ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Cascade Reactions of Nitrones and Allenes for the Synthesis of Indole Derivatives

View Author Information
Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
Cite this: J. Org. Chem. 2016, 81, 20, 9521–9529
Publication Date (Web):September 28, 2016
https://doi.org/10.1021/acs.joc.6b01758
Copyright © 2016 American Chemical Society

    Article Views

    2403

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Cascade reactions involving nitrones and allenes are known to facilitate the rapid synthesis of several indole derivatives. The chemoselectivity of these complicated transformations can be influenced by substrate functionalization, reaction conditions, and catalyst control. While seminal studies established primary reactivity patterns, recent work has illustrated the impact of these cascade reactions for creating diverse libraries, increased the breadth of these methods with facilitated access to challenging nitrones, and shown that these transformations can be controlled by asymmetric catalysis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 58 publications.

    1. Meng-Lan Luo, Qiumeng Hou, Shuai-Jiang Liu, Qian Zhao, Rui Qin, Cheng Peng, Bo Han, Gu Zhan. One-Step Synthesis of Hydropyrrolo[3,2-b]indoles via Cascade Reactions of Oxindole-Derived Nitrones with Allenoates. Organic Letters 2022, 24 (46) , 8493-8497. https://doi.org/10.1021/acs.orglett.2c03349
    2. Pei-Pei Xu, Jun-Yi Liao, Jia-Jie Zhang, Wei-Min Shi, Cui Liang, Gui-Fa Su, Dong-Liang Mo. Nickel(II)-Catalyzed [3 + 2] Cycloaddition of Nitrones and Allenoates to Access N-Vinylindoles and N-Vinylpyrroles. Organic Letters 2021, 23 (19) , 7482-7486. https://doi.org/10.1021/acs.orglett.1c02695
    3. Shao-Cong Zhan, Ren-Jie Fang, Jing Sun, Chao-Guo Yan. Multicomponent Reaction for Diastereoselective Synthesis of Spiro[carbazole-3,4′-pyrazoles] and Spiro[carbazole-3,4′-thiazoles]. The Journal of Organic Chemistry 2021, 86 (13) , 8726-8741. https://doi.org/10.1021/acs.joc.1c00538
    4. Daqian Wang, Jing Sun, Ru-Zhang Liu, Yang Wang, Chao-Guo Yan. Diastereoselective Synthesis of Tetrahydrospiro[carbazole-1,3′-indolines] via an InBr3-Catalyzed Domino Diels–Alder Reaction. The Journal of Organic Chemistry 2021, 86 (8) , 5616-5629. https://doi.org/10.1021/acs.joc.1c00103
    5. Jing-Lei Xu, Hu Tian, Jia-Hao Kang, Wu-Xiang Kang, Wei Sun, Rui Sun, Ya-Min Li, Meng Sun. Ag(I)-Catalyzed Addition of Cyclopropenones and Nitrones to Access Imides. Organic Letters 2020, 22 (17) , 6739-6743. https://doi.org/10.1021/acs.orglett.0c02099
    6. Fei Zhao, Domiziana Masci, Salvatore Ferla, Carmine Varricchio, Andrea Brancale, Serena Colonna, Gary W. Black, Nicholas J. Turner, Daniele Castagnolo. Monoamine Oxidase (MAO-N) Biocatalyzed Synthesis of Indoles from Indolines Prepared via Photocatalytic Cyclization/Arylative Dearomatization. ACS Catalysis 2020, 10 (11) , 6414-6421. https://doi.org/10.1021/acscatal.0c01351
    7. Xin Huang, Shengming Ma. Allenation of Terminal Alkynes with Aldehydes and Ketones. Accounts of Chemical Research 2019, 52 (5) , 1301-1312. https://doi.org/10.1021/acs.accounts.9b00023
    8. Shun-Ichi Murahashi, Yasushi Imada. Synthesis and Transformations of Nitrones for Organic Synthesis. Chemical Reviews 2019, 119 (7) , 4684-4716. https://doi.org/10.1021/acs.chemrev.8b00476
    9. Yilin Liu, Xiangqing Feng, Yanyun Liu, Hongwei Lin, Yuanxiang Li, Yingying Gong, Lei Cao, Liping Chen. Carbonyl-Directed Addition of N-Alkylhydroxylamines to Unactivated Alkynes: Regio- and Stereoselective Synthesis of Ketonitrones. Organic Letters 2019, 21 (2) , 382-386. https://doi.org/10.1021/acs.orglett.8b03522
    10. Ren-Yin Yang, Jing Sun, Yao Tao, Qiu Sun, and Chao-Guo Yan . TfOH-Catalyzed One-Pot Domino Reaction for Diastereoselective Synthesis of Polysubstituted Tetrahydrospiro[carbazole-1,3′-indoline]s. The Journal of Organic Chemistry 2017, 82 (24) , 13277-13287. https://doi.org/10.1021/acs.joc.7b02397
    11. Antony Sekar Kulandai Raj, Balaji S. Kale, Bhanudas Dattatray Mokar, and Rai-Shung Liu . Gold-Catalyzed N,O-Functionalizations of 6-Allenyl-1-ynes with N-Hydroxyanilines To Construct Benzo[b]-azepin-4-one Cores. Organic Letters 2017, 19 (19) , 5340-5343. https://doi.org/10.1021/acs.orglett.7b02629
    12. Marie El Arba, Sara E. Dibrell, Ian T. Crouch, and Doug E. Frantz . Unified Approach to Substituted Allenoates via Pd-Catalyzed β-Hydride Elimination of (E)-Enol Triflates. Organic Letters 2017, 19 (19) , 5446-5449. https://doi.org/10.1021/acs.orglett.7b02736
    13. Jihad H. Mohammed, Akram N. M. Qaddo, Nabaz A. Muhammad Salih, Faeza B. Omar. Synthesis of Some novel Azomethine Oxide Derived from Aromatic Oximes and their Anti-microbial Studies. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 2024, 12 (1) , 13-18. https://doi.org/10.14500/aro.11471
    14. Xue Zhang, Shengming Ma. Allenation of Terminal Alkynes for Allene Synthesis. 2023, 785-811. https://doi.org/10.1002/9783527830237.ch22
    15. Balwinder Kaur, Sneha Venugopal, Anil Verma, Sanjeev Kumar Sahu, Pankaj Wadhwa, Deepak Kumar, Ajit Sharma. Recent Developments in the Synthesis and Anticancer Activity of Indole and Its Derivatives. Current Organic Synthesis 2023, 20 (4) , 376-394. https://doi.org/10.2174/1570179419666220509215722
    16. Pei‐Pei Xu, Su‐Ge Xin, Xue Li, Cui Liang, Dong‐Liang Mo. Copper(II)‐Catalyzed Cascade Reactions of N ‐Aryl Nitrones and Disubstituted Allenoates to Prepare [1,3]Oxazino[3,2‐a]indolines and Dihydropyrido[1,2‐a]indolines. Advanced Synthesis & Catalysis 2023, 365 (5) , 735-740. https://doi.org/10.1002/adsc.202201403
    17. Sami Chniti, László Kollár, Attila Bényei, Ágnes Dörnyei, Attila Takács. Highly Chemoselective One‐Step Synthesis of Novel N ‐Substituted‐Pyrrolo[3,4‐b]quinoline‐1,3‐diones via Palladium‐Catalyzed Aminocarbonylation/Carbonylative Cyclisation Sequence. European Journal of Organic Chemistry 2023, 26 (10) https://doi.org/10.1002/ejoc.202201374
    18. Richard Batsa Odonkor, Richard Tia, Evans Adei. Investigating the regio-, stereo-, and enantio-selectivities of the [3 + 2] cycloaddition reaction of C, N-diarylnitrone derivatives with N-propadienylindole derivatives. A DFT study. Computational and Theoretical Chemistry 2023, 1220 , 114024. https://doi.org/10.1016/j.comptc.2023.114024
    19. Hongtao Xu, Tingting Tan, Yiyuan Zhang, Yan Wang, Kangyin Pan, Ying Yao, Shuning Zhang, Yuang Gu, Wanting Chen, Jie Li, Hewei Dong, Yu Meng, Peixiang Ma, Wei Hou, Guang Yang. Metal‐Free and Open‐Air Arylation Reactions of Diaryliodonium Salts for DNA‐Encoded Library Synthesis. Advanced Science 2022, 9 (26) https://doi.org/10.1002/advs.202202790
    20. Yaseen A. A. M. Elshaier, Mohamed T. M. Nemr, Mohamed S. Refaey, Wael A. A. Fadaly, Assem Barakat. Chemistry of 2-vinylindoles: synthesis and applications. New Journal of Chemistry 2022, 46 (28) , 13383-13400. https://doi.org/10.1039/D2NJ00460G
    21. . Heterocycles from Cycloaddition of Alkynes. 2022, 285-364. https://doi.org/10.1002/9783527804801.ch8
    22. Mohuizi Liu, Lihua Xie, Liuzhen Hou, Lili Lin, Xiaoming Feng. Catalytic asymmetric transformation of nitrones and allenes to dihydropyridoindoles via chiral N , N ′-dioxide/cobalt( ii ) catalysis. Chemical Communications 2022, 58 (36) , 5482-5485. https://doi.org/10.1039/D2CC01263D
    23. Guolin Wu, Yuan Yao, Gen Li, Xue Zhang, Hui Qian, Shengming Ma. Enantioselective Allenation of Terminal Alkynes Catalyzed by Copper Halides of Mixed Oxidation States and Its Application to the Total Synthesis of Scorodonin. Angewandte Chemie 2022, 134 (4) https://doi.org/10.1002/ange.202112427
    24. Guolin Wu, Yuan Yao, Gen Li, Xue Zhang, Hui Qian, Shengming Ma. Enantioselective Allenation of Terminal Alkynes Catalyzed by Copper Halides of Mixed Oxidation States and Its Application to the Total Synthesis of Scorodonin. Angewandte Chemie International Edition 2022, 61 (4) https://doi.org/10.1002/anie.202112427
    25. Jiyuan Lyu, Tuan Le, Aurélie Claraz, Clémence Allain, Pierre Audebert, Géraldine Masson. s-Tetrazine: Robust and Green Photoorganocatalyst for Aerobic Oxidation of N,N-Disubstituted Hydroxylamines to Nitrones. Synlett 2022, 33 (02) , 177-181. https://doi.org/10.1055/a-1691-0449
    26. Mariia M. Efremova, Anastasia A. Makarova, Alexander S. Novikov, Mariya A. Kryukova, Mikhail A. Kuznetsov, Alexander P. Molchanov. Regio- and stereoselective (3 + 2)-cycloaddition reactions of nitrones with cyclic allenes. Organic & Biomolecular Chemistry 2021, 19 (44) , 9773-9784. https://doi.org/10.1039/D1OB01584B
    27. Asit Ghosh, Raghunath Dey, Prabal Banerjee. Relieving the stress together: annulation of two different strained rings towards the formation of biologically significant heterocyclic scaffolds. Chemical Communications 2021, 57 (44) , 5359-5373. https://doi.org/10.1039/D1CC00998B
    28. Tian‐Zhen Li, Si‐Jia Liu, Yu‐Wen Sun, Shuang Deng, Wei Tan, Yinchun Jiao, Yu‐Chen Zhang, Feng Shi. Regio‐ and Enantioselective (3+3) Cycloaddition of Nitrones with 2‐Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie 2021, 133 (5) , 2385-2393. https://doi.org/10.1002/ange.202011267
    29. Tian‐Zhen Li, Si‐Jia Liu, Yu‐Wen Sun, Shuang Deng, Wei Tan, Yinchun Jiao, Yu‐Chen Zhang, Feng Shi. Regio‐ and Enantioselective (3+3) Cycloaddition of Nitrones with 2‐Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie International Edition 2021, 60 (5) , 2355-2363. https://doi.org/10.1002/anie.202011267
    30. Ning Zou, Xiaoting Qin, Zhixin Wang, Weimin Shi, Dongliang Mo. Advances on the Synthesis and Application of α , β -Unsaturated Nitrones. Chinese Journal of Organic Chemistry 2021, 41 (12) , 4535. https://doi.org/10.6023/cjoc202109007
    31. Bünyamin Özkaya, Christina L. Bub, Frederic W. Patureau. Step and redox efficient nitroarene to indole synthesis. Chemical Communications 2020, 56 (86) , 13185-13188. https://doi.org/10.1039/D0CC03258A
    32. Cui Wei, Jin-Qi Zhang, Jia-Jie Zhang, Cui Liang, Dong-Liang Mo. Catalyst-controlled formal [4 + 1] annulation of N -vinyl fluorenone nitrones and allenoates to prepare spirofluorenylpyrrolines. Organic Chemistry Frontiers 2020, 7 (12) , 1520-1526. https://doi.org/10.1039/D0QO00224K
    33. Hui Peng, Kai Jiang, Guangjin Zhen, Furong Wang, Biaolin Yin. Access to N -unprotected 2-amide-substituted indoles from Ugi adducts via palladium-catalyzed intramolecular cyclization of o -iodoanilines bearing furan rings. RSC Advances 2020, 10 (20) , 11750-11754. https://doi.org/10.1039/D0RA01830A
    34. Ya Cheng, Zheng Li. Chemoselective Aza-Michael addition of indoles with 2-arylidenemalononitriles. Synthetic Communications 2020, 50 (4) , 571-579. https://doi.org/10.1080/00397911.2019.1708947
    35. Ana L. Cardoso, Maria I.L. Soares. 1,3-Dipolar Cycloadditions Involving Allenes: Synthesis of Five-Membered Rings. Current Organic Chemistry 2020, 23 (27) , 3064-3134. https://doi.org/10.2174/1385272823666191203122959
    36. Rajkumar Lalji Sahani, Long-Wu Ye, Rai-Shung Liu. Synthesis of nitrogen-containing molecules via transition metal-catalyzed reactions on isoxazoles, anthranils and benzoisoxazoles. 2020, 195-251. https://doi.org/10.1016/bs.adomc.2019.12.001
    37. Shao-Cong Zhan, Jing Sun, Ru-Zhang Liu, Chao-Guo Yan. Diastereoselective construction of carbazole-based spirooxindoles via the Levy three-component reaction. Organic & Biomolecular Chemistry 2020, 18 (1) , 163-168. https://doi.org/10.1039/C9OB02013F
    38. Jun-Yi Liao, Qing-Yan Wu, Xiuqiang Lu, Ning Zou, Cheng-Xue Pan, Cui Liang, Gui-Fa Su, Dong-Liang Mo. A copper-catalyzed diastereoselective O-transfer reaction of N -vinyl-α,β-unsaturated nitrones with ketenes into γ-lactones through [5 + 2] cycloaddition and N–O bond cleavage. Green Chemistry 2019, 21 (24) , 6567-6573. https://doi.org/10.1039/C9GC01811E
    39. U. Amrutha, Beneesh P.Babu, Sreedharan Prathapan. Metal free synthesis of 1‐azaspiro[4.4]nonane‐3‐one system via reactions of nitrones with 1,1‐disubstituted allenes. Journal of Heterocyclic Chemistry 2019, 56 (12) , 3236-3243. https://doi.org/10.1002/jhet.3718
    40. Da‐Qian Wang, Jing Sun, Chao‐Guo Yan. Efficient Synthesis of Fused and Bridged Cyclic Pyrrolo[3,4‐a]carbazoles via NH 4 I Promoted Three‐component Reaction. ChemistrySelect 2019, 4 (35) , 10550-10554. https://doi.org/10.1002/slct.201902407
    41. Jing Sun, Ren‐Yin Yang, Shao‐Cong Zhan, Chao‐Guo Yan. Construction of Tetrahydrospiro[carbazole‐1,2′‐indenes] and Dihydrospiro[carbazole‐1,3′‐indolines] via NH 4 I Promoted Three‐Component Reaction. ChemistrySelect 2019, 4 (34) , 10100-10103. https://doi.org/10.1002/slct.201902619
    42. Jitendra Gour, Srikanth Gatadi, Ravikumar Akunuri, Madhavi Venkata Yaddanapudi, Mushtaq Ahmad Nengroo, Dipak Datta, Sidharth Chopra, Srinivas Nanduri. Catalyst-free facile synthesis of polycyclic indole/pyrrole substituted-1,2,3-triazoles. Organic & Biomolecular Chemistry 2019, 17 (35) , 8153-8165. https://doi.org/10.1039/C9OB01560D
    43. Anna Dierks, Marc Schmidtmann, Jens Christoffers. Synthesis of Annulated Indolines by Reductive Fischer Indolization. Chemistry – A European Journal 2019, 25 (21) , 5451-5462. https://doi.org/10.1002/chem.201806302
    44. Ekta Gupta, Mohd Khalid Zaheer, Ruchir Kant, Kishor Mohanan. Additive-free regio- and diastereoselective construction of fully-substituted isoxazolidines employing diazo compounds. Organic Chemistry Frontiers 2019, 6 (8) , 1109-1113. https://doi.org/10.1039/C8QO01421C
    45. Michelle A. Kroc, Maciej Markiewicz, Wiktoria H. Pace, Donald J. Wink, Laura L. Anderson. Catalyst-controlled cascade synthesis of bridged bicyclic tetrahydrobenz[ b ]azepine-4-ones. Chemical Communications 2019, 55 (16) , 2309-2312. https://doi.org/10.1039/C8CC10313E
    46. Wes Lee, Mingbin Yuan, Christopher Acha, Ashley Onwu, Osvaldo Gutierrez. Mechanism of nitrones and allenoates cascade reactions for the synthesis of dihydro[1,2- a ]indoles. Organic & Biomolecular Chemistry 2019, 17 (7) , 1767-1772. https://doi.org/10.1039/C8OB02346H
    47. Leonid I. Belen’kii, Yulia B. Evdokimenkova. The Literature of Heterocyclic Chemistry, Part XVI, 2016. 2018, 173-254. https://doi.org/10.1016/bs.aihch.2018.02.003
    48. Mariia M. Efremova, Alexander S. Novikov, Rafael R. Kostikov, Taras L. Panikorovsky, Andrey V. Ivanov, Alexander P. Molchanov. Regio- and diastereoselectivity of the cycloaddition of nitrones with N-propadienylindole and pyrroles. Tetrahedron 2018, 74 (1) , 174-183. https://doi.org/10.1016/j.tet.2017.11.056
    49. Xueji Ma, Xuemei Xie, Li Liu, Ran Xia, Tongyu Li, Hangxiang Wang. Facile synthesis of pyrroloindoles via a rhodium( ii )-catalyzed annulation of 3-benzylidene-indolin-2-ones and α-imino carbenes. Chemical Communications 2018, 54 (13) , 1595-1598. https://doi.org/10.1039/C7CC08438B
    50. Xinle Li, Biying Zhang, Linlin Tang, Tian Wei Goh, Shuyan Qi, Alexander Volkov, Yuchen Pei, Zhiyuan Qi, Chia‐Kuang Tsung, Levi Stanley, Wenyu Huang. Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amine‐Functionalized Metal–Organic Frameworks. Angewandte Chemie 2017, 129 (51) , 16589-16593. https://doi.org/10.1002/ange.201710164
    51. Xinle Li, Biying Zhang, Linlin Tang, Tian Wei Goh, Shuyan Qi, Alexander Volkov, Yuchen Pei, Zhiyuan Qi, Chia‐Kuang Tsung, Levi Stanley, Wenyu Huang. Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amine‐Functionalized Metal–Organic Frameworks. Angewandte Chemie International Edition 2017, 56 (51) , 16371-16375. https://doi.org/10.1002/anie.201710164
    52. Jasmin Krüll, Anja Hubert, Natascha Nebel, Olaf Prante, Markus R. Heinrich. Microwave‐Assisted Rapid One‐Pot Synthesis of Fused and Non‐Fused Indoles and 5‐[ 18 F]Fluoroindoles from Phenylazocarboxylates. Chemistry – A European Journal 2017, 23 (64) , 16174-16178. https://doi.org/10.1002/chem.201703890
    53. Xin-Chan Lan, Ting-Ting Chen, Yan Zhao, Yu Wu, Jing Wang, Shu-Jiang Tu, Bo Jiang, Wen-Juan Hao. Regiospecific synthesis of 1,5,6,7-tetrahydro-4H-indol-4-ones via dehydroxylated [3+2] cyclization of β-hydroxy ketones with cyclic enaminones. Tetrahedron Letters 2017, 58 (15) , 1519-1522. https://doi.org/10.1016/j.tetlet.2017.03.009
    54. Rui Yang, Jin-Tao Yu, Song Sun, Qingheng Zheng, Jiang Cheng. Copper-mediated intramolecular aza-Wacker-type cyclization of 2-alkenylanilines toward 3-aryl indoles. Tetrahedron Letters 2017, 58 (5) , 445-448. https://doi.org/10.1016/j.tetlet.2016.12.053
    55. Justin M. Lopchuk. Five-Membered Ring Systems. 2017, 183-238. https://doi.org/10.1016/B978-0-08-102310-5.00006-0
    56. Honglei Liu, Yan Zhao, Zhen Li, Hao Jia, Cheng Zhang, Yumei Xiao, Hongchao Guo. Lewis base-catalyzed diastereoselective [3 + 2] cycloaddition reaction of nitrones with electron-deficient alkenes: an access to isoxazolidine derivatives. RSC Advances 2017, 7 (47) , 29515-29519. https://doi.org/10.1039/C7RA04264G
    57. Jose R. Cabrero-Antonino, Rosa Adam, Kathrin Junge, Matthias Beller. Cobalt-catalysed reductive C–H alkylation of indoles using carboxylic acids and molecular hydrogen. Chemical Science 2017, 8 (9) , 6439-6450. https://doi.org/10.1039/C7SC02117H
    58. Laura L. Anderson, Michelle A. Kroc, Tyler W. Reidl, Jongwoo Son. ChemInform Abstract: Cascade Reactions of Nitrones and Allenes for the Synthesis of Indole Derivatives. ChemInform 2016, 47 (50) https://doi.org/10.1002/chin.201650232

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect