ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVA: Spectroscopy, Mol...A: Spectroscopy, Molecular Structure, and Quantum ChemistryNEXT

Nuclear Spin–Spin Couplings: Efficient Evaluation of Exact Exchange and Extension to Local Hybrid Functionals

  • Fabian Mack
    Fabian Mack
    Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
    More by Fabian Mack
  • Caspar J. Schattenberg
    Caspar J. Schattenberg
    Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
  • Martin Kaupp*
    Martin Kaupp
    Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
    *Email: [email protected]
    More by Martin Kaupp
  • , and 
  • Florian Weigend*
    Florian Weigend
    Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
    *Email: [email protected]
Cite this: J. Phys. Chem. A 2020, 124, 41, 8529–8539
Publication Date (Web):September 21, 2020
https://doi.org/10.1021/acs.jpca.0c06897
Copyright © 2020 American Chemical Society

    Article Views

    414

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (792 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    We present an efficient implementation for the computation of nuclear spin–spin coupling tensors within density functional theory into the TURBOMOLE software suite. Emphasis is put on methods to efficiently evaluate the Hartree–Fock exchange needed for hybrid functionals: resolution of the identity and seminumerical evaluation on a grid. Our algorithm allows for the selection of specific nuclei for the reduction of calculation times. Further, the accuracy of locally dense basis sets in the density functional theory framework is investigated. These features allow for the routine computation of coupling constants in systems comprising about 100 carbon atoms within less than one day on a single CPU and within a few hours when using the OpenMP variant. Based on seminumerical integration, the first implementation of local hybrid functionals for spin–spin couplings is reported. This has allowed a preliminary evaluation of position-dependent exact-exchange admixture in three local hybrid functionals for a set of 80 isotropic spin–spin couplings in 23 small main-group molecules against CC3 and MCSCF reference data. Two of the local hybrids (LH14t-calPBE and LH07t-SVWN) are the top performers in the overall statistical evaluation compared to several standard functionals (TPSS, TPSSh, B3LYP, PBE0, and BHLYP), in particular, as they do not exhibit notable outliers for specific coupling types.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.0c06897.

    • All investigated isotropic and anisotropic coupling contributions with different basis set combinations; short discussion of point group symmetry; Cartesian coordinates of molecules used for this, three SIMesPH compounds, porphyrin, and the cubane molecule; grid dependence of LH results and detailed LH data, including different SSCC terms; and further statistical analyses (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 17 publications.

    1. Yannick J. Franzke, Christof Holzer, Josefine H. Andersen, Tomislav Begušić, Florian Bruder, Sonia Coriani, Fabio Della Sala, Eduardo Fabiano, Daniil A. Fedotov, Susanne Fürst, Sebastian Gillhuber, Robin Grotjahn, Martin Kaupp, Max Kehry, Marjan Krstić, Fabian Mack, Sourav Majumdar, Brian D. Nguyen, Shane M. Parker, Fabian Pauly, Ansgar Pausch, Eva Perlt, Gabriel S. Phun, Ahmadreza Rajabi, Dmitrij Rappoport, Bibek Samal, Tim Schrader, Manas Sharma, Enrico Tapavicza, Robert S. Treß, Vamsee Voora, Artur Wodyński, Jason M. Yu, Benedikt Zerulla, Filipp Furche, Christof Hättig, Marek Sierka, David P. Tew, Florian Weigend. TURBOMOLE: Today and Tomorrow. Journal of Chemical Theory and Computation 2023, 19 (20) , 6859-6890. https://doi.org/10.1021/acs.jctc.3c00347
    2. Yannick J. Franzke. Reducing Exact Two-Component Theory for NMR Couplings to a One-Component Approach: Efficiency and Accuracy. Journal of Chemical Theory and Computation 2023, 19 (7) , 2010-2028. https://doi.org/10.1021/acs.jctc.2c01248
    3. Yannick J. Franzke, Christof Holzer, Fabian Mack. NMR Coupling Constants Based on the Bethe–Salpeter Equation in the GW Approximation. Journal of Chemical Theory and Computation 2022, 18 (2) , 1030-1045. https://doi.org/10.1021/acs.jctc.1c00999
    4. Yannick J. Franzke, Jason M. Yu. Hyperfine Coupling Constants in Local Exact Two-Component Theory. Journal of Chemical Theory and Computation 2022, 18 (1) , 323-343. https://doi.org/10.1021/acs.jctc.1c01027
    5. Sebastian Gillhuber, Yannick J. Franzke, Florian Weigend. Paramagnetic NMR Shielding Tensors and Ring Currents: Efficient Implementation and Application to Heavy Element Compounds. The Journal of Physical Chemistry A 2021, 125 (44) , 9707-9723. https://doi.org/10.1021/acs.jpca.1c07793
    6. Robin Grotjahn, Martin Kaupp. Reliable TDDFT Protocol Based on a Local Hybrid Functional for the Prediction of Vibronic Phosphorescence Spectra Applied to Tris(2,2′-bipyridine)-Metal Complexes. The Journal of Physical Chemistry A 2021, 125 (32) , 7099-7110. https://doi.org/10.1021/acs.jpca.1c05101
    7. Yannick J. Franzke, Fabian Mack, Florian Weigend. NMR Indirect Spin–Spin Coupling Constants in a Modern Quasi-Relativistic Density Functional Framework. Journal of Chemical Theory and Computation 2021, 17 (7) , 3974-3994. https://doi.org/10.1021/acs.jctc.1c00167
    8. Christof Holzer, Yannick J. Franzke, Max Kehry. Assessing the Accuracy of Local Hybrid Density Functional Approximations for Molecular Response Properties. Journal of Chemical Theory and Computation 2021, 17 (5) , 2928-2947. https://doi.org/10.1021/acs.jctc.1c00203
    9. Caspar Jonas Schattenberg, Martin Kaupp. Implementation and Validation of Local Hybrid Functionals with Calibrated Exchange-Energy Densities for Nuclear Shielding Constants. The Journal of Physical Chemistry A 2021, 125 (12) , 2697-2707. https://doi.org/10.1021/acs.jpca.1c01135
    10. Florian Bruder, Yannick J. Franzke, Christof Holzer, Florian Weigend. Zero-field splitting parameters within exact two-component theory and modern density functional theory using seminumerical integration. The Journal of Chemical Physics 2023, 159 (19) https://doi.org/10.1063/5.0175758
    11. Robin Grotjahn, Martin Kaupp. A Look at Real‐World Transition‐Metal Thermochemistry and Kinetics with Local Hybrid Functionals. Israel Journal of Chemistry 2023, 63 (7-8) https://doi.org/10.1002/ijch.202200021
    12. Javier Sanz Rodrigo, Andreas Erbs Hillers-Bendtsen, Frederik Ø. Kjeldal, Nicolai M. Høyer, Kurt V. Mikkelsen, Stephan P. A. Sauer. Indirect nuclear spin–spin couplings with third-order contributions added to the SOPPA method. The Journal of Chemical Physics 2023, 158 (12) https://doi.org/10.1063/5.0140117
    13. Stefan Sander, Elizabeth J. Cosgrove, Robert Müller, Martin Kaupp, Thomas Braun. Hydrogen Bonding in Platinum Indolylphosphine Polyfluorido and Fluorido Complexes. Chemistry – A European Journal 2023, 29 (7) https://doi.org/10.1002/chem.202202768
    14. Guilherme Cariello, Lucas A. Zeoly, Bruno A. Piscelli, Thomas Lectka, Rodrigo A. Cormanich. The pitfalls of using J HF spin–spin coupling constants to infer hydrogen bond formation in organofluorine compounds. Chemical Communications 2023, 113 https://doi.org/10.1039/D3CC05389J
    15. Andrew M. Teale, Trygve Helgaker, Andreas Savin, Carlo Adamo, Bálint Aradi, Alexei V. Arbuznikov, Paul W. Ayers, Evert Jan Baerends, Vincenzo Barone, Patrizia Calaminici, Eric Cancès, Emily A. Carter, Pratim Kumar Chattaraj, Henry Chermette, Ilaria Ciofini, T. Daniel Crawford, Frank De Proft, John F. Dobson, Claudia Draxl, Thomas Frauenheim, Emmanuel Fromager, Patricio Fuentealba, Laura Gagliardi, Giulia Galli, Jiali Gao, Paul Geerlings, Nikitas Gidopoulos, Peter M. W. Gill, Paola Gori-Giorgi, Andreas Görling, Tim Gould, Stefan Grimme, Oleg Gritsenko, Hans Jørgen Aagaard Jensen, Erin R. Johnson, Robert O. Jones, Martin Kaupp, Andreas M. Köster, Leeor Kronik, Anna I. Krylov, Simen Kvaal, Andre Laestadius, Mel Levy, Mathieu Lewin, Shubin Liu, Pierre-François Loos, Neepa T. Maitra, Frank Neese, John P. Perdew, Katarzyna Pernal, Pascal Pernot, Piotr Piecuch, Elisa Rebolini, Lucia Reining, Pina Romaniello, Adrienn Ruzsinszky, Dennis R. Salahub, Matthias Scheffler, Peter Schwerdtfeger, Viktor N. Staroverov, Jianwei Sun, Erik Tellgren, David J. Tozer, Samuel B. Trickey, Carsten A. Ullrich, Alberto Vela, Giovanni Vignale, Tomasz A. Wesolowski, Xin Xu, Weitao Yang. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Physical Chemistry Chemical Physics 2022, 24 (47) , 28700-28781. https://doi.org/10.1039/D2CP02827A
    16. Christof Holzer, Yannick J. Franzke. A local hybrid exchange functional approximation from first principles. The Journal of Chemical Physics 2022, 157 (3) https://doi.org/10.1063/5.0100439
    17. Robin Grotjahn, Martin Kaupp. Assessment of hybrid functionals for singlet and triplet excitations: Why do some local hybrid functionals perform so well for triplet excitation energies?. The Journal of Chemical Physics 2021, 155 (12) https://doi.org/10.1063/5.0063751

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect