ACS Publications. Most Trusted. Most Cited. Most Read
Preparation of 3,4-Substituted-5-Aminopyrazoles and 4-Substituted-2-Aminothiazoles
My Activity

Figure 1Loading Img
    Article

    Preparation of 3,4-Substituted-5-Aminopyrazoles and 4-Substituted-2-Aminothiazoles
    Click to copy article linkArticle link copied!

    • Stepan Havel
      Stepan Havel
      Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
      International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
      More by Stepan Havel
    • Prashant Khirsariya
      Prashant Khirsariya
      Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
      International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
    • Naresh Akavaram
      Naresh Akavaram
      Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
      International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
    • Kamil Paruch
      Kamil Paruch
      Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
      International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
      More by Kamil Paruch
    • Benoit Carbain*
      Benoit Carbain
      Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
      International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
      *E-mail: [email protected] and [email protected]
    Other Access OptionsSupporting Information (3)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2018, 83, 24, 15380–15405
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.joc.8b02655
    Published November 21, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    3,4-Substituted-5-aminopyrazoles and 4-substituted-2-aminothiazoles are frequently used intermediates in medicinal chemistry and drug discovery projects. We report an expedient flexible synthesis of 3,4-substituted-5-aminopyrazoles (35 examples), based on palladium-mediated α-arylation of β-ketonitriles with aryl bromides. A library of 4-substituted-2-aminothiazoles (21 examples) was assembled by a sequence employing Suzuki coupling of newly prepared, properly protected pinacol ester and MIDA ester of 4-boronic acid-2-aminothiazole with (hetero)aryl halides.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.8b02655.

    • Copies of 1H spectra of all compounds and selected 13C{1H} NMR, IR, and HRMS spectra related to the synthesis of aminopyrazoles (PDF)

    • Copies of 1H spectra of all compounds; selected 13C{1H} NMR, IR, and HRMS spectra related to the synthesis of aminothiazoles; and X-ray ORTEP structure of compound 12 (PDF)

    • Crystallographic data (CIF files) for compound 12 (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 21 publications.

    1. Jia-Hao Weng, Xiao-Hu Xu, Zhi-Peng Guan, Zhi-Bing Dong. Copper-Catalyzed One-Pot Synthesis of N,N-4-Triphenylthiazol-2-amines. The Journal of Organic Chemistry 2024, 89 (22) , 16390-16400. https://doi.org/10.1021/acs.joc.4c01417
    2. Ge Zeng, Jichao Liu, Yinlin Shao, Fangjun Zhang, Zhongyan Chen, Ningning Lv, Jiuxi Chen, Renhao Li. Selective Synthesis of β-Ketonitriles via Catalytic Carbopalladation of Dinitriles. The Journal of Organic Chemistry 2021, 86 (1) , 861-867. https://doi.org/10.1021/acs.joc.0c02388
    3. Mykhaylo A. Potopnyk, Dmytro Volyniuk, Roman Luboradzki, Magdalena Ceborska, Iryna Hladka, Yan Danyliv, Juozas V. Grazulevicius. Organolithium-Mediated Postfunctionalization of Thiazolo[3,2-c][1,3,5,2]oxadiazaborinine Fluorescent Dyes. The Journal of Organic Chemistry 2020, 85 (9) , 6060-6072. https://doi.org/10.1021/acs.joc.0c00552
    4. Junwen Wang, Shouxiong Chen, Wei Wu, Shunli Wen, Zhiqiang Weng. Base-Mediated Tunable Synthesis of 2-Trifluoromethylated Furans and Dihydrofuranols: Extraordinary Stable in Sulfuric Acid. The Journal of Organic Chemistry 2019, 84 (23) , 15685-15696. https://doi.org/10.1021/acs.joc.9b02326
    5. Fedor Nikulenkov, Benoit Carbain, Raktim Biswas, Stepan Havel, Jana Prochazkova, Alexandra Sisakova, Magdalena Zacpalova, Melita Chavdarova, Victoria Marini, Vit Vsiansky, Veronika Weisova, Kristina Slavikova, Dhanraj Biradar, Prashant Khirsariya, Marco Vitek, David Sedlak, Petr Bartunek, Lukas Daniel, Jan Brezovsky, Jiri Damborsky, Kamil Paruch, Lumir Krejci. Discovery of new inhibitors of nuclease MRE11. European Journal of Medicinal Chemistry 2025, 316 , 117226. https://doi.org/10.1016/j.ejmech.2024.117226
    6. R. Sanz, S. Suárez-Pantiga. 8.1.14.23 Hetaryllithium Compounds (Update 2025). 2025https://doi.org/10.1055/sos-SD-108-00365
    7. Karuppaiah Perumal, Markabandhu Shanthi, Vijayakumar Hemamalini, Ramasamy Shanmugam, Bhaskaran Shankar, Subburethinam Ramesh. Unveiling a Novel Mechanistic Pathway: Thiol and DMSO ‐Facilitated Synthesis of Pyrazole Amine Thioether. Journal of Heterocyclic Chemistry 2024, 8 https://doi.org/10.1002/jhet.4923
    8. Tutumoni Kalita, Ankita Choudhury, Anshul Shakya, Surajit Kumar Ghosh, Udaya Pratap Singh, Hans Raj Bhat. A Review on Synthetic Thiazole Derivatives as an Antimalarial Agent. Current Drug Discovery Technologies 2024, 21 (5) https://doi.org/10.2174/0115701638276379231223101625
    9. Sophie Pate, Joshua Taujanskas, Robyn Wells, Craig M. Robertson, Paul M. O'Neill, Andrew V. Stachulski. Convenient syntheses of 2-acylamino-4-halothiazoles and acylated derivatives using a versatile Boc-intermediate. RSC Advances 2024, 14 (38) , 27894-27903. https://doi.org/10.1039/D4RA04959D
    10. Onanong Vorasin, Tanawat Phumjan, Siriporn Saepua, Daniel Iwaniuk, Sumalee Kamchonwongpaisan, Yongyuth Yuthavong, Chawanee Thongpanchang, Nitipol Srimongkolpithak. Development of a Practical Synthetic Method for Clinical Candidate 3-(2-{3-[(2,4-Diamino-6-ethylpyrimidin-5-yl)oxy]propoxy} phenyl)propanoic acid (P218) and Its Hydroxylated Metabolites. Synthesis 2023, 55 (23) , 3947-3953. https://doi.org/10.1055/s-0042-1751502
    11. Hui Qiao, Jean Michalland, Qi Huang, Samir Z. Zard. A Versatile Route to Acyl (MIDA)Boronates. Chemistry – A European Journal 2023, 29 (58) https://doi.org/10.1002/chem.202302235
    12. Debasis Aich, Parveen Kumar, Debraj Ghorai, Kanak Kanti Das, Santanu Panda. Recent advances in the synthesis and reactivity of MIDA boronates. Chemical Communications 2022, 58 (96) , 13298-13316. https://doi.org/10.1039/D2CC04893K
    13. Sanoop P. Chandrasekharan, Anamika Dhami, Sandeep Kumar, Kishor Mohanan. Recent advances in pyrazole synthesis employing diazo compounds and synthetic analogues. Organic & Biomolecular Chemistry 2022, 20 (45) , 8787-8817. https://doi.org/10.1039/D2OB01918C
    14. Janail Rodrigues da Silva, Gabriela Colosso Bramante, Cristina Souza Freire Nordi, Norberto S. Gonçalves, Izilda A. Bagatin. Selective Aminothiazole‐Derivative Probe for Detection of Phosphate in Freshwater. ChemistrySelect 2022, 7 (37) https://doi.org/10.1002/slct.202202740
    15. Larry Yet. Pyrazoles. 2022, 1-112. https://doi.org/10.1016/B978-0-12-818655-8.00107-4
    16. Oleksandr O. Grygorenko, Dmitriy M. Volochnyuk, Bohdan V. Vashchenko. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European Journal of Organic Chemistry 2021, 2021 (47) , 6478-6510. https://doi.org/10.1002/ejoc.202100857
    17. Yevhen M. Ivon, Ivan V. Mazurenko, Yuliya O. Kuchkovska, Zoya V. Voitenko, Oleksandr O. Grygorenko. Formyl MIDA Boronate: C 1 Building Block Enables Straightforward Access to α‐Functionalized Organoboron Derivatives. Angewandte Chemie International Edition 2020, 59 (41) , 18016-18022. https://doi.org/10.1002/anie.202007651
    18. Yevhen M. Ivon, Ivan V. Mazurenko, Yuliya O. Kuchkovska, Zoya V. Voitenko, Oleksandr O. Grygorenko. Formyl MIDA Boronate: C 1 Building Block Enables Straightforward Access to α‐Functionalized Organoboron Derivatives. Angewandte Chemie 2020, 132 (41) , 18172-18178. https://doi.org/10.1002/ange.202007651
    19. Oleksandr O. Grygorenko, Yevhen M. Ivon. Heterocyclizations of α-heteroatom-substituted organoboronates (microreview). Chemistry of Heterocyclic Compounds 2020, 56 (2) , 170-172. https://doi.org/10.1007/s10593-020-02641-4
    20. Larry Yet. Five-Membered Ring Systems: With More than One N Atom. 2020, 325-361. https://doi.org/10.1016/B978-0-12-819962-6.00008-7
    21. Baohua Zhang, Lanxiang Shi. CuBr 2 mediated synthesis of 2-Aminothiazoles from dithiocarbamic acid salts and ketones. Phosphorus, Sulfur, and Silicon and the Related Elements 2019, 194 (12) , 1134-1139. https://doi.org/10.1080/10426507.2019.1633316

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2018, 83, 24, 15380–15405
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.joc.8b02655
    Published November 21, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3017

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.