.2c00220
  70. Zong-Wang Qiu, Liang Long, Zhi-Qiang Zhu, Hong-Fu Liu, Han-Peng Pan, Ai-Jun Ma, Jin-Bao Peng, Yong-Heng Wang, Hao Gao, Xiang-Zhi Zhang. Asymmetric Three-Component Reaction to Assemble the Acyclic All-Carbon Quaternary Stereocenter via Visible Light and Phosphoric Acid Catalysis. ACS Catalysis 2022, 12 (21) , 13282-13291. https://doi.org/10.1021/acscatal.2c03879
  71. Suman Sar, Prasanta Ghorai. Umpolung Chemo- and Regioselective Cascade Addition of Diethylzinc to α-Diketones Followed by Intramolecular Michael Reaction: Stereoselective Synthesis of Highly Substituted 1- Indanones. Organic Letters 2022, 24 (36) , 6576-6581. https://doi.org/10.1021/acs.orglett.2c02539
  72. Qing Zhang, Die Qian, Dan-Dan Tang, Jia Liu, Lin-Yu Wang, Wenwen Chen, Chun-Jie Wu, Wei Peng. Glabridin from Glycyrrhiza glabra Possesses a Therapeutic Role against Keloid via Attenuating PI3K/Akt and Transforming Growth Factor-β1/SMAD Signaling Pathways. Journal of Agricultural and Food Chemistry 2022, 70 (35) , 10782-10793. https://doi.org/10.1021/acs.jafc.2c02045
  73. Xiao-Nan Jia, Wei-Jia Wang, Bo Yin, Lin-Jing Zhou, Yong-Qi Zhen, Lan Zhang, Xian-Li Zhou, Hai-Ning Song, Yong Tang, Feng Gao. Deep Learning Promotes the Screening of Natural Products with Potential Microtubule Inhibition Activity. ACS Omega 2022, 7 (32) , 28334-28341. https://doi.org/10.1021/acsomega.2c02854
  74. Steven W. Knowlden, Brian V. Popp. Regioselective Boracarboxylation of α-Substituted Vinyl Arenes. Organometallics 2022, 41 (14) , 1883-1891. https://doi.org/10.1021/acs.organomet.2c00184
  75. Yu-Zhong Yang, Yang Li, Gui-Fen Lv, De-Liang He, Jin-Heng Li. Nickel-Catalyzed C–S Reductive Cross-Coupling of Alkyl Halides with Arylthiosilanes toward Alkyl Aryl Thioethers. Organic Letters 2022, 24 (28) , 5115-5119. https://doi.org/10.1021/acs.orglett.2c01954
  76. Kartikey Singh, Suvarn S. Kulkarni. Small Carbohydrate Derivatives as Potent Antibiofilm Agents. Journal of Medicinal Chemistry 2022, 65 (13) , 8525-8549. https://doi.org/10.1021/acs.jmedchem.1c01039
  77. Satyajit Majumder, Abhinay Yadav, Souvik Pal, Arindam Khatua, Alakesh Bisai. Asymmetric Total Syntheses of (−)-Lycoramine, (−)-Lycoraminone, (−)-Narwedine, and (−)-Galanthamine. The Journal of Organic Chemistry 2022, 87 (12) , 7786-7797. https://doi.org/10.1021/acs.joc.2c00420
  78. Ryota Kumokita, Takahiro Bamba, Kentaro Inokuma, Takanobu Yoshida, Yoichiro Ito, Akihiko Kondo, Tomohisa Hasunuma. Construction of an l-Tyrosine Chassis in Pichia pastoris Enhances Aromatic Secondary Metabolite Production from Glycerol. ACS Synthetic Biology 2022, 11 (6) , 2098-2107. https://doi.org/10.1021/acssynbio.2c00047
  79. Xue-Yi Hu, Xiao-Ming Li, Bin-Gui Wang, Ling-Hong Meng. Tanzawaic Acid Derivatives: Fungal Polyketides from the Deep-Sea Coral-Derived Endozoic Penicillium steckii AS-324. Journal of Natural Products 2022, 85 (5) , 1398-1406. https://doi.org/10.1021/acs.jnatprod.2c00211
  80. Kevin A. Scott, Philip B. Cox, Jon T. Njardarson. Phenols in Pharmaceuticals: Analysis of a Recurring Motif. Journal of Medicinal Chemistry 2022, 65 (10) , 7044-7072. https://doi.org/10.1021/acs.jmedchem.2c00223
  81. John Kornfeind, Pravin S. Iyer, Taylor M. Keller, Fraser F. Fleming. Oxidative DMSO Cyclization Cascade to Bicyclic Hydroxyketonitriles. The Journal of Organic Chemistry 2022, 87 (9) , 6097-6104. https://doi.org/10.1021/acs.joc.2c00364
  82. Jingbo Liu, Yabing Shi, Zhicheng Tian, Fengyun Li, Zesheng Hao, Wen Wen, Li Zhang, Yuanhong Wang, Yuxin Li, Zhijin Fan. Bioactivity-Guided Synthesis Accelerates the Discovery of Evodiamine Derivatives as Potent Insecticide Candidates. Journal of Agricultural and Food Chemistry 2022, 70 (16) , 5197-5206. https://doi.org/10.1021/acs.jafc.1c08297
  83. Rajesh Varkhedkar, Fan Yang, Rakesh Dontha, Jianglin Zhang, Jiyong Liu, Bernhard Spingler, Stijn van der Veen, Simon Duttwyler. Natural-Product-Directed Catalytic Stereoselective Synthesis of Functionalized Fused Borane Cluster–Oxazoles for the Discovery of Bactericidal Agents. ACS Central Science 2022, 8 (3) , 322-331. https://doi.org/10.1021/acscentsci.1c01132
  84. Lin Xu, Shan-Chi Yi, Jiu-Ying Li, Yao Tong, Cong Xie, Dong-Qiang Zeng, Wen-Wei Tang. Itol A May Affect the Growth and Development of Spodoptera frugiperda through Hijacking JHBP and Impeding JH Transport. Journal of Agricultural and Food Chemistry 2022, 70 (10) , 3151-3161. https://doi.org/10.1021/acs.jafc.1c08083
  85. Jean A. Bernatchez, Yun-Seo Kil, Elany Barbosa da Silva, Diane Thomas, Laura-Isobel McCall, Karen L. Wendt, Julia M. Souza, Jasmin Ackermann, James H. McKerrow, Robert H. Cichewicz, Jair L. Siqueira-Neto. Identification of Leucinostatins from Ophiocordyceps sp. as Antiparasitic Agents against Trypanosoma cruzi. ACS Omega 2022, 7 (9) , 7675-7682. https://doi.org/10.1021/acsomega.1c06347
  86. Fei Ye, Hafeez S. Haniff, Blessy M. Suresh, Dong Yang, Peiyuan Zhang, Gogce Crynen, Christiana N. Teijaro, Wei Yan, Daniel Abegg, Alexander Adibekian, Ben Shen, Matthew D. Disney. Rational Approach to Identify RNA Targets of Natural Products Enables Identification of Nocathiacin as an Inhibitor of an Oncogenic RNA. ACS Chemical Biology 2022, 17 (2) , 474-482. https://doi.org/10.1021/acschembio.1c00952
  87. Richard B. van Breemen, Ruth N. Muchiri, Timothy A. Bates, Jules B. Weinstein, Hans C. Leier, Scotland Farley, Fikadu G. Tafesse. Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. Journal of Natural Products 2022, 85 (1) , 176-184. https://doi.org/10.1021/acs.jnatprod.1c00946
  88. Shinya Shiomi, Benjamin D. A. Shennan, Ken Yamazaki, Ángel L. Fuentes de Arriba, Dhananjayan Vasu, Trevor A. Hamlin, Darren J. Dixon. A New Organocatalytic Desymmetrization Reaction Enables the Enantioselective Total Synthesis of Madangamine E. Journal of the American Chemical Society 2022, 144 (3) , 1407-1415. https://doi.org/10.1021/jacs.1c12040
  89. Wu-Bin Zhang, Guang Chen, Shi-Liang Shi. Enantioselective Ni/N-Heterocyclic Carbene-Catalyzed Redox-Economical Coupling of Aldehydes, Alkynes, and Enones for Rapid Construction of Acyclic All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society 2022, 144 (1) , 130-136. https://doi.org/10.1021/jacs.1c12625
  90. Yash Pal Singh, Navneet Kumar, Khushbu Priya, Brijesh Singh Chauhan, Gauri Shankar, Saroj Kumar, Gireesh Kumar Singh, Saripella Srikrishna, Prabha Garg, Gourav Singh, Geeta Rai, Gyan Modi. Exploration of Neuroprotective Properties of a Naturally Inspired Multifunctional Molecule (F24) against Oxidative Stress and Amyloid β Induced Neurotoxicity in Alzheimer’s Disease Models. ACS Chemical Neuroscience 2022, 13 (1) , 27-42. https://doi.org/10.1021/acschemneuro.1c00443
  91. Ruth N. Muchiri, James Kibitel, Margaret A. Redick, Richard B. van Breemen. Advances in Magnetic Microbead Affinity Selection Screening: Discovery of Natural Ligands to the SARS-CoV-2 Spike Protein. Journal of the American Society for Mass Spectrometry 2022, 33 (1) , 181-188. https://doi.org/10.1021/jasms.1c00318
  92. Zhonglin Guo, Pan Zhou, Hongjian Song, Yuxiu Liu, Jingjing Zhang, Yongqiang Li, Qingmin Wang. Design, Synthesis, and Bioactivities of Phthalide and Coumarin Derivatives Based on the Biosynthesis and Structure Simplification of Gossypol. Journal of Agricultural and Food Chemistry 2021, 69 (50) , 15123-15135. https://doi.org/10.1021/acs.jafc.1c05792
  93. Diksha Manhas, Abhishek Gour, Nivedita Bhardwaj, Deepak K. Sharma, Kuhu Sharma, Bhavna Vij, Shreyans K. Jain, Gurdarshan Singh, Utpal Nandi. Pharmacokinetic Assessment of Rottlerin from Mallotus philippensis Using a Highly Sensitive Liquid Chromatography–Tandem Mass Spectrometry-Based Bioanalytical Method. ACS Omega 2021, 6 (48) , 32637-32646. https://doi.org/10.1021/acsomega.1c04266
  94. Soumen Chakraborty, Rajendra Uprety, Samuel T. Slocum, Takeshi Irie, Valerie Le Rouzic, Xiaohai Li, Lisa L. Wilson, Brittany Scouller, Amy F. Alder, Andrew C. Kruegel, Michael Ansonoff, Andras Varadi, Shainnel O. Eans, Amanda Hunkele, Abdullah Allaoa, Sanjay Kalra, Jin Xu, Ying Xian Pan, John Pintar, Bronwyn M. Kivell, Gavril W. Pasternak, Michael D. Cameron, Jay P. McLaughlin, Dalibor Sames, Susruta Majumdar. Oxidative Metabolism as a Modulator of Kratom’s Biological Actions. Journal of Medicinal Chemistry 2021, 64 (22) , 16553-16572. https://doi.org/10.1021/acs.jmedchem.1c01111
  95. Jiayu Liu, Yangyang Zhao, Zheng Qing Fu, Fengquan Liu. Monooxygenase LaPhzX is Involved in Self-Resistance Mechanisms during the Biosynthesis of N-Oxide Phenazine Myxin. Journal of Agricultural and Food Chemistry 2021, 69 (45) , 13524-13532. https://doi.org/10.1021/acs.jafc.1c05206
  96. Xiyu Mo, Kaiyong Chen, Zilu Chen, Bo Chu, Dongcheng Liu, Yuning Liang, Jianwen Xiong, Yubing Yang, JinYuan Cai, Fupei Liang. Antitumor Activities for Two Pt(II) Complexes of Tropolone and 8-Hydroxyquinoline Derivative. Inorganic Chemistry 2021, 60 (21) , 16128-16139. https://doi.org/10.1021/acs.inorgchem.1c01763
  97. Jianli Tang, Haocheng He, Yunlong Li, Zhudong Liu, Ziyuan Xia, Li Cao, Zirong Zhu, Ling Shuai, Yang Liu, Qianqian Wan, Yuewen Luo, Youming Zhang, Jie Rang, Liqiu Xia. Comparative Proteomics Reveals the Effect of the Transcriptional Regulator Sp13016 on Butenyl-Spinosyn Biosynthesis in Saccharopolyspora pogona. Journal of Agricultural and Food Chemistry 2021, 69 (42) , 12554-12565. https://doi.org/10.1021/acs.jafc.1c03654
  98. De-Gao Wang, Luo Niu, Zhao-Min Lin, Jing-Jing Wang, Dong-Fang Gao, Hai-Yan Sui, Yue-Zhong Li, Changsheng Wu. The Discovery and Biosynthesis of Nicotinic Myxochelins from an Archangium sp. SDU34. Journal of Natural Products 2021, 84 (10) , 2744-2748. https://doi.org/10.1021/acs.jnatprod.1c00524
  99. Murugan Thulasi Meenu, Grace Kaul, Manjulika Shukla, Kokkuvayil Vasu Radhakrishnan, Sidharth Chopra. Cudraflavone C from Artocarpus hirsutus as a Promising Inhibitor of Pathogenic, Multidrug-Resistant S. aureus, Persisters, and Biofilms: A New Insight into a Rational Explanation of Traditional Wisdom. Journal of Natural Products 2021, 84 (10) , 2700-2708. https://doi.org/10.1021/acs.jnatprod.1c00578
  100. Kelly E. Kim, Alexia N. Kim, Carter J. McCormick, Brian M. Stoltz. Late-Stage Diversification: A Motivating Force in Organic Synthesis. Journal of the American Chemical Society 2021, 143 (41) , 16890-16901. https://doi.org/10.1021/jacs.1c08920
Load more citations

Journal of Natural Products

Cite this: J. Nat. Prod. 2016, 79, 3, 629–661
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jnatprod.5b01055
Published February 7, 2016

Copyright © 2016 The American Chemical Society and American Society of Pharmacognosy. This publication is licensed under these Terms of Use.

Article Views

209k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Chart 1

    Figure 1

    Figure 1. All new approved drugs 1981–2014; n = 1562.

    Figure 2

    Figure 2. All new approved drugs by source/year.

    Figure 3

    Figure 3. All small-molecule approved drugs 1981–2014s; n = 1211.

    Figure 4

    Figure 4. All small-molecule approved drugs by source/year.

    Figure 5

    Figure 5. Total small molecules/year.

    Figure 6

    Figure 6. N, NB, ND, and S* categories by year, 1981–2014.

    Figure 7

    Figure 7. Percentage of N* by year, 1981–2014.

    Scheme 1

    Figure 8

    Figure 8. All anticancer drugs 1981–2014; n = 174.

    Figure 9

    Figure 9. Small-molecule anticancer drugs 1940s–2014; n = 136.

    Figure 10

    Figure 10. All anticancer drugs 1940s–2014 by source; n = 246.

    Figure 11

    Figure 11. All anticancer drugs 1940s–2014 by source/year; n = 246.

    Chart 2

    Chart 3

    Chart 4

    Chart 5

    Chart 6

  • References


    This article references 178 other publications.

    1. 1
      Cragg, G. M.; Newman, D. J.; Snader, K. M. J. Nat. Prod. 1997, 60, 52 60 DOI: 10.1021/np9604893
    2. 2
      Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022 1037 DOI: 10.1021/np030096l
    3. 3
      Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461 477 DOI: 10.1021/np068054v
    4. 4
      Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311 335 DOI: 10.1021/np200906s
    5. 5
      Cragg, G. M.; Newman, D. J. Biochim. Biophys. Acta, Gen. Subj. 2013, 1830, 3670 3695 DOI: 10.1016/j.bbagen.2013.02.008
    6. 6
      Newman, D. J.; Giddings, L.-A. Phytochem. Rev. 2014, 13, 123 137 DOI: 10.1007/s11101-013-9292-6
    7. 7
      Newman, D. J.; Cragg, G. M. In Macrocycles in Drug Discovery; RSC Drug Discovery Series No. 40; Levin, J., Ed.; Royal Society of Chemistry: Cambridge, UK, 2014; pp 1 36.
    8. 8
      Giddings, L.-A.; Newman, D. J. Bioactive Compounds from Terrestrial Extremophiles; Springer: Heidelberg, 2015.
    9. 9
      Giddings, L.-A.; Newman, D. J. Bioactive Compounds from Marine Extremophiles; Springer: Heidelberg, 2015.
    10. 10
      Giddings, L.-A.; Newman, D. J. Bioactive Compounds from Extremophiles, Genomic Studies; Springer: Heidelberg, 2015.
    11. 11
      Newman, D. J.; Cragg, G. M.; Kingston, D. G. I. In The Practice of Medicinal Chemistry, 4th ed.; Wermuth, C. G.; Aldous, D.; Raboisson, P.; Rognan, D., Eds.; Elsevier: Amsterdam, 2015; pp 101 139.
    12. 12
      Pelish, H. E.; Westwood, N. J.; Feng, Y.; Kirchausen, T.; Shair, M. D. J. Am. Chem. Soc. 2001, 123, 6740 6741 DOI: 10.1021/ja016093h
    13. 13
      Spring, D. R. Org. Biomol. Chem. 2003, 1, 3867 3870 DOI: 10.1039/b310752n
    14. 14
      Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46 58 DOI: 10.1002/anie.200300626
    15. 15
      Zhonghong, G.; Reddy, P. T.; Quevillion, S.; Couve-Bonnaire, S.; Ayra, P. Angew. Chem., Int. Ed. 2005, 44, 1366 1368 DOI: 10.1002/anie.200462298
    16. 16
      Dandapani, S.; Marcaurelle, L. A. Curr. Opin. Chem. Biol. 2010, 14, 362 370 DOI: 10.1016/j.cbpa.2010.03.018
    17. 17
      Reayi, A.; Arya, P. Curr. Opin. Chem. Biol. 2005, 9, 240 247 DOI: 10.1016/j.cbpa.2005.04.007
    18. 18
      Keller, T. H.; Pichota, A.; Yin, Z. Curr. Opin. Chem. Biol. 2006, 10, 357 361 DOI: 10.1016/j.cbpa.2006.06.014
    19. 19
      Lipinski, C. A. Drug Discovery Today: Technol. 2004, 1, 337 341 DOI: 10.1016/j.ddtec.2004.11.007
    20. 20
      Macarron, R. Drug Discovery Today 2006, 11, 277 279 DOI: 10.1016/j.drudis.2006.02.001
    21. 21
      Koehn, F. E. MedChemComm 2012, 3, 854 865 DOI: 10.1039/c2md00316c
    22. 22
      Doak, B. C.; Over, B.; Giordanetto, F.; Kihlberg, J. Chem. Biol. 2014, 21, 1115 1142 DOI: 10.1016/j.chembiol.2014.08.013
    23. 23
      Camp, D.; Garavelas, A.; Campitelli, M. J. Nat. Prod. 2015, 78, 1370 1382 DOI: 10.1021/acs.jnatprod.5b00255
    24. 24
      Macarron, R.; Banks, M. N.; Bojanic, D.; Burns, D. J.; Cirovic, D. A.; Garyantes, T.; Green, D. V. S.; Hertzberg, R. P.; Janzen, W. P.; Paslay, J. W.; Schopfer, U.; Sittampalam, G. S. Nat. Rev. Drug Discovery 2011, 10, 188 195 DOI: 10.1038/nrd3368
    25. 25
      Macarron, R. Nat. Chem. Biol. 2015, 11, 904 905 DOI: 10.1038/nchembio.1937
    26. 26
      Wassermann, A. M.; Lounkine, E.; Hoepfner, D.; Le Goff, G.; King, F. J.; Studer, C.; Peltier, J. M.; Grippo, M. L.; Prindle, V.; Tao, J.; Schuffenhauer, A.; Wallace, I. M.; Chen, S.; Krastel, P.; Cobos-Correa, A.; Parker, C. N.; Davies, J. W.; Glick, M. Nat. Chem. Biol. 2015, 11, 958 966 DOI: 10.1038/nchembio.1936
    27. 27
      Bisson, J.; McAlpine, J. B.; Friesen, J. B.; Chen, S.-N.; Graham, J.; Pauli, G. F. J. Med. Chem. 2015,  DOI: 10.1021/acs.jmedchem.5b01009
    28. 28
      Baell, J.; Walters, M. A. Nature 2014, 513, 481 483 DOI: 10.1038/513481a
    29. 29
      Erlanson, D. A. J. Med. Chem. 2015, 58, 2088 2090 DOI: 10.1021/acs.jmedchem.5b00294
    30. 30
      Ryan, N. J. Drugs 2014, 74, 1709 1714 DOI: 10.1007/s40265-014-0287-4
    31. 31
      Hoelder, S.; Clarke, P. A.; Workman, P. Mol. Oncol. 2012, 6, 155 176 DOI: 10.1016/j.molonc.2012.02.004
    32. 32
      Bergmann, W.; Feeney, R. J. J. Am. Chem. Soc. 1950, 72, 2809 2810 DOI: 10.1021/ja01162a543
    33. 33
      Bergmann, W.; Feeney, R. J. J. Org. Chem. 1951, 16, 981 987 DOI: 10.1021/jo01146a023
    34. 34
      Bergmann, W.; Burke, D. C. J. Org. Chem. 1955, 20, 1501 1507 DOI: 10.1021/jo01128a007
    35. 35
      Bertin, M. J.; Schwartz, S. L.; Lee, J.; Korobeynikov, A.; Dorrestein, P. C.; Gerwick, L.; Gerwick, W. H. J. Nat. Prod. 2015, 78, 493 499 DOI: 10.1021/np5009762
    36. 36
      Szychowski, J.; Truchon, J.-F.; Bennani, Y. L. J. Med. Chem. 2014, 57, 9292 9308 DOI: 10.1021/jm500941m
    37. 37
      Bathula, S. R.; Akondi, S. M.; Mainkar, P. S.; Chandrasekhar, S. Org. Biomol. Chem. 2015, 13, 6432 6448 DOI: 10.1039/C5OB00403A
    38. 38
      Thaker, M. N.; Wright, G. D. ACS Synth. Biol. 2015, 4, 195 206 DOI: 10.1021/sb300092n
    39. 39
      Stockdale, T. P.; Williams, C. M. Chem. Soc. Rev. 2015, 44, 7737 7763 DOI: 10.1039/C4CS00477A
    40. 40
      Yoganathan, S.; Miller, S. J. J. Med. Chem. 2015, 58, 2367 2377 DOI: 10.1021/jm501872s
    41. 41
      Novaes, L. F. T.; Avila, C. M.; Pelizzaro-Rocha, K. J.; Vendramini-Costa, D. B.; Dias, M. P.; Trivella, D. B. B.; de Carvalho, J. E.; Ferreira-Halder, C. V.; Pilli, R. A. ChemMedChem 2015, 10, 1687 1699 DOI: 10.1002/cmdc.201500246
    42. 42
      Nicolaou, K. C. Chem. Biol. 2014, 21, 1039 1045 DOI: 10.1016/j.chembiol.2014.07.020
    43. 43
      Allen, R. C. In Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1984; Vol. 19, pp 313 326.
    44. 44
      Allen, R. C. In Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1985; Vol. 20, pp 315 325.
    45. 45
      Allen, R. C. In Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1986; Vol. 21, pp 323 335.
    46. 46
      Allen, R. C. In Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1987; Vol. 22, pp 315 330.
    47. 47
      Ong, H. H.; Allen, R. C. In Annual Reports in Medicinal Chemistry; Allen, R. C., Ed.; Academic Press: San Diego, 1988; Vol. 23, pp 325 348.
    48. 48
      Ong, H. H.; Allen, R. C. In Annual Reports in Medicinal Chemistry; Allen, R. C., Ed.; Academic Press: San Diego, 1989; Vol. 24, pp 295 315.
    49. 49
      Ong, H. H.; Allen, R. C. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1990; Vol. 25, pp 309 322.
    50. 50
      Strupczewski, J. D.; Ellis, D. B.; Allen, R. C. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1991; Vol. 26, pp 297 313.
    51. 51
      Strupczewski, J. D.; Ellis, D. B. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1992; Vol. 27, pp 321 337.
    52. 52
      Strupczewski, J. D.; Ellis, D. B. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1993; Vol. 28, pp 325 341.
    53. 53
      Cheng, X.-M. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1994; Vol. 29, pp 331 354.
    54. 54
      Cheng, X.-M. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1995; Vol. 30, pp 295 317.
    55. 55
      Cheng, X.-M. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1996; Vol. 31, pp 337 355.
    56. 56
      Galatsis, P. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1997; Vol. 32, pp 305 326.
    57. 57
      Galatsis, P. In Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic Press: San Diego, 1998; Vol. 33, pp 327 353.
    58. 58
      Gaudilliere, B. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: San Diego, 1999; Vol. 34, pp 317 338.
    59. 59
      Gaudilliere, B.; Berna, P. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: San Diego, 2000; Vol. 35, pp 331 355.
    60. 60
      Gaudilliere, B.; Bernardelli, P.; Berna, P. In Annual Reports in Medicinal Chemistry; Doherty, A. M, Ed.; Academic Press: San Diego, 2001; Vol. 36, pp 293 318.
    61. 61
      Bernardelli, P.; Gaudilliere, B.; Vergne, F. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: Amsterdam, 2002; Vol. 37, pp 257 277.
    62. 62
      Boyer-Joubert, C.; Lorthiois, E.; Moreau, F. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: Amsterdam, 2003; Vol. 38, pp 347 374.
    63. 63
      Hegde, S.; Carter, J. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: Amsterdam, 2004; Vol. 39, pp 337 368.
    64. 64
      Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic Press: Amsterdam, 2005; Vol. 40, pp 443 473.
    65. 65
      Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Wood, A., Ed.; Academic Press: Amsterdam, 2006; Vol. 41, pp 439 477.
    66. 66
      Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2007; Vol. 42, pp 505 554.
    67. 67
      Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2008; Vol. 43, pp 455 497.
    68. 68
      Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2009; Vol. 44, pp 577 632.
    69. 69
      Hegde, S.; Schmidt, M. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2010; Vol. 45, pp 467 537.
    70. 70
      Bronson, J.; Dhar, M.; Ewing, W.; Lonberg, N. In Annual Reports in Medicinal Chemistry; Macor, J. E., Ed.; Academic Press: Amsterdam, 2011; Vol. 46, pp 433 502.
    71. 71
      Bronson, J.; Dhar, M.; Ewing, W.; Lonberg, N. In Annual Reports in Medicinal Chemistry; Desai, M. C., Ed.; Academic Press: Amsterdam, 2012; Vol. 47, pp 499 569.
    72. 72
      Bronson, J.; Black, A.; Dhar, T. G. M.; Ellsworth, B. A.; Merritt, J. R. In Annual Reports in Medicinal Chemistry; Desai, M. C., Ed.; Academic Press: Amsterdam, 2013; Vol. 48, pp 471 546.
    73. 73
      Bronson, J.; Black, A.; Dhar, M.; Ellsworth, B.; Merritt, J. R. In Annual Reports in Medicinal Chemistry; Desai, M. C., Ed.; Academic Press: Amsterdam, 2014; Vol. 49, pp 437 508.
    74. 74
      Bronson, J.; Black, A.; Dhar, M.; Ellsworth, B. A.; Merritt, J. R.; Peese, K.; Pashine, A. In 2015 Medicinal Chemistry Reviews; Desai, M. C., Ed.; Medicinal Chemistry Division ACS: Washington DC, 2015; Vol. 50, pp 461 576.
    75. 75
      Prous, J. R. Drug News Persp. 1990, 3, 19 29
    76. 76
      Prous, J. R. Drug News Persp. 1991, 4, 96 109
    77. 77
      Prous, J. R. Drug News Persp. 1992, 5, 93 101
    78. 78
      Prous, J. R. Drug News Persp. 1993, 6, 95 106
    79. 79
      Prous, J. R. Drug News Persp 1994, 7, 26 36
    80. 80
      Prous, J. R. Drug News Persp. 1995, 8, 24 37
    81. 81
      Prous, J. R. Drug News Persp. 1996, 9, 19 32
    82. 82
      Graul, A. I. Drug News Persp. 1997, 10, 5 18
    83. 83
      Graul, A. I. Drug News Persp. 1998, 11, 15 32
    84. 84
      Graul, A. I. Drug News Persp. 1999, 12, 27 43
    85. 85
      Graul, A. I. Drug News Persp. 2000, 13, 37 53
    86. 86
      Graul, A. I. Drug News Persp. 2001, 14, 12 31
    87. 87
      Graul, A. I. Drug News Persp. 2002, 15, 29 43
    88. 88
      Graul, A. I. Drug News Persp. 2003, 16, 22 39
    89. 89
      Graul, A. I. Drug News Persp. 2004, 17, 43 57
    90. 90
      Graul, A. I.; Prous, J. R. Drug News Persp. 2005, 18, 21 36
    91. 91
      Graul, A. I.; Prous, J. R. Drug News Persp. 2006, 19, 33 53
    92. 92
      Graul, A. I.; Sorbera, L. A.; Bozzo, J.; Serradell, N.; Revel, L.; Prous, J. R. Drug News Persp. 2007, 20, 17 44
    93. 93
      Graul, A. I.; Prous, J. R.; Barrionuevo, M.; Bozzo, J.; Castañer, R.; Cruces, E.; Revel, L.; Rosa, E.; Serradell, N.; Sorbera, L. A. Drug News Persp. 2008, 21, 7 35
    94. 94
      Graul, A. I.; Revel, L.; Barrionuevo, M.; Cruces, E.; Rosa, E.; Vergés, C.; Lupone, B.; Diaz, N.; Castañe, R. Drug News Perspect. 2009, 22, 7 27 DOI: 10.1358/dnp.2009.22.1.1303754
    95. 95
      Graul, A. I.; Sorbera, L. A.; Pina, P.; Tell, M.; Cruces, E.; Rosa, E.; Stringer, M.; Castañer, R.; Revel, L. Drug News Perspect. 2010, 23, 7 36 DOI: 10.1358/dnp.2010.23.1.1440373
    96. 96
      Graul, A. I.; Cruces, E. Drugs Today 2011, 47, 27 51 DOI: 10.1358/dot.2011.47.1.1587820
    97. 97
      Graul, A. I.; Cruces, E.; Dulsat, C.; Arias, E.; Stringer, M. Drugs Today 2012, 48, 33 77 DOI: 10.1358/dot.2012.48.1.1769676
    98. 98
      Graul, A. I.; Lupone, B.; Cruces, E.; Stringer, M. Drugs Today 2013, 49, 33 38
    99. 99
      Graul, A. I.; Cruces, E.; Stringer, M. Drugs Today 2014, 50, 51 100 DOI: 10.1358/dot.2014.50.1.2116673
    100. 100
      Graul, A. I.; Navarro, D.; Dulsat, G.; Cruces, E.; Tracy, M. Drugs Today 2014, 50, 133 158 DOI: 10.1358/dot.2014.50.2.2122810
    101. 101
      Graul, A. I.; Stringer, M. Drugs Today 2015, 51, 37 87 DOI: 10.1358/dot.2015.51.1.2279964
    102. 102
      Newman, D. J.; Cragg, G. M.; O’Keefe, B. R. In Modern Biopharmaceuticals, Design, Development and Optimization; Knablein, J., Ed.; Wiley-VCH: Weinheim, 2005; Vol. 2, pp 451 496.
    103. 103
      Boyd, M. R. In Current Therapy in Oncology; Neiderhuber, J., Ed.; Decker: Philadelphia, 1993; pp 11 22.
    104. 104
      Cole, W. H. Chemotherapy of Cancer; Lea and Febiger: Philadelphia, 1970; p 349.
    105. 105
      Sweetman, S. C. Martindale, The Complete Drug Reference, 33rd ed.; The Pharmaceutical Press: London, 2002.
    106. 106
      Fabbro, D.; Cowan-Jacob, S. W.; Moebitz, H. Br. J. Pharmacol. 2015, 172, 2675 2700 DOI: 10.1111/bph.13096
    107. 107
      Fabbro, D.; Ruetz, S.; Buchdunger, E.; Cowan-Jacob, S. W.; Fendrich, G.; Liebtanz, J.; Mestan, J.; O’Reilly, T.; Traxler, P.; Chaudhuri, B.; Fretz, H.; Zimmermann, J.; Meyer, T.; Caravatti, G.; Furet, P.; Manley, P. W. Pharmacol. Ther. 2002, 93, 79 98 DOI: 10.1016/S0163-7258(02)00179-1
    108. 108
      Vijayan, R. S. K.; He, P.; Modi, V.; Duong-Ly, K. C.; Ma, H.; Peterson, J. R.; Dunbrack, J. R. L.; Levy, R. M. J. Med. Chem. 2015, 58, 466 479 DOI: 10.1021/jm501603h
    109. 109
      Tiligada, E.; Ishii, M.; Riccardi, C.; Spedding, M.; Simon, H.-U.; Teixeira, M. M.; Cuervo, M. L. C.; Holgate, S. T.; Levi-Schaffer, F. Br. J. Pharmacol. 2015, 172, 4217 4227 DOI: 10.1111/bph.13219
    110. 110
      Evans, B. E.; Rittle, K. E.; Homnick, C. F.; Springer, J. P.; Hirshfield, J.; Veber, D. F. J. Org. Chem. 1985, 50, 4615 4625 DOI: 10.1021/jo00223a037
    111. 111
      DeSolms, S. J.; Giuliani, E. A.; Guare, J. P.; Vacca, J. P.; Sanders, W. M.; Graham, S. L.; Wiggins, J. M.; Darke, P. L.; Sigal, I. S. J. Med. Chem. 1991, 34, 2852 2857 DOI: 10.1021/jm00113a025
    112. 112
      Ripka, A. S.; Rich, D. H. Curr. Opin. Chem. Biol. 1998, 4, 439 452 DOI: 10.1016/S1367-5931(98)80119-1
    113. 113
      Schechter, I.; Berger, A. Biochem. Biophys. Res. Commun. 1967, 27, 157 162 DOI: 10.1016/S0006-291X(67)80055-X
    114. 114
      Rahuel, J.; Rasetti, V.; Maibaum, J.; Rueger, H.; Goschke, R.; Cohen, N.-C.; Stutz, S.; Cumin, F.; Fuhrer, W.; Wood, J. M.; Grutter, M. G. Chem. Biol. 2000, 7, 493 504 DOI: 10.1016/S1074-5521(00)00134-4
    115. 115
      Wood, J. M.; Maibaum, J.; Rahuel, J.; Grutter, M. G.; Cohen, N.-C.; Rasetti, V.; Ruger, H.; Goschke, R.; Stutz, S.; Fuhrer, W.; Schilling, W.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Baum, H.-P.; Schnell, C. R.; Herold, P.; Mah, R.; Jensen, C.; O’Brien, E.; Stanton, A.; Bedigian, M. P. Biochem. Biophys. Res. Commun. 2003, 308, 698 705 DOI: 10.1016/S0006-291X(03)01451-7
    116. 116
      Webb, R. L.; Schiering, N.; Sedrani, R.; Maibaum, J. J. Med. Chem. 2010, 53, 7490 7520 DOI: 10.1021/jm901885s
    117. 117
      Politi, A.; Leonis, G.; Tzoupis, H.; Ntountaniotis, D.; Papadopoulos, M. G.; Grdadolnik, S. G.; Mavromoustakos, T. Mol. Inf. 2011, 30, 973 985 DOI: 10.1002/minf.201100077
    118. 118
      Tzoupis, H.; Leonis, G.; Megariotis, G.; Supuran, C. T.; Mavromoustakos, T.; Papadopoulos, M. G. J. Med. Chem. 2012, 55, 5784 5796 DOI: 10.1021/jm300180r
    119. 119
      Palomo, J. M. RSC Adv. 2014, 4, 32658 32672 DOI: 10.1039/C4RA02458C
    120. 120
      Over, B.; Wetzel, S.; Grutter, C.; Nakai, Y.; Renner, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2013, 5, 21 28 DOI: 10.1038/nchem.1506
    121. 121
      Bauer, A.; Bronstrup, M. Nat. Prod. Rep. 2014, 31, 35 60 DOI: 10.1039/C3NP70058E
    122. 122
      Kuttruff, C. A.; Eastgate, M. D.; Baran, P. S. Nat. Prod. Rep. 2014, 31, 419 432 DOI: 10.1039/C3NP70090A
    123. 123
      Maier, M. E. Org. Biomol. Chem. 2015, 13, 5302 5345 DOI: 10.1039/C5OB00169B
    124. 124
      Liu, Y.-Y.; Wang, Y.; Walsh, T. R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.-F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.-H.; Shen, J. Lancet Infect. Dis. 2015,  DOI: 10.1016/S1473-3099(15)00424-7
    125. 125
      Hütter, R.; Keller-Schien, W.; Knüsel, F.; Prelog, V.; Rodgers, G. C., jr.; Suter, P.; Vogel, G.; Voser, W.; Zähner, H. Helv. Chim. Acta 1967, 50, 1533 1539 DOI: 10.1002/hlca.19670500612
    126. 126
      Kohno, J.; Kawahata, T.; Otake, T.; Morimoto, M.; Mori, H.; Ueba, N.; Nishio, M.; Kinumaki, A.; Komatsubara, S.; Kawashima, K. Biosci., Biotechnol., Biochem. 1996, 60, 1036 1037 DOI: 10.1271/bbb.60.1036
    127. 127
      Camp, D. Drugs Future 2013, 38, 245 256 DOI: 10.1358/dof.2013.038.04.1940442
    128. 128
      Kantarjian, H. M.; O’Brien, S.; Cortes, J. Clin. Lymphoma, Myeloma Leuk. 2013, 13, 530 533 DOI: 10.1016/j.clml.2013.03.017
    129. 129
      Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396 407 DOI: 10.1038/nchembio.2007.1
    130. 130
      McKerrall, S. J.; Jørgensen, L.; Kuttruff, C. A.; Ungeheuer, F.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5799 5810 DOI: 10.1021/ja501881p
    131. 131
      Michaudel, Q.; Ishihara, Y.; Baran, P. S. Acc. Chem. Res. 2015, 48, 712 721 DOI: 10.1021/ar500424a
    132. 132
      Shah, S.; Ryan, C. J. Drugs Future 2009, 34, 873 880 DOI: 10.1358/dof.2009.034.11.1441113
    133. 133
      Doronina, S. O.; Mendelsohn, B. A.; Bovee, T. D.; Cerveny, C. G.; Alley, S. C.; Meyer, D. L.; Oflazoglu, E.; Toki, B. E.; Sanderson, R. J.; Zabinski, R. F.; Wahl, A. F.; Senter, P. D. Bioconjugate Chem. 2006, 17, 114 124 DOI: 10.1021/bc0502917
    134. 134
      Smaglo, B. G.; Aldeghaither, D.; Weiner, L. M. Nat. Rev. Clin. Oncol. 2014, 11, 637 648 DOI: 10.1038/nrclinonc.2014.159
    135. 135
      Tzogani, K.; Straube, M.; Hoppe, U.; Kiely, P.; O’Dea, G.; Enzmann, H.; Salmon, P.; Salmonson, T.; Pignatti, F. J. Dermatol. Treat. 2014, 25, 371 374 DOI: 10.3109/09546634.2013.789474
    136. 136
      Teicher, B. A.; Tomaszewski, J. E. Biochem. Pharmacol. 2015, 96, 1 9 DOI: 10.1016/j.bcp.2015.04.008
    137. 137
      Kim, K. B.; Crews, C. M. Nat. Prod. Rep. 2013, 30, 600 604 DOI: 10.1039/c3np20126k
    138. 138
      Kuemler, I.; Mortensen, C. E.; Nielsen, D. L. Drugs Future 2011, 36, 825 832 DOI: 10.1358/dof.2011.036.11.1711891
    139. 139
      Ansell, S. M. Expert Opin. Invest. Drugs 2011, 20, 99 105 DOI: 10.1517/13543784.2011.542147
    140. 140
      Péan, E.; Flores, B.; Hudson, I.; Sjöberg, J.; Dunder, K.; Salmonson, T.; Gisselbrecht, C.; Laane, E.; Pignatti, F. Oncologist 2013, 18, 625 633 DOI: 10.1634/theoncologist.2013-0020
    141. 141
      Yano, S.; Kazuno, H.; Sato, T.; Suzuki, N.; Emura, T.; Wierzba, K.; Yamashita, J.; Tada, Y.; Yamada, Y.; Fukushima, M.; Asao, T. Bioorg. Med. Chem. 2004, 12, 3443 3450 DOI: 10.1016/j.bmc.2004.04.046
    142. 142
      Lee, H. Z.; Kwitkowski, V. E.; Del Valle, P. L.; Ricci, M. S.; Saber, H.; Habtemariam, B. A.; Bullock, J.; Bloomquist, E.; Li, S. Y.; Chen, X. H.; Brown, J.; Mehrotra, N.; Dorff, S.; Charlab, R.; Kane, R. C.; Kaminskas, E.; Justice, R.; Farrell, A. T.; Pazdur, R. Clin. Cancer Res. 2015, 21, 2666 2670 DOI: 10.1158/1078-0432.CCR-14-3119
    143. 143
      Thorkildsen, C.; Neve, S.; Larsen, B. J.; Meier, E.; Petersen, J. S. J. Pharmacol. Exp. Ther. 2003, 307, 490 496 DOI: 10.1124/jpet.103.051987
    144. 144
      Wang, Y.; Serradell, N.; Rosa, E.; Castaner, R. Drugs Future 2008, 33, 473 477 DOI: 10.1358/dof.2008.033.06.1215244
    145. 145
      Yoshida, T.; Akahoshi, F.; Sakashita, H.; Kitajima, H.; Nakamura, M.; Sonda, S.; Takeuchi, M.; Tanaka, Y.; Ueda, N.; Sekiguchi, S.; Ishige, T.; Shima, K.; Nabeno, M.; Abe, Y.; Anabuki, J.; Soejima, A.; Yoshida, K.; Takashina, Y.; Ishii, S.; Kiuchi, S.; Fukuda, S.; Tsutsumiuchi, R.; Kosaka, K.; Murozono, T.; Nakamaru, Y.; Utsumi, H.; Masutomi, N.; Kishida, H.; Miyaguchi, I.; Hayashi, Y. Bioorg. Med. Chem. 2012, 20, 5705 5719 DOI: 10.1016/j.bmc.2012.08.012
    146. 146
      Kato, N.; Oka, M.; Murase, T.; Yoshida, M.; Sakairi, M.; Yamashita, S.; Yasuda, Y.; Yoshikawa, A.; Hayashi, Y.; Makino, M.; Takeda, M.; Mirensha, Y.; Kakigami, T. Bioorg. Med. Chem. 2011, 19, 7221 7227 DOI: 10.1016/j.bmc.2011.09.043
    147. 147
      Cole, P.; Vicente, M.; Castañer, R. Drugs Future 2008, 33, 745 751 DOI: 10.1358/dof.2008.033.09.1251351
    148. 148
      Chao, E. C. Drugs Future 2011, 36, 351 357 DOI: 10.1358/dof.2011.036.05.1590789
    149. 149
      White, J. R., Jr. Ann. Pharmacother. 2015, 49, 582 598 DOI: 10.1177/1060028015573564
    150. 150
      Imamura, M.; Nakanishi, K.; Suzuki, T.; Ikegai, K.; Shiraki, R.; Ogiyama, T.; Murakami, T.; Kurosaki, E.; Noda, A.; Kobayashi, Y.; Yokota, M.; Koide, T.; Kosakai, K.; Ohkura, Y.; Takeuchi, M.; Tomiyama, H.; Ohta, M. Bioorg. Med. Chem. 2012, 20, 3263 3279 DOI: 10.1016/j.bmc.2012.03.051
    151. 151
      Tiwari, A. Drugs Future 2012, 37, 637 643 DOI: 10.1358/dof.2012.037.09.1848191
    152. 152
      Poole, R. M.; Prossler, J. E. Drugs 2014, 74, 939 944 DOI: 10.1007/s40265-014-0229-1
    153. 153
      Wilson, M. C.; Mori, T.; Rückert, C.; Uria, A. R.; Helf, M. J.; Takada, K.; Gernert, C.; Steffens, U. A. E.; Heycke, N.; Schmitt, S.; Rinke, C.; Helfrich, E. J. N.; Brachmann, A. O.; Gurgui, C.; Wakimoto, T.; Kracht, M.; Crüsemann, M.; Hentschel, U.; Abe, I.; Matsunaga, S.; Kalinowski, J.; Takeyama, H.; Piel, J. Nature 2014, 506, 58 62 DOI: 10.1038/nature12959
    154. 154
      Schofield, M. M.; Jain, S.; Porat, D.; Dick, G. J.; Sherman, D. H. Environ. Microbiol. 2015, 17, 3964 3975 DOI: 10.1111/1462-2920.12908
    155. 155
      Kusari, S.; Lamshöft, M.; Kusari, P.; Gottfried, S.; Zühlke, S.; Louven, K.; Hentschel, U.; Kayser, O.; Spiteller, M. J. Nat. Prod. 2014, 77, 2577 2584 DOI: 10.1021/np500219a
    156. 156
      Kusari, P.; Kusari, S.; Spiteller, M.; Kayser, O. Appl. Microbiol. Biotechnol. 2015, 99, 5383 5390 DOI: 10.1007/s00253-015-6660-8
    157. 157
      El-Elimat, T.; Raja, H. A.; Graf, T. N.; Faeth, S. H.; Cech, N. B.; Oberlies, N. H. J. Nat. Prod. 2014, 77, 193 199 DOI: 10.1021/np400955q
    158. 158
      Wang, W.-X.; Kusari, S.; Sezgin, S.; Lamshöft, M.; Kusari, P.; Kayser, O.; Spiteller, M. Appl. Microbiol. Biotechnol. 2015, 99, 7651 7662 DOI: 10.1007/s00253-015-6653-7
    159. 159
      Luo, Y.; Enghiad, B.; Zhao, H. Nat. Prod. Rep. 2016,  DOI: 10.1039/C5NP00085H
    160. 160
      Mohimani, H.; Pevzner, P. A. Nat. Prod. Rep. 2016, 33, 73 86 DOI: 10.1039/C5NP00050E
    161. 161
      Winn, M.; Fyans, J. K.; Zhuo, Y.; Micklefield, J. Nat. Prod. Rep. 2016,  DOI: 10.1039/C5NP00099H
    162. 162
      Zarins-Tutt, J. S.; Barberi, T. T.; Gao, H.; Mearns-Spragg, A.; Zhang, L.; Newman, D. J.; Goss, R. J. M. Nat. Prod. Rep. 2016, 33, 54 72 DOI: 10.1039/C5NP00111K
    163. 163
      Martinez, J. P.; Sasse, F.; Bronstrup, M.; Diez, J.; Meyerhans, A. Nat. Prod. Rep. 2015, 32, 29 48 DOI: 10.1039/C4NP00085D
    164. 164
      Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. Nat. Rev. Drug Discovery 2015, 14, 111 129 DOI: 10.1038/nrd4510
    165. 165
      Butler, M. S.; Robertson, A. A. B.; Cooper, M. A. Nat. Prod. Rep. 2014, 31, 1612 1661 DOI: 10.1039/C4NP00064A
    166. 166
      Aeluri, M.; Chamakuri, S.; Dasari, B.; Guduru, S. K. R.; Jimmidi, R.; Jogula, S.; Arya, P. Chem. Rev. 2014, 114, 4640 4694 DOI: 10.1021/cr4004049
    167. 167
      Milroy, L.-G.; Grossmann, T. N.; Hennig, S.; Brunsveld, L.; Ottmann, C. Chem. Rev. 2014, 114, 4695 4748 DOI: 10.1021/cr400698c
    168. 168
      Nicolaou, K. C. Angew. Chem., Int. Ed. 2014, 53, 2 15 DOI: 10.1002/anie.201402816
    169. 169
      Liu, K. K.-C.; Sakya, S. M.; O’Donnell, C. J.; Flick, A. C.; Li, J. W.-H. Bioorg. Med. Chem. 2011, 19, 1136 1154 DOI: 10.1016/j.bmc.2010.12.038
    170. 170
      Liu, K. K.-C.; Sakya, S. M.; O’Donnell, C. J.; Flick, A. C.; Ding, H. X. Bioorg. Med. Chem. 2012, 20, 1155 1174 DOI: 10.1016/j.bmc.2011.12.049
    171. 171
      Ding, H. X.; Liu, K. K.-C.; Sakya, S. M.; Flick, A. C.; O’Donnell, C. J. Bioorg. Med. Chem. 2013, 21, 2795 2825 DOI: 10.1016/j.bmc.2013.02.061
    172. 172
      Ding, H. X.; Leverett, C. A.; Kyne, R. E., Jr.; Liu, K. K.-C.; Sakya, S. M.; Flick, A. C.; O’Donnell, C. J. Bioorg. Med. Chem. 2014, 22, 2005 2032 DOI: 10.1016/j.bmc.2014.02.017
    173. 173
      Ding, H. X.; Leverett, C. A.; Kyne, R. E., Jr.; Liu, K. K.-C.; Fink, S. J.; Flick, A. C.; O’Donnell, C. J. Bioorg. Med. Chem. 2015, 23, 1895 1922 DOI: 10.1016/j.bmc.2015.02.056
    174. 174
      Hay, M.; Thomas, D. W.; Craighead, J. L.; Economides, C.; Rosenthal, J. Nat. Biotechnol. 2014, 32, 40 51 DOI: 10.1038/nbt.2786
    175. 175
      Moffat, J. G.; Rudolph, J.; Bailey, D. Nat. Rev. Drug Discovery 2014, 13, 588 602 DOI: 10.1038/nrd4366
    176. 176
      Newman, D. J. Pharmacol. Ther. 2015,  DOI: 10.1016/j.pharmthera.2015.12.002
    177. 177
      McKerrow, J. H. Nat. Prod. Rep. 2015, 32, 1610 1611 DOI: 10.1039/C5NP90043C
    178. 178
      Wang, J.; Zhang, C.-J.; Chia, W. N.; Loh, C. C. Y.; Li, Z.; Lee, Y. M.; He, Y.; Yuan, L.-X.; Lim, T. K.; Liu, M.; Liew, C. X.; Lee, Y. Q.; Zhang, J.; Lu, N.; Lim, C. T.; Hua, Z.-C.; Liu, B.; Shen, H.-M.; Tan, K. S. W.; Lin, Q. Nat. Commun. 2015, 6, 10111 DOI: 10.1038/ncomms10111
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnatprod.5b01055.

    • The drug data set (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.