ACS Publications. Most Trusted. Most Cited. Most Read
Computing the Fukui Function in Solid-State Chemistry: Application to Alkaline Earth Oxides Bulk and Surfaces
My Activity

Figure 1Loading Img
    Article

    Computing the Fukui Function in Solid-State Chemistry: Application to Alkaline Earth Oxides Bulk and Surfaces
    Click to copy article linkArticle link copied!

    • M. L. Cerón
      M. L. Cerón
      Facultad de Ingenierı́a, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Providencia, Santiago, Chile
      More by M. L. Cerón
    • T. Gomez
      T. Gomez
      Theoretical and Computational Chemistry Center, Institute of Applied Chemical Sciences, Faculty of Engineering, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
      More by T. Gomez
    • M. Calatayud*
      M. Calatayud
      Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F. 75005 Paris, France
      *Email: [email protected]. Phone: +33 (0)1 44272505. Fax: +33 (0)1 44274117.
      More by M. Calatayud
    • C. Cárdenas*
      C. Cárdenas
      Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 635, Santiago, Chile
      Centro para el Desarrollo de la Nanociencia y la Nanotecnologı́a (CEDENNA), Avda. Ecuador 3493, Santiago 9170124, Chile
      *Email: [email protected]. Phone: +56 (2) 229787161.
      More by C. Cárdenas
    Other Access OptionsSupporting Information (2)

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2020, 124, 14, 2826–2833
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpca.0c00950
    Published March 12, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Fukui functions (FFs) are chemical descriptors that are useful to explain the reactivity of systems toward electron transfer. Whereas they have been widely employed for molecules, their application to extended systems is scarce. One of the reasons for the limited development of such analysis in solids is the improper evaluation of FFs in the usual computational approaches based on density functional theory and periodic boundary conditions. In this work we compare the available approaches and propose a new method based on the interpolation of partially charged systems that mitigates some of the problems encountered. We discuss the reactivity of alkaline earth oxides (MgO, CaO, SrO, and BaO) in terms of the FF analysis, providing a robust way to account for the higher reactivity of surface oxygen sites compared with bulk sites.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.0c00950.

    • Computed properties of bulk systems, geometrical parameters of surfaces, FFs computed using different approaches and MO systems, geometrical structures of asymmetric slab models (POSCAR format), python script to interpolate charge density files, and examples of application (PDF)

    • Fukui interpolation script (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 28 publications.

    1. Nicolás F. Barrera, Javiera Cabezas-Escares, Francisco Muñoz, Wilver A. Muriel, Tatiana Gómez, Mònica Calatayud, Carlos Cárdenas. Fukui Function and Fukui Potential for Solid-State Chemistry: Application to Surface Reactivity. Journal of Chemical Theory and Computation 2025, Article ASAP.
    2. Amy L. Gunton, Stephen J. Jenkins. Chemical Softness in Aromatic Adsorption: Benzene, Nitrobenzene and Anisole on Pt{111}. The Journal of Physical Chemistry A 2024, 128 (30) , 6296-6304. https://doi.org/10.1021/acs.jpca.4c02214
    3. Fernanda Pinilla, Wilver A. Muriel, Javiera Cabezas-Escares, Ignacio Chacón, Carlos Cardenas, Francisco Munoz. Manipulating the Stacking in Two-Dimensional Hexagonal Boron Nitride Bilayers: Implications for Defect-Based Single Photon Emitters. ACS Applied Nano Materials 2024, 7 (6) , 6039-6046. https://doi.org/10.1021/acsanm.3c05953
    4. Joakim Halldin Stenlid, Frank Abild-Pedersen. Revealing Local and Directional Aspects of Catalytic Active Sites by the Nuclear and Surface Electrostatic Potential. The Journal of Physical Chemistry C 2024, 128 (11) , 4544-4558. https://doi.org/10.1021/acs.jpcc.3c08512
    5. Yuejiao Zhang, Yumeng Gao, Yinti Ren, Chendong Jin, Hu Zhang, Ruqian Lian, Penglai Gong, Rui-Ning Wang, Jiang-Long Wang, Xing-Qiang Shi. Understanding 2D Semiconductor Edges by Combining Local and Nonlocal Effects: The Case of MoSi2N4. Chemistry of Materials 2024, 36 (3) , 1526-1535. https://doi.org/10.1021/acs.chemmater.3c02783
    6. Christina Mariam Mathew, Ann Varghese, Sunish K. Sugunan, Vibin Ipe Thomas. Rapid Computational Approach Towards Designing Singlet-Fission Chromophores by Tuning the Diradical Character of Heteroatom-Doped Polycyclic Aromatic Hydrocarbons Using the Atom-Specific Fukui Function. The Journal of Physical Chemistry A 2022, 126 (10) , 1579-1590. https://doi.org/10.1021/acs.jpca.1c08094
    7. Osvaldo Yañez, Rodrigo Báez-Grez, Diego Inostroza, Ricardo Pino-Rios, Walter A. Rabanal-León, Julia Contreras-García, Carlos Cardenas, William Tiznado. Kick–Fukui: A Fukui Function-Guided Method for Molecular Structure Prediction. Journal of Chemical Information and Modeling 2021, 61 (8) , 3955-3963. https://doi.org/10.1021/acs.jcim.1c00605
    8. Xinxin Zhang, Lei Wang, Ying Xie, Honggang Fu. Theoretical insights into performance descriptors and their impact on activity optimization strategies for cobalt-based electrocatalysts. Coordination Chemistry Reviews 2025, 533 , 216560. https://doi.org/10.1016/j.ccr.2025.216560
    9. Xinxin Zhang, Zhijian Liang, Xu Zhang, Qian Guo, Ying Xie, Lei Wang, Honggang Fu. Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters 2025, 36 (5) , 109935. https://doi.org/10.1016/j.cclet.2024.109935
    10. Tirth Raj Paneru, Manoj Kumar Chaudhary, Bhawani Datt Joshi, Poonam Tandon. Cocrystal screening of benznidazole based on electronic transition, molecular reactivity, hydrogen bonding, and stability. Journal of Molecular Modeling 2024, 30 (11) https://doi.org/10.1007/s00894-024-06146-1
    11. Shiv Shankar Gupta, Shourabh Rav, Devesh Chandra, Upendra Sharma. Photocatalytic synthesis of unsymmetrical Bis-N-heterocycles. Journal of Catalysis 2024, 438 , 115673. https://doi.org/10.1016/j.jcat.2024.115673
    12. Florian F. Mulks. Hard and soft electrons and holes. Chem 2024, 10 (9) , 2724-2744. https://doi.org/10.1016/j.chempr.2024.06.013
    13. Badreah A. Al Jahdaly. Preparation and evaluation of new pyridone derivatives and their investigation corrosion depletion property for copper corrosion in HCl acid solution. Biomass Conversion and Biorefinery 2024, 14 (15) , 17055-17070. https://doi.org/10.1007/s13399-023-03765-1
    14. Yuwen Chen, Ke Zhu, Wenlei Qin, Zhiwei Jiang, Zhuofeng Hu, Mika Sillanpää, Kai Yan. Enhanced electron transfer using NiCo2O4@C hollow nanocages with an electron-shuttle effect for efficient tetracycline degradation. Chemical Engineering Journal 2024, 21 , 150786. https://doi.org/10.1016/j.cej.2024.150786
    15. Sadeq M. AlHazmy, Mohamed Oussama Zouaghi, Ahmed N. Al-Hakimi, Thamer Alorini, Ibrahim A. Alhagri, Youssef Arfaoui, Rania Al-Ashwal, Lamjed Mansour, Naceur Hamdi. Synthesis, characterization, optical properties, biological activity and theoretical studies of a 4 nitrobenzylidene) amino) phenyl)imino)methyl)naphthalen-2-ol -based fluorescent Schiff base. Heliyon 2024, 10 (5) , e26349. https://doi.org/10.1016/j.heliyon.2024.e26349
    16. Hui Shang, Cuijiao Zhang, Qi Zhang, Jun Li, Xiayu Fan. Theoretical study of the interactions between demetallization agent and Ni/V porphyrins and the removal under microwave irradiation. Chemical Engineering and Processing - Process Intensification 2024, 196 , 109622. https://doi.org/10.1016/j.cep.2023.109622
    17. Sara Gómez, Santiago Gómez, Natalia Rojas-Valencia, José G. Hernández, Karen J. Ardila-Fierro, Tatiana Gómez, Carlos Cárdenas, Cacier Hadad, Chiara Cappelli, Albeiro Restrepo. Interactions and reactivity in crystalline intermediates of mechanochemical cyclorhodation reactions. Physical Chemistry Chemical Physics 2024, 5 https://doi.org/10.1039/D3CP04201D
    18. Youcef Megrouss, Salem Yahiaoui, Nourdine Boukabcha, Mansour Azayez, Asma Nekrouf, Sid Ahmed Kaas, Souad Bennabi, Merzouk Saidj, Abdelkader Chouaih, Mokhtaria Drissi. Charge Density Study, DFT Calculations, Hirshfield Surface Analysis and Molecular Docking of (Z)-3-N-(Ethyl)-2-N '-(3-methoxyphenyl imino) thiazolidine-4-one. Russian Journal of Physical Chemistry A 2023, 97 (8) , 1731-1745. https://doi.org/10.1134/S0036024423080319
    19. Lanna E. B. Lucchetti, Pedro A. S. Autreto, James M. de Almeida, Mauro C. Santos, Samira Siahrostami. Unravelling catalytic activity trends in ceria surfaces toward the oxygen reduction and water oxidation reactions. Reaction Chemistry & Engineering 2023, 8 (6) , 1285-1293. https://doi.org/10.1039/D3RE00027C
    20. Igor B. Grillo, Gabriel A. Urquiza-Carvalho, Gerd B. Rocha. Quantum chemical descriptors based on semiempirical methods for large biomolecules. The Journal of Chemical Physics 2023, 158 (20) https://doi.org/10.1063/5.0132687
    21. Ricardo Pino-Rios, Osvaldo Yañez, Diego Inostroza, Rodrigo Báez-Grez, Carlos Cárdenas, William Tiznado. Structure prediction using reactivity descriptors. 2023, 449-462. https://doi.org/10.1016/B978-0-32-390259-5.00023-8
    22. Ramón Alain Miranda-Quintana, Farnaz Heidar-Zadeh, Stijn Fias, Allison E. A. Chapman, Shubin Liu, Christophe Morell, Tatiana Gómez, Carlos Cárdenas, Paul W. Ayers. Molecular interactions from the density functional theory for chemical reactivity: Interaction chemical potential, hardness, and reactivity principles. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.929464
    23. Carlos Cárdenas, Andrea Echeverry, Trinidad Novoa, Andrés Robles‐Navarro, T. Gomez, Patricio Fuentealba. The Fukui Function in Extended Systems: Theory and Applications. 2022, 555-571. https://doi.org/10.1002/9783527829941.ch27
    24. Alex Aziz, Javier Carrasco. Modeling magnesium surfaces and their dissolution in an aqueous environment using an implicit solvent model. The Journal of Chemical Physics 2022, 156 (17) https://doi.org/10.1063/5.0087683
    25. Huiting He, Min Zheng, Qiang Liu, Jian Liu, Juan Zhao, Yuting Zhuang, Xianxiang Liu, Qiong Xu, Steven R. Kirk, Dulin Yin. Hydroxyl-assisted selective epoxidation of perillyl alcohol with hydrogen peroxide by vanadium-substituted phosphotungstic acid hinged on imidazolyl activated carbon. New Journal of Chemistry 2022, 46 (14) , 6636-6645. https://doi.org/10.1039/D2NJ00040G
    26. Ashakiran Maibam, Sailaja Krishnamurty. Nitrogen activation to reduction on a recyclable V-SAC/BN-graphene heterocatalyst sifted through dual and multiphilic descriptors. Journal of Colloid and Interface Science 2021, 600 , 480-491. https://doi.org/10.1016/j.jcis.2021.05.027
    27. Pedro Navarro-Santos, Rafael Herrera-Bucio, Judit Aviña-Verduzco, Jose Luis Rivera. Calculation of the Electronic Properties and Reactivity of Nanoribbons. 2021https://doi.org/10.5772/intechopen.94541
    28. Xavier Deraet, Jan Turek, Mercedes Alonso, Frederik Tielens, Stefaan Cottenier, Paul W. Ayers, Bert M. Weckhuysen, Frank De Proft. Reactivity of Single Transition Metal Atoms on a Hydroxylated Amorphous Silica Surface: A Periodic Conceptual DFT Investigation. Chemistry – A European Journal 2021, 27 (19) , 6050-6063. https://doi.org/10.1002/chem.202004660

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2020, 124, 14, 2826–2833
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpca.0c00950
    Published March 12, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1132

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.