ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis of a Family of Highly Substituted Porphyrin Thioethers via Nitro Displacement in 2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-tetranitroporphyrin

View Author Information
School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
Cite this: J. Org. Chem. 2017, 82, 10, 5122–5134
Publication Date (Web):April 28, 2017
https://doi.org/10.1021/acs.joc.7b00328
Copyright © 2017 American Chemical Society

    Article Views

    1069

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    A series of highly substituted porphyrin thioethers was synthesized from 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetranitroporphyrin (H2OETNP). The reactions proceeded via a SNAr mechanism with a broad range of aromatic thiols in the presence of a base. This is a rapid way to prepare a large variety of meso-substituted porphyrins from only one precursor. Single crystal X-ray analysis revealed that these new porphyrin thioethers are highly distorted, exhibiting conformational properties that are distinctive of both meso-sulfur substitution and steric overcrowding in general. Additionally, denitration of H2OETNP under basic conditions was investigated, yielding products of stepwise desubstitution. This allowed a comparative X-ray crystallographic study to delineate the successive structural effects of an increasing degree of nitro substitution in the complete series of nitro-substituted octaethylporphyrins.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b00328.

    • A quantitative study on the influence of TEA on the consumption of 1, NMR spectra of the reaction products, crystal data for 12, and the UV–vis spectra of 1, 20, 21, 22, 23, and 32 (PDF)

    • Crystallographic data (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 27 publications.

    1. Mathieu Berthelot, Fatima Akhssas, Abdou K. D. Dimé, Asmae Bousfiha, Julie Echaubard, Ghada Souissi, Hélène Cattey, Dominique Lucas, Paul Fleurat-Lessard, Charles H. Devillers. Stepwise Oxidative C–C Coupling and/or C–N Fusion of Zn(II) meso-Pyridin-2-ylthio-porphyrins. Inorganic Chemistry 2022, 61 (19) , 7387-7405. https://doi.org/10.1021/acs.inorgchem.2c00435
    2. Marc Kielmann, Keith J. Flanagan, Mathias O. Senge. Targeted Synthesis of Regioisomerically Pure Dodecasubstituted Type I Porphyrins through the Exploitation of Peri-interactions. The Journal of Organic Chemistry 2020, 85 (11) , 7603-7610. https://doi.org/10.1021/acs.joc.0c00798
    3. Keith J. Flanagan, Brendan Twamley, Mathias O. Senge. Investigating the Impact of Conformational Molecular Engineering on the Crystal Packing of Cavity Forming Porphyrins. Inorganic Chemistry 2019, 58 (23) , 15769-15787. https://doi.org/10.1021/acs.inorgchem.9b01963
    4. Tomoya Ishizuka, Nitika Grover, Christopher J. Kingsbury, Hiroaki Kotani, Mathias O. Senge, Takahiko Kojima. Nonplanar porphyrins: synthesis, properties, and unique functionalities. Chemical Society Reviews 2022, 51 (17) , 7560-7630. https://doi.org/10.1039/D2CS00391K
    5. Mathias O. Senge, Alina Meindl. Organic Synthesis and Reactivity of Porphyrins. 2022, 37-140. https://doi.org/10.1002/9781119129301.ch3
    6. Mariusz Rosa, Stanisław Ostrowski. Studies on Synthesis of Porphyrins – β ‐Substituted with Multiple Nitrogen‐containing Groups. ChemistrySelect 2022, 7 (23) https://doi.org/10.1002/slct.202200290
    7. Mohit Saroha, Jayant Sindhu, Sudhir Kumar, Kuldip K. Bhasin, Jitender M. Khurana, Rajender S. Varma, Deepak Tomar. Transition Metal‐Free Sulfenylation of C−H Bonds for C−S Bond Formation in Recent Years: Mechanistic Approach and Promising Future. ChemistrySelect 2021, 6 (46) , 13077-13208. https://doi.org/10.1002/slct.202102042
    8. Takayuki Tanaka, Kento Ueta, Atsuhiro Osuka. Development of the Peripheral Functionalization Chemistry of meso ‐Free Corroles. Chemistry – A European Journal 2021, 27 (63) , 15605-15615. https://doi.org/10.1002/chem.202102267
    9. Peipei Jiang, Tingting Zhao, Jian Rong, Bangshao Yin, Yutao Rao, Mingbo Zhou, Ling Xu, Jianxin Song. Multi-(phenylthio)porphyrinato Ni(II) compounds: Synthesis, structures and properties. Chinese Chemical Letters 2021, 32 (8) , 2562-2566. https://doi.org/10.1016/j.cclet.2021.02.022
    10. Ken‐ichi Yamashita, Kazuhiro Furutani, Takuji Ogawa. Outstanding Enhancement in the Axial Coordination Ability of the Highly Rigid Cofacial Cyclic Metalloporphyrin Dimer. Asian Journal of Organic Chemistry 2021, 10 (5) , 1192-1197. https://doi.org/10.1002/ajoc.202100186
    11. Harry C. Sample, Mathias O. Senge. Nucleophilic Aromatic Substitution (S N Ar) and Related Reactions of Porphyrinoids: Mechanistic and Regiochemical Aspects. European Journal of Organic Chemistry 2021, 2021 (1) , 7-42. https://doi.org/10.1002/ejoc.202001183
    12. Satoshi Hayashi, Rina Takamatsu, Shiori Takeda, Masahiro Noji, Toshikatsu Takanami. Central zinc metal-controlled regioselective meso -bromination of zincated β-silylporphyrins—rapid access to meso ,β-dual-functionalized porphyrins. Organic & Biomolecular Chemistry 2020, 18 (48) , 9791-9795. https://doi.org/10.1039/D0OB02262D
    13. M. R. Crampton. Aromatic Substitution. 2020, 213-295. https://doi.org/10.1002/9781119426295.ch5
    14. Ken‐ichi Yamashita, Narumi Kuramochi, Hang Pham Qui Van, Kazuhiro Furutani, Takuji Ogawa, Ken‐ichi Sugiura. Efficient Synthesis of Arylenedioxy‐Bridged Porphyrin Dimers through Catalyst‐Free Nucleophilic Aromatic Substitution. ChemPlusChem 2020, 85 (1) , 217-226. https://doi.org/10.1002/cplu.201900670
    15. Karolis Norvaiša, Keith J. Flanagan, Dáire Gibbons, Mathias O. Senge. Conformational Re‐engineering of Porphyrins as Receptors with Switchable N−H⋅⋅⋅X‐Type Binding Modes. Angewandte Chemie International Edition 2019, 58 (46) , 16553-16557. https://doi.org/10.1002/anie.201907929
    16. Karolis Norvaiša, Keith J. Flanagan, Dáire Gibbons, Mathias O. Senge. Konformativer Umbau von Porphyrinen als Rezeptoren mit schaltbaren N‐H⋅⋅⋅X‐Bindungsmodi. Angewandte Chemie 2019, 131 (46) , 16705-16709. https://doi.org/10.1002/ange.201907929
    17. Xiao-hua Cai, Hongyan Zhang, Hui Guo. Denitrative Coupling Reaction: A Powerful Synthetic Tool in Functional Transformation. Current Organic Chemistry 2019, 23 (10) , 1131-1150. https://doi.org/10.2174/1385272823666190627114857
    18. Elizaveta V. Ermakova, Yulia Yu. Enakieva, Sergey E. Nefedov, Vladimir V. Arslanov, Yulia G. Gorbunova, Aslan Yu. Tsivadze, Christine Stern, Alla Bessmertnykh‐Lemeune. Synthesis of ( trans ‐A 2 )BC‐Type Porphyrins with Acceptor Diethoxyphosphoryl and Various Donor Groups and their Assembling in the Solid State and at Interfaces. European Journal of Organic Chemistry 2019, 2019 (20) , 3146-3162. https://doi.org/10.1002/ejoc.201900448
    19. Marc Kielmann, Nitika Grover, Werner W. Kalisch, Mathias O. Senge. Incremental Introduction of Organocatalytic Activity into Conformationally Engineered Porphyrins. European Journal of Organic Chemistry 2019, 2019 (14) , 2448-2452. https://doi.org/10.1002/ejoc.201801691
    20. Shin-ichiro Kawano, Sae Kawada, Yasutaka Kitagawa, Rena Teramoto, Masayoshi Nakano, Kentaro Tanaka. Near-infrared absorption by intramolecular charge-transfer transition in 5,10,15,20-tetra( N -carbazolyl)porphyrin through protonation. Chemical Communications 2019, 55 (20) , 2992-2995. https://doi.org/10.1039/C8CC09667H
    21. Marc Kielmann, Mathias O. Senge. Molecular Engineering of Free‐Base Porphyrins as Ligands—The N−H⋅⋅⋅X Binding Motif in Tetrapyrroles. Angewandte Chemie International Edition 2019, 58 (2) , 418-441. https://doi.org/10.1002/anie.201806281
    22. Marc Kielmann, Mathias O. Senge. Molekulares Engineering freier Porphyrinbasen als Liganden – das N‐H⋅⋅⋅X‐Bindungsmotiv in Tetrapyrrolen. Angewandte Chemie 2019, 131 (2) , 424-448. https://doi.org/10.1002/ange.201806281
    23. Ken‐ichi Yamashita, Kazuyuki Kataoka, Hang Pham Qui Van, Takuji Ogawa, Ken‐ichi Sugiura. Versatile and Catalyst‐Free Methods for the Introduction of Group‐16 Elements at the meso ‐Positions of Diarylporphyrins. Asian Journal of Organic Chemistry 2018, 7 (12) , 2468-2478. https://doi.org/10.1002/ajoc.201800538
    24. George R. Newkome, Sourav Chakraborty. Eight-Membered and Larger Rings. 2018, 551-572. https://doi.org/10.1016/B978-0-08-102788-2.00017-9
    25. M. Roucan, M. Kielmann, S. J. Connon, S. S. R. Bernhard, M. O. Senge. Conformational control of nonplanar free base porphyrins: towards bifunctional catalysts of tunable basicity. Chemical Communications 2018, 54 (1) , 26-29. https://doi.org/10.1039/C7CC08099A
    26. Mathieu Berthelot, Guillaume Hoffmann, Asmae Bousfiha, Julie Echaubard, Julien Roger, Hélène Cattey, Anthony Romieu, Dominique Lucas, Paul Fleurat-Lessard, Charles H. Devillers. Oxidative C–N fusion of pyridinyl-substituted porphyrins. Chemical Communications 2018, 54 (43) , 5414-5417. https://doi.org/10.1039/C8CC01375F
    27. Ik-Hwan Um, Min-Young Kim, Julian M. Dust. Medium effect (water versus MeCN) on reactivity and reaction pathways for the S N Ar reaction of 1-aryloxy-2,4-dinitrobenzenes with cyclic secondary amines. Canadian Journal of Chemistry 2017, 95 (12) , 1273-1279. https://doi.org/10.1139/cjc-2017-0454

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect