Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Engineering Chiral Induction in Centrally Functionalized o-Phenylenes
My Activity
    Article

    Engineering Chiral Induction in Centrally Functionalized o-Phenylenes
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (2)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2023, 88, 2, 788–795
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.joc.2c01870
    Published January 5, 2023
    Copyright © 2023 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Work on foldamers, nonbiological oligomers that mimic the hierarchical structure of biomacromolecules, continues to yield new architectures of ever increasing complexity. o-Phenylenes, a class of helical aromatic foldamers, are well-suited to this area because of their structural simplicity and the straightforward characterization of their folding in solution. However, control of structure requires, by definition, control over folding handedness. Control over o-phenylene twist sense is currently lacking. While chiral induction from groups at o-phenylene termini has been demonstrated, it would be useful to instead direct twisting from internal positions to leave the ends free. Here, we explore chiral induction in a series of o-phenylenes with chiral imides at their centers. Conformational behavior has been studied by nuclear magnetic resonance and circular dichroism spectroscopies and density functional theory calculations. Chiral induction in otherwise unfunctionalized o-phenylenes is generally poor. However, strategic functionalization of the helix surface with trifluoromethyl or methyl groups allows it to better interact with the imide groups, greatly increasing diastereomeric excesses. The sense of chiral induction is consistent with computational models that suggest that it primarily arises from a steric effect.

    Copyright © 2023 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.2c01870.

    • UV–vis and fluorescence spectra, NMR assignments for o-phenylene oligomers, computational chemistry data, and NMR spectra (PDF)

    • Cartesian coordinates for optimized geometries (TXT)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2023, 88, 2, 788–795
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.joc.2c01870
    Published January 5, 2023
    Copyright © 2023 American Chemical Society

    Article Views

    696

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.